# Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p counting(natural) numbers - {1,2,3,4,...} 2. whole numbers - {0,1,2,3...} 3. integers - {...-3, -2,-1,0,1,2,3...} p rational numbers - { a/b a and b are integers with b 0} - numbers that can be written as fractions. 5. irrational numbers - nonterminating, nonrepeating decimals. p real numbers - rational and irrational numbers p number line - a line with units marked off representing the integers and the spaces between representing rational and irrational numbers - a representation of the real numbers. 8. coordinates - numbers corresponding to points on the number line. p is a member of is not a member of is a subset of is not a subset of p Closure property - For any real numbers a and b, a+ b and ab are real numbers. 14. Commutative property - a + b = b + a and ab = ba 15. Associative property - a + (b + c) = (a + b) + c and a(bc) = (ab)c 16. Distributive property - a(b +c) = ab + ac 17. Identity Properties a = a and 1. a = a (zero is the additive identity and 1 is the multiplicative identity)

2 18. Multiplication property of zero - 0. a = Additive inverse property - For any real number a, a + -a = For every nonzero real number a, a. 1/a = 1. 1/a is the reciprocal (multiplicative inverse) of a. p Properties of opposites - a) -1. a = -a b) -(-a) = a c) -(a - b) = b - a 22. relations - symbols that indicate how numbers are related such a <, >, =,, and. 23. Trichotomy property - For any two real numbers a and b, exactly one of the following is true: a< b, a = b, or a > b. p Reflexive property - For any real number a, a = a 25. Symmetric property - For any real numbers a and b, if a = b, then b = a 26. Transitive property - For any real numbers a, b, and c, if a = b and b = c, then a = c. 27. Substitution property - If a = b then a and b may be substituted for one another in any expression involving a or b. 28. Absolute value - the distance of a number a from 0 on the number line. a = { a if a 0 -a if a < 0 p Properties of absolute value: a) a o (absolute value is nonnegative) b) -a = a (additive inverses have the same absolute value) c) a. b = a. b (the absolute value of a product is the product of the absolute values. d) a/b = a / b, b 0 ( the absolute value of a quotient is the quotient of the absolute values.) 30. Distance between two points - Distance is the absolute value of the their difference or d(a,b) = a - b p Arithmetic expression - writing numbers with operation of math. 32. Order of operations - (note - error on lesson - grouping before powers) Grouping symbols Powers Multiplication and division - left to right Addition and subtraction - left to right

3 p ) Algebraic expression (variable expression) - writing numbers and one or more variables with operations of math. p Value of an algebraic expression - value of arithmetic expression when variable is replaced by real numbers. 35. Domain - set of numbers that are allowed to be used for the variable in an algebraic expression. 36. Simplify - find a simpler-looking equivalent expression. 37. term - single number or the product of a number and one or more variables. 38. factor - the individual numbers or variables in a term. 39. coefficient - the product of the remaining factors of any variable part in the term. 40. like terms - two or more terms that contain the same variables with the same exponents. P2 p. 16 1) exponential expression - a n = a. a. a..... a 2) base - in the expression a n, a is the base or factor. 3) exponent - in the expression a n, n is the exponent or power. p negative integral exponents - If a is a nonzero real number and n is a positive integer, a -n = 1 a n p Rules for negative exponents and fractions - If a and b are nonzero numbers and m and n are integers, then (a/b) -m = (b/a) m and a -m = b n b -n a m 6. product rule - a m. a n = a m+n p Zero exponent - If a is nonzero real number, then a 0 = 1 8. Rules for Integral exponents - a) a m a n = a m+n Product rule b) a m = a m-n Quotient rule a n c) (a m ) n = a mn Power of a power (continued)

4 d) (ab) n = a n b n Power of a product rule e) (a/b) n = a n / b n Power of a quotient rule p. 22 9) Scientific notation - a number between 1 and 10 times a power of 10. P3 p nth root - if n is a positive integer and a n = b, then a is the nth root of b. If a 2 = b then a is the square root of b If a 3 = b then a is the cube root of b. 2. Exponent 1/n - if n is a positive even integer and a is positive, then a 1/n is the positive real nth root of a and is called the principal nth root of a. if n is positive and odd and a is real then a 1/n is the real nth root of a if n is positive then 0 1/n = 0 p rational exponents - If m and n are positive integers, then a m/n = (a 1/n ) m provided a 1/n is real. p Rules for rational exponents: a and b are real and r and s are rational, powers are real and no denominators are zero. a) a r a s = a r+s b) a r = a r-s a s c) (a r ) s = a rs d) (ab) r = a r b r e) (a/b) r = a r b r f) (a/b) -r = b r a r g) a -r = b s b -s a r p radical sign - and the exponent 1/n both indicate the nth root. 6. radical - If n is a positive integer and a is a number for which a 1/n is defined, then the expression = a 1/n. If n = 2, the write a rather than a 7. radicand - the number under the radical sign. 8. index - the n of the radical

6 5. binomial - a polynomial with two terms 6. trinomial - a polynomial with three terms p leading coefficient - the coefficient of the first term when polynomial is written in decreasing order from left to right. 8. degree of a polynomial in one variable - highest power of the variable in the polynomial 9. zero polynomial - zero 10) linear polynomial - first degree polynomial 11) quadratic polynomial - second-degree polynomial 12) cubic polynomial - third-degree polynomial 13) degree of term with more than one variable - sum of powers of variables 14) degree of polynomial with more than one variable - highest degree of any of its terms. 15) adding and subtracting polynomials - add and subtract like terms p ) multiplying polynomials - multiply each term of the first polynomial by every term of the second polynomial and then combine like terms p ) FOIL - product of two binomials consists of four terms: (a + b) ( c + d) = ac (first terms) + ad (outer terms) + bc (inner terms) + bd (last terms) p ) special products: a) square of a sum - (a + b) 2 = a 2 + 2ab + b 2 b) square of a difference - (a - b) 2 = a 2-2ab + b 2 c) product of a sum and a difference - (a+b)(a-b) = a 2 - b 2 p ) conjugates - two expressions with radicals whose product is a rational number p ) division algorithm of polynomials - If the dividend P(x) and the divisor D(x) are polynomials where D(x) is not zero and the degree of P(x) is to the degree of D(x), then there are two polynomials the quotient Q(x) and the remainder R(x), such that P(x) = Q(x) D(x) + R(x) where R(x) = 0 or the degree of R(x) the degree of D(x).

7 p ) value of a polynomial P(x) - number to replace the variable in a polynomial P5 p. 54 1) Factoring out - the process of finding factor that is common to each term and taking it out. 2) Factors - polynomials when multiplied give back the original polynomial 3) Common Factor - a factor that is common to the terms of a polynomial 4) Greatest Common Factor (GCF) - the monomial that includes every number and variable that is a factor of all terms of the polynomial. p. 55 5) Factoring by Grouping - used with a polynomial of 4 terms where the common factors are factored out of the first pair and second pair. p. 56 6) Factoring ax 2 + bx + c with a = 1 Find the two numbers e and f whose product is c and whose sum is b then factor (x + e)(x + f) p. 57 7) Factoring ax 2 + bx + c with a 1 (Split the middle term) a) Find two numbers who sum is b and whose product is ac b) Replace b by the sum of these two numbers c) Factor the resulting four-term polynomial by grouping p. 58 8) Perfect Square Trinomial - trinomial that results from squaring a sum or a difference. 9) Factoring Special Products: a) Difference of two squares a 2 - b 2 = (a + b)(a - b) b) Perfect Square Trinomial a 2 + 2ab + b 2 = (a + b) 2 c) Perfect Square Trinomial a 2-2ab + b 2 = (a - b) 2 p ) Factoring the Difference and Sum of Two Cubes a) Difference of two cubes a 3 - b 3 = (a - b)(a 2 + ab + b 2 ) b) Sum of two cubes a 3 + b 3 = (a + b)(a 2 - ab + b 2 ) 11) Factoring by Substitution - when a polynomial involves a complicated expression we a) replace the complicated expression by a single variable b) factor the simpler polynomial c) replace the single variable by the complicated expression.

8 p ) Prime (irreducible over the integers) - polynomials that cannot be factored using integral coefficients. 13) Factoring Completely - writing a polynomial as a product of prime polynomials. P6 p. 65 1) rational expression - ratio of two polynomials in which the denominator is not the zero polynomial 2) domain - set of all real numbers that can be used in place of variable 3) Basic principle of rational numbers: If a, b, and c are integers with b 0 and c 0, then ac = bc a b p. 66 4) reduce to lowest terms - divide out all common factors p. 67 5) multiplying rational numbers - If a/b and c/d are rational numbers, then a. c = ac b d bd p. 68 6) dividing rational numbers - If a/b and c/d are rational numbers with c 0, then a c = a. d b d b c 7) build up a denominator - rename a denominator with a larger value by multiplying the numerator and denominator by the same number to get an equivalent fraction. p. 69 8) least common denominator (LCD) - smallest number that is a multiple of all the denominators. Steps: a) factor each denominator completely b) write a product using each factor that appears in a denominator c) for each factor, use the highest power of that factor that occurs in the denominator 9) adding and subtracting rational numbers - If a/b and c/d are rational numbers, then a + c = a + c and a - c = a - c b b b b b b

9 p ) complex fraction - a fraction having rational expression in the numerator, denominator, or both 11) simplifying a complex fraction - multiply the numerator and denominator by the LCD of all of the denominators. 12) simplifying complex fractions with negative exponents - a) change all terms to positive powers b) multiply numerator and denominator by LCD of the denominators

### STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an

### 1.3 Polynomials and Factoring

1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### Mth 95 Module 2 Spring 2014

Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

### Factoring Polynomials

UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

### ALGEBRA I A PLUS COURSE OUTLINE

ALGEBRA I A PLUS COURSE OUTLINE OVERVIEW: 1. Operations with Real Numbers 2. Equation Solving 3. Word Problems 4. Inequalities 5. Graphs of Functions 6. Linear Functions 7. Scatterplots and Lines of Best

### expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

### x n = 1 x n In other words, taking a negative expoenent is the same is taking the reciprocal of the positive expoenent.

Rules of Exponents: If n > 0, m > 0 are positive integers and x, y are any real numbers, then: x m x n = x m+n x m x n = xm n, if m n (x m ) n = x mn (xy) n = x n y n ( x y ) n = xn y n 1 Can we make sense

### A.1 Radicals and Rational Exponents

APPENDIX A. Radicals and Rational Eponents 779 Appendies Overview This section contains a review of some basic algebraic skills. (You should read Section P. before reading this appendi.) Radical and rational

### Identify examples of field properties: commutative, associative, identity, inverse, and distributive.

Topic: Expressions and Operations ALGEBRA II - STANDARD AII.1 The student will identify field properties, axioms of equality and inequality, and properties of order that are valid for the set of real numbers

### Algebra II Pacing Guide First Nine Weeks

First Nine Weeks SOL Topic Blocks.4 Place the following sets of numbers in a hierarchy of subsets: complex, pure imaginary, real, rational, irrational, integers, whole and natural. 7. Recognize that the

### COGNITIVE TUTOR ALGEBRA

COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,

### ModuMath Algebra Lessons

ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

### Algebra Unit 6 Syllabus revised 2/27/13 Exponents and Polynomials

Algebra Unit 6 Syllabus revised /7/13 1 Objective: Multiply monomials. Simplify expressions involving powers of monomials. Pre-assessment: Exponents, Fractions, and Polynomial Expressions Lesson: Pages

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

### 3. Power of a Product: Separate letters, distribute to the exponents and the bases

Chapter 5 : Polynomials and Polynomial Functions 5.1 Properties of Exponents Rules: 1. Product of Powers: Add the exponents, base stays the same 2. Power of Power: Multiply exponents, bases stay the same

### Factoring Polynomials

Factoring Polynomials Factoring Factoring is the process of writing a polynomial as the product of two or more polynomials. The factors of 6x 2 x 2 are 2x + 1 and 3x 2. In this section, we will be factoring

### Algebra 1 Course Objectives

Course Objectives The Duke TIP course corresponds to a high school course and is designed for gifted students in grades seven through nine who want to build their algebra skills before taking algebra in

### ALGEBRA 1/ALGEBRA 1 HONORS

ALGEBRA 1/ALGEBRA 1 HONORS CREDIT HOURS: 1.0 COURSE LENGTH: 2 Semesters COURSE DESCRIPTION The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical

### MyMathLab ecourse for Developmental Mathematics

MyMathLab ecourse for Developmental Mathematics, North Shore Community College, University of New Orleans, Orange Coast College, Normandale Community College Table of Contents Module 1: Whole Numbers and

### MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

### The notation above read as the nth root of the mth power of a, is a

Let s Reduce Radicals to Bare Bones! (Simplifying Radical Expressions) By Ana Marie R. Nobleza The notation above read as the nth root of the mth power of a, is a radical expression or simply radical.

### Chapter 7 - Roots, Radicals, and Complex Numbers

Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

### Developmental Math Course Outcomes and Objectives

Developmental Math Course Outcomes and Objectives I. Math 0910 Basic Arithmetic/Pre-Algebra Upon satisfactory completion of this course, the student should be able to perform the following outcomes and

### LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

### ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

### Algebra and Geometry Review (61 topics, no due date)

Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

### Placement Test Review Materials for

Placement Test Review Materials for 1 To The Student This workbook will provide a review of some of the skills tested on the COMPASS placement test. Skills covered in this workbook will be used on the

### Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF

Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials

### NSM100 Introduction to Algebra Chapter 5 Notes Factoring

Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

### Monomials with the same variables to the same powers are called like terms, If monomials are like terms only their coefficients can differ.

Chapter 7.1 Introduction to Polynomials A monomial is an expression that is a number, a variable or the product of a number and one or more variables with nonnegative exponents. Monomials that are real

### SECTION P.5 Factoring Polynomials

BLITMCPB.QXP.0599_48-74 /0/0 0:4 AM Page 48 48 Chapter P Prerequisites: Fundamental Concepts of Algebra Technology Eercises Critical Thinking Eercises 98. The common cold is caused by a rhinovirus. The

### Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

### Chapter 15 Radical Expressions and Equations Notes

Chapter 15 Radical Expressions and Equations Notes 15.1 Introduction to Radical Expressions The symbol is called the square root and is defined as follows: a = c only if c = a Sample Problem: Simplify

### Algebra I Notes Review Real Numbers and Closure Unit 00a

Big Idea(s): Operations on sets of numbers are performed according to properties or rules. An operation works to change numbers. There are six operations in arithmetic that "work on" numbers: addition,

### Chapter 1.1 Rational and Irrational Numbers

Chapter 1.1 Rational and Irrational Numbers A rational number is a number that can be written as a ratio or the quotient of two integers a and b written a/b where b 0. Integers, fractions and mixed numbers,

### Mathematics Placement

Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

### Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

### HIBBING COMMUNITY COLLEGE COURSE OUTLINE

HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,

### Chapter 4 -- Decimals

Chapter 4 -- Decimals \$34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### Chapter 3. Algebra. 3.1 Rational expressions BAa1: Reduce to lowest terms

Contents 3 Algebra 3 3.1 Rational expressions................................ 3 3.1.1 BAa1: Reduce to lowest terms...................... 3 3.1. BAa: Add, subtract, multiply, and divide............... 5

### A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25

### Florida Math for College Readiness

Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness

### Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS

Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS The following is a list of terms and properties which are necessary for success in Math Concepts and College Prep math. You will

### Florida Math Correlation of the ALEKS course Florida Math 0022 to the Florida Mathematics Competencies - Lower and Upper

Florida Math 0022 Correlation of the ALEKS course Florida Math 0022 to the Florida Mathematics Competencies - Lower and Upper Whole Numbers MDECL1: Perform operations on whole numbers (with applications,

### What are the place values to the left of the decimal point and their associated powers of ten?

The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

### Factoring Polynomials

Factoring a Polynomial Expression Factoring a polynomial is expressing the polynomial as a product of two or more factors. Simply stated, it is somewhat the reverse process of multiplying. To factor polynomials,

### Determinants can be used to solve a linear system of equations using Cramer s Rule.

2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution

### Math 002 Intermediate Algebra

Math 002 Intermediate Algebra Student Notes & Assignments Unit 4 Rational Exponents, Radicals, Complex Numbers and Equation Solving Unit 5 Homework Topic Due Date 7.1 BOOK pg. 491: 62, 64, 66, 72, 78,

### POLYNOMIALS and FACTORING

POLYNOMIALS and FACTORING Exponents ( days); 1. Evaluate exponential expressions. Use the product rule for exponents, 1. How do you remember the rules for exponents?. How do you decide which rule to use

### Grade 8 Math. Content Skills Learning Targets Assessment Resources & Technology

St. Michael-Albertville Middle School East Teacher: Dawn Tveitbakk Grade 8 Math September 2014 UEQ: (new) CEQ: WHAT IS THE LANGUAGE OF ALGEBRA? HOW ARE FUNCTIONS USED? HOW CAN ALGEBRA BE USED TO SOLVE

### Algebra 1-2. A. Identify and translate variables and expressions.

St. Mary's College High School Algebra 1-2 The Language of Algebra What is a variable? A. Identify and translate variables and expressions. The following apply to all the skills How is a variable used

### 6.1 Add & Subtract Polynomial Expression & Functions

6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic

### MATH 90 CHAPTER 1 Name:.

MATH 90 CHAPTER 1 Name:. 1.1 Introduction to Algebra Need To Know What are Algebraic Expressions? Translating Expressions Equations What is Algebra? They say the only thing that stays the same is change.

### SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills

SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)

### Algebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , )

Algebra I Pacing Guide Days Units Notes 9 Chapter 1 (1.1-1.4, 1.6-1.7) Expressions, Equations and Functions Differentiate between and write expressions, equations and inequalities as well as applying order

### Algebra 1: Topic 1 Notes

Algebra 1: Topic 1 Notes Review: Order of Operations Please Parentheses Excuse Exponents My Multiplication Dear Division Aunt Addition Sally Subtraction Table of Contents 1. Order of Operations & Evaluating

### Summer Mathematics Packet Say Hello to Algebra 2. For Students Entering Algebra 2

Summer Math Packet Student Name: Say Hello to Algebra 2 For Students Entering Algebra 2 This summer math booklet was developed to provide students in middle school an opportunity to review grade level

### Name Date Block. Algebra 1 Laws of Exponents/Polynomials Test STUDY GUIDE

Name Date Block Know how to Algebra 1 Laws of Eponents/Polynomials Test STUDY GUIDE Evaluate epressions with eponents using the laws of eponents: o a m a n = a m+n : Add eponents when multiplying powers

### Operations with Algebraic Expressions: Multiplication of Polynomials

Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the

### Grade 9 Mathematics Unit #1 Number Sense Sub-Unit #1 Rational Numbers. with Integers Divide Integers

Page1 Grade 9 Mathematics Unit #1 Number Sense Sub-Unit #1 Rational Numbers Lesson Topic I Can 1 Ordering & Adding Create a number line to order integers Integers Identify integers Add integers 2 Subtracting

### Name Intro to Algebra 2. Unit 1: Polynomials and Factoring

Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332

### Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method

### 2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

### Pre-Calculus II Factoring and Operations on Polynomials

Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...

### Arithmetic Operations. The real numbers have the following properties: In particular, putting a 1 in the Distributive Law, we get

Review of Algebra REVIEW OF ALGEBRA Review of Algebra Here we review the basic rules and procedures of algebra that you need to know in order to be successful in calculus. Arithmetic Operations The real

### MATH REVIEW KIT. Reproduced with permission of the Certified General Accountant Association of Canada.

MATH REVIEW KIT Reproduced with permission of the Certified General Accountant Association of Canada. Copyright 00 by the Certified General Accountant Association of Canada and the UBC Real Estate Division.

### Students will be able to simplify and evaluate numerical and variable expressions using appropriate properties and order of operations.

Outcome 1: (Introduction to Algebra) Skills/Content 1. Simplify numerical expressions: a). Use order of operations b). Use exponents Students will be able to simplify and evaluate numerical and variable

MA 134 Lecture Notes August 20, 2012 Introduction The purpose of this lecture is to... Introduction The purpose of this lecture is to... Learn about different types of equations Introduction The purpose

### Math 10C. Course: Polynomial Products and Factors. Unit of Study: Step 1: Identify the Outcomes to Address. Guiding Questions:

Course: Unit of Study: Math 10C Polynomial Products and Factors Step 1: Identify the Outcomes to Address Guiding Questions: What do I want my students to learn? What can they currently understand and do?

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

### Module: Graphing Linear Equations_(10.1 10.5)

Module: Graphing Linear Equations_(10.1 10.5) Graph Linear Equations; Find the equation of a line. Plot ordered pairs on How is the Graph paper Definition of: The ability to the Rectangular Rectangular

### This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

### Norwalk La Mirada Unified School District. Algebra Scope and Sequence of Instruction

1 Algebra Scope and Sequence of Instruction Instructional Suggestions: Instructional strategies at this level should include connections back to prior learning activities from K-7. Students must demonstrate

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### SPECIAL PRODUCTS AND FACTORS

CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the

### ( ) FACTORING. x In this polynomial the only variable in common to all is x.

FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0).

This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

### Algebra 1. Curriculum Map

Algebra 1 Curriculum Map Table of Contents Unit 1: Expressions and Unit 2: Linear Unit 3: Representing Linear Unit 4: Linear Inequalities Unit 5: Systems of Linear Unit 6: Polynomials Unit 7: Factoring

### MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab

MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring non-course based remediation in developmental mathematics. This structure will

### Unit 1: Polynomials. Expressions: - mathematical sentences with no equal sign. Example: 3x + 2

Pure Math 0 Notes Unit : Polynomials Unit : Polynomials -: Reviewing Polynomials Epressions: - mathematical sentences with no equal sign. Eample: Equations: - mathematical sentences that are equated with

Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of

### Able Enrichment Centre - Prep Level Curriculum

Able Enrichment Centre - Prep Level Curriculum Unit 1: Number Systems Number Line Converting expanded form into standard form or vice versa. Define: Prime Number, Natural Number, Integer, Rational Number,

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

### Unit 1 Review Part 1 3 combined Handout KEY.notebook. September 26, 2013

Math 10c Unit 1 Factors, Powers and Radicals Key Concepts 1.1 Determine the prime factors of a whole number. 650 3910 1.2 Explain why the numbers 0 and 1 have no prime factors. 0 and 1 have no prime factors

### Algebra. Indiana Standards 1 ST 6 WEEKS

Chapter 1 Lessons Indiana Standards - 1-1 Variables and Expressions - 1-2 Order of Operations and Evaluating Expressions - 1-3 Real Numbers and the Number Line - 1-4 Properties of Real Numbers - 1-5 Adding