# Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Size: px
Start display at page:

Transcription

1 Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p counting(natural) numbers - {1,2,3,4,...} 2. whole numbers - {0,1,2,3...} 3. integers - {...-3, -2,-1,0,1,2,3...} p rational numbers - { a/b a and b are integers with b 0} - numbers that can be written as fractions. 5. irrational numbers - nonterminating, nonrepeating decimals. p real numbers - rational and irrational numbers p number line - a line with units marked off representing the integers and the spaces between representing rational and irrational numbers - a representation of the real numbers. 8. coordinates - numbers corresponding to points on the number line. p is a member of is not a member of is a subset of is not a subset of p Closure property - For any real numbers a and b, a+ b and ab are real numbers. 14. Commutative property - a + b = b + a and ab = ba 15. Associative property - a + (b + c) = (a + b) + c and a(bc) = (ab)c 16. Distributive property - a(b +c) = ab + ac 17. Identity Properties a = a and 1. a = a (zero is the additive identity and 1 is the multiplicative identity)

2 18. Multiplication property of zero - 0. a = Additive inverse property - For any real number a, a + -a = For every nonzero real number a, a. 1/a = 1. 1/a is the reciprocal (multiplicative inverse) of a. p Properties of opposites - a) -1. a = -a b) -(-a) = a c) -(a - b) = b - a 22. relations - symbols that indicate how numbers are related such a <, >, =,, and. 23. Trichotomy property - For any two real numbers a and b, exactly one of the following is true: a< b, a = b, or a > b. p Reflexive property - For any real number a, a = a 25. Symmetric property - For any real numbers a and b, if a = b, then b = a 26. Transitive property - For any real numbers a, b, and c, if a = b and b = c, then a = c. 27. Substitution property - If a = b then a and b may be substituted for one another in any expression involving a or b. 28. Absolute value - the distance of a number a from 0 on the number line. a = { a if a 0 -a if a < 0 p Properties of absolute value: a) a o (absolute value is nonnegative) b) -a = a (additive inverses have the same absolute value) c) a. b = a. b (the absolute value of a product is the product of the absolute values. d) a/b = a / b, b 0 ( the absolute value of a quotient is the quotient of the absolute values.) 30. Distance between two points - Distance is the absolute value of the their difference or d(a,b) = a - b p Arithmetic expression - writing numbers with operation of math. 32. Order of operations - (note - error on lesson - grouping before powers) Grouping symbols Powers Multiplication and division - left to right Addition and subtraction - left to right

3 p ) Algebraic expression (variable expression) - writing numbers and one or more variables with operations of math. p Value of an algebraic expression - value of arithmetic expression when variable is replaced by real numbers. 35. Domain - set of numbers that are allowed to be used for the variable in an algebraic expression. 36. Simplify - find a simpler-looking equivalent expression. 37. term - single number or the product of a number and one or more variables. 38. factor - the individual numbers or variables in a term. 39. coefficient - the product of the remaining factors of any variable part in the term. 40. like terms - two or more terms that contain the same variables with the same exponents. P2 p. 16 1) exponential expression - a n = a. a. a..... a 2) base - in the expression a n, a is the base or factor. 3) exponent - in the expression a n, n is the exponent or power. p negative integral exponents - If a is a nonzero real number and n is a positive integer, a -n = 1 a n p Rules for negative exponents and fractions - If a and b are nonzero numbers and m and n are integers, then (a/b) -m = (b/a) m and a -m = b n b -n a m 6. product rule - a m. a n = a m+n p Zero exponent - If a is nonzero real number, then a 0 = 1 8. Rules for Integral exponents - a) a m a n = a m+n Product rule b) a m = a m-n Quotient rule a n c) (a m ) n = a mn Power of a power (continued)

4 d) (ab) n = a n b n Power of a product rule e) (a/b) n = a n / b n Power of a quotient rule p. 22 9) Scientific notation - a number between 1 and 10 times a power of 10. P3 p nth root - if n is a positive integer and a n = b, then a is the nth root of b. If a 2 = b then a is the square root of b If a 3 = b then a is the cube root of b. 2. Exponent 1/n - if n is a positive even integer and a is positive, then a 1/n is the positive real nth root of a and is called the principal nth root of a. if n is positive and odd and a is real then a 1/n is the real nth root of a if n is positive then 0 1/n = 0 p rational exponents - If m and n are positive integers, then a m/n = (a 1/n ) m provided a 1/n is real. p Rules for rational exponents: a and b are real and r and s are rational, powers are real and no denominators are zero. a) a r a s = a r+s b) a r = a r-s a s c) (a r ) s = a rs d) (ab) r = a r b r e) (a/b) r = a r b r f) (a/b) -r = b r a r g) a -r = b s b -s a r p radical sign - and the exponent 1/n both indicate the nth root. 6. radical - If n is a positive integer and a is a number for which a 1/n is defined, then the expression = a 1/n. If n = 2, the write a rather than a 7. radicand - the number under the radical sign. 8. index - the n of the radical

6 5. binomial - a polynomial with two terms 6. trinomial - a polynomial with three terms p leading coefficient - the coefficient of the first term when polynomial is written in decreasing order from left to right. 8. degree of a polynomial in one variable - highest power of the variable in the polynomial 9. zero polynomial - zero 10) linear polynomial - first degree polynomial 11) quadratic polynomial - second-degree polynomial 12) cubic polynomial - third-degree polynomial 13) degree of term with more than one variable - sum of powers of variables 14) degree of polynomial with more than one variable - highest degree of any of its terms. 15) adding and subtracting polynomials - add and subtract like terms p ) multiplying polynomials - multiply each term of the first polynomial by every term of the second polynomial and then combine like terms p ) FOIL - product of two binomials consists of four terms: (a + b) ( c + d) = ac (first terms) + ad (outer terms) + bc (inner terms) + bd (last terms) p ) special products: a) square of a sum - (a + b) 2 = a 2 + 2ab + b 2 b) square of a difference - (a - b) 2 = a 2-2ab + b 2 c) product of a sum and a difference - (a+b)(a-b) = a 2 - b 2 p ) conjugates - two expressions with radicals whose product is a rational number p ) division algorithm of polynomials - If the dividend P(x) and the divisor D(x) are polynomials where D(x) is not zero and the degree of P(x) is to the degree of D(x), then there are two polynomials the quotient Q(x) and the remainder R(x), such that P(x) = Q(x) D(x) + R(x) where R(x) = 0 or the degree of R(x) the degree of D(x).

7 p ) value of a polynomial P(x) - number to replace the variable in a polynomial P5 p. 54 1) Factoring out - the process of finding factor that is common to each term and taking it out. 2) Factors - polynomials when multiplied give back the original polynomial 3) Common Factor - a factor that is common to the terms of a polynomial 4) Greatest Common Factor (GCF) - the monomial that includes every number and variable that is a factor of all terms of the polynomial. p. 55 5) Factoring by Grouping - used with a polynomial of 4 terms where the common factors are factored out of the first pair and second pair. p. 56 6) Factoring ax 2 + bx + c with a = 1 Find the two numbers e and f whose product is c and whose sum is b then factor (x + e)(x + f) p. 57 7) Factoring ax 2 + bx + c with a 1 (Split the middle term) a) Find two numbers who sum is b and whose product is ac b) Replace b by the sum of these two numbers c) Factor the resulting four-term polynomial by grouping p. 58 8) Perfect Square Trinomial - trinomial that results from squaring a sum or a difference. 9) Factoring Special Products: a) Difference of two squares a 2 - b 2 = (a + b)(a - b) b) Perfect Square Trinomial a 2 + 2ab + b 2 = (a + b) 2 c) Perfect Square Trinomial a 2-2ab + b 2 = (a - b) 2 p ) Factoring the Difference and Sum of Two Cubes a) Difference of two cubes a 3 - b 3 = (a - b)(a 2 + ab + b 2 ) b) Sum of two cubes a 3 + b 3 = (a + b)(a 2 - ab + b 2 ) 11) Factoring by Substitution - when a polynomial involves a complicated expression we a) replace the complicated expression by a single variable b) factor the simpler polynomial c) replace the single variable by the complicated expression.

8 p ) Prime (irreducible over the integers) - polynomials that cannot be factored using integral coefficients. 13) Factoring Completely - writing a polynomial as a product of prime polynomials. P6 p. 65 1) rational expression - ratio of two polynomials in which the denominator is not the zero polynomial 2) domain - set of all real numbers that can be used in place of variable 3) Basic principle of rational numbers: If a, b, and c are integers with b 0 and c 0, then ac = bc a b p. 66 4) reduce to lowest terms - divide out all common factors p. 67 5) multiplying rational numbers - If a/b and c/d are rational numbers, then a. c = ac b d bd p. 68 6) dividing rational numbers - If a/b and c/d are rational numbers with c 0, then a c = a. d b d b c 7) build up a denominator - rename a denominator with a larger value by multiplying the numerator and denominator by the same number to get an equivalent fraction. p. 69 8) least common denominator (LCD) - smallest number that is a multiple of all the denominators. Steps: a) factor each denominator completely b) write a product using each factor that appears in a denominator c) for each factor, use the highest power of that factor that occurs in the denominator 9) adding and subtracting rational numbers - If a/b and c/d are rational numbers, then a + c = a + c and a - c = a - c b b b b b b

9 p ) complex fraction - a fraction having rational expression in the numerator, denominator, or both 11) simplifying a complex fraction - multiply the numerator and denominator by the LCD of all of the denominators. 12) simplifying complex fractions with negative exponents - a) change all terms to positive powers b) multiply numerator and denominator by LCD of the denominators

### 1.3 Polynomials and Factoring

1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### Factoring Polynomials

UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

### expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### Factoring Polynomials

Factoring Polynomials Factoring Factoring is the process of writing a polynomial as the product of two or more polynomials. The factors of 6x 2 x 2 are 2x + 1 and 3x 2. In this section, we will be factoring

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

### MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

### LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

### ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

### Chapter 7 - Roots, Radicals, and Complex Numbers

Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

### Algebra and Geometry Review (61 topics, no due date)

Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

### Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF

Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials

### Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

### SECTION P.5 Factoring Polynomials

BLITMCPB.QXP.0599_48-74 /0/0 0:4 AM Page 48 48 Chapter P Prerequisites: Fundamental Concepts of Algebra Technology Eercises Critical Thinking Eercises 98. The common cold is caused by a rhinovirus. The

### NSM100 Introduction to Algebra Chapter 5 Notes Factoring

Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

### Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

### HIBBING COMMUNITY COLLEGE COURSE OUTLINE

HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,

### Mathematics Placement

Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

### Chapter 4 -- Decimals

Chapter 4 -- Decimals \$34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25

### Florida Math for College Readiness

Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness

### Factoring Polynomials

Factoring a Polynomial Expression Factoring a polynomial is expressing the polynomial as a product of two or more factors. Simply stated, it is somewhat the reverse process of multiplying. To factor polynomials,

### What are the place values to the left of the decimal point and their associated powers of ten?

The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

### Determinants can be used to solve a linear system of equations using Cramer s Rule.

2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution

### 6.1 Add & Subtract Polynomial Expression & Functions

6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic

### 2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

### POLYNOMIALS and FACTORING

POLYNOMIALS and FACTORING Exponents ( days); 1. Evaluate exponential expressions. Use the product rule for exponents, 1. How do you remember the rules for exponents?. How do you decide which rule to use

### SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills

SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)

### Name Intro to Algebra 2. Unit 1: Polynomials and Factoring

Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332

### MATH 90 CHAPTER 1 Name:.

MATH 90 CHAPTER 1 Name:. 1.1 Introduction to Algebra Need To Know What are Algebraic Expressions? Translating Expressions Equations What is Algebra? They say the only thing that stays the same is change.

### Operations with Algebraic Expressions: Multiplication of Polynomials

Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the

### Pre-Calculus II Factoring and Operations on Polynomials

Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...

### Students will be able to simplify and evaluate numerical and variable expressions using appropriate properties and order of operations.

Outcome 1: (Introduction to Algebra) Skills/Content 1. Simplify numerical expressions: a). Use order of operations b). Use exponents Students will be able to simplify and evaluate numerical and variable

### Math 10C. Course: Polynomial Products and Factors. Unit of Study: Step 1: Identify the Outcomes to Address. Guiding Questions:

Course: Unit of Study: Math 10C Polynomial Products and Factors Step 1: Identify the Outcomes to Address Guiding Questions: What do I want my students to learn? What can they currently understand and do?

### MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab

MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring non-course based remediation in developmental mathematics. This structure will

### Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method

### Algebra 1. Curriculum Map

Algebra 1 Curriculum Map Table of Contents Unit 1: Expressions and Unit 2: Linear Unit 3: Representing Linear Unit 4: Linear Inequalities Unit 5: Systems of Linear Unit 6: Polynomials Unit 7: Factoring

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### A. Factoring out the Greatest Common Factor.

DETAILED SOLUTIONS AND CONCEPTS - FACTORING POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### SPECIAL PRODUCTS AND FACTORS

CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the

### This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

### This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0).

This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of

### a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

9. Operations with Radicals (9 1) 87 9. OPERATIONS WITH RADICALS In this section Adding and Subtracting Radicals Multiplying Radicals Conjugates In this section we will use the ideas of Section 9.1 in

### ( ) FACTORING. x In this polynomial the only variable in common to all is x.

FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated

### Polynomials and Factoring

7.6 Polynomials and Factoring Basic Terminology A term, or monomial, is defined to be a number, a variable, or a product of numbers and variables. A polynomial is a term or a finite sum or difference of

### Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).

Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32

### MATH 90 CHAPTER 6 Name:.

MATH 90 CHAPTER 6 Name:. 6.1 GCF and Factoring by Groups Need To Know Definitions How to factor by GCF How to factor by groups The Greatest Common Factor Factoring means to write a number as product. a

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

### Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

### FACTORING POLYNOMIALS

296 (5-40) Chapter 5 Exponents and Polynomials where a 2 is the area of the square base, b 2 is the area of the square top, and H is the distance from the base to the top. Find the volume of a truncated

### Greatest Common Factor (GCF) Factoring

Section 4 4: Greatest Common Factor (GCF) Factoring The last chapter introduced the distributive process. The distributive process takes a product of a monomial and a polynomial and changes the multiplication

### 6.1 The Greatest Common Factor; Factoring by Grouping

386 CHAPTER 6 Factoring and Applications 6.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

### MATH-0910 Review Concepts (Haugen)

Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,

### Successful completion of Math 7 or Algebra Readiness along with teacher recommendation.

MODESTO CITY SCHOOLS COURSE OUTLINE COURSE TITLE:... Basic Algebra COURSE NUMBER:... RECOMMENDED GRADE LEVEL:... 8-11 ABILITY LEVEL:... Basic DURATION:... 1 year CREDIT:... 5.0 per semester MEETS GRADUATION

### MATH 10034 Fundamental Mathematics IV

MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

### 1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).

.7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational

### Polynomial Operations and Factoring

Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.

### Quick Reference ebook

This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed

### Algebra 1 Course Information

Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

### Tool 1. Greatest Common Factor (GCF)

Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

### A Systematic Approach to Factoring

A Systematic Approach to Factoring Step 1 Count the number of terms. (Remember****Knowing the number of terms will allow you to eliminate unnecessary tools.) Step 2 Is there a greatest common factor? Tool

### Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds

Isosceles Triangle Congruent Leg Side Expression Equation Polynomial Monomial Radical Square Root Check Times Itself Function Relation One Domain Range Area Volume Surface Space Length Width Quantitative

### Factoring and Applications

Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

### Factoring Algebra- Chapter 8B Assignment Sheet

Name: Factoring Algebra- Chapter 8B Assignment Sheet Date Section Learning Targets Assignment Tues 2/17 Find the prime factorization of an integer Find the greatest common factor (GCF) for a set of monomials.

### Lesson 9: Radicals and Conjugates

Student Outcomes Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or cube root) of their sum. Students convert expressions to simplest radical form.

### Anchorage School District/Alaska Sr. High Math Performance Standards Algebra

Anchorage School District/Alaska Sr. High Math Performance Standards Algebra Algebra 1 2008 STANDARDS PERFORMANCE STANDARDS A1:1 Number Sense.1 Classify numbers as Real, Irrational, Rational, Integer,

### 5.1 Radical Notation and Rational Exponents

Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

8. Radicals - Rationalize Denominators Objective: Rationalize the denominators of radical expressions. It is considered bad practice to have a radical in the denominator of a fraction. When this happens

### Exponents, Radicals, and Scientific Notation

General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =

### Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

### Algebra I Credit Recovery

Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,

### By reversing the rules for multiplication of binomials from Section 4.6, we get rules for factoring polynomials in certain forms.

SECTION 5.4 Special Factoring Techniques 317 5.4 Special Factoring Techniques OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor

### Chapter R.4 Factoring Polynomials

Chapter R.4 Factoring Polynomials Introduction to Factoring To factor an expression means to write the expression as a product of two or more factors. Sample Problem: Factor each expression. a. 15 b. x

### MATH 21. College Algebra 1 Lecture Notes

MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

### Section 5.0A Factoring Part 1

Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)( + 5) (

### Algebra 2 PreAP. Name Period

Algebra 2 PreAP Name Period IMPORTANT INSTRUCTIONS FOR STUDENTS!!! We understand that students come to Algebra II with different strengths and needs. For this reason, students have options for completing

### Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

### ALGEBRA I (Created 2014) Amherst County Public Schools

ALGEBRA I (Created 2014) Amherst County Public Schools The 2009 Mathematics Standards of Learning Curriculum Framework is a companion document to the 2009 Mathematics Standards of Learning and amplifies

### 8-6 Radical Expressions and Rational Exponents. Warm Up Lesson Presentation Lesson Quiz

8-6 Radical Expressions and Rational Exponents Warm Up Lesson Presentation Lesson Quiz Holt Algebra ALgebra2 2 Warm Up Simplify each expression. 1. 7 3 7 2 16,807 2. 11 8 11 6 121 3. (3 2 ) 3 729 4. 5.

### Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only

Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: A-APR.3: Identify zeros of polynomials

### Section 6.1 Factoring Expressions

Section 6.1 Factoring Expressions The first method we will discuss, in solving polynomial equations, is the method of FACTORING. Before we jump into this process, you need to have some concept of what

### Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

### FACTORING OUT COMMON FACTORS

278 (6 2) Chapter 6 Factoring 6.1 FACTORING OUT COMMON FACTORS In this section Prime Factorization of Integers Greatest Common Factor Finding the Greatest Common Factor for Monomials Factoring Out the

### 0.4 FACTORING POLYNOMIALS

36_.qxd /3/5 :9 AM Page -9 SECTION. Factoring Polynomials -9. FACTORING POLYNOMIALS Use special products and factorization techniques to factor polynomials. Find the domains of radical expressions. Use

### Math 1. Month Essential Questions Concepts/Skills/Standards Content Assessment Areas of Interaction

Binghamton High School Rev.9/21/05 Math 1 September What is the unknown? Model relationships by using Fundamental skills of 2005 variables as a shorthand way Algebra Why do we use variables? What is a