# Chapter 7 - Roots, Radicals, and Complex Numbers

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Math Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals Notation and Terminology In the expression x the is called the radical sign. The expression under the radical sign is n called the radicand. Frequently there is a number above the radical, like this: x. The number (n in this case) is called the index, this number tells us which root we are taking. n x Such an expression is called a radical expression. REMARK 1. When taking the square root, we usually don t write the index, ie we write x instead of 2 x Square Roots For every positive real number, a, there is a positive square root, written a EX 1. Consider the number 9, let s find 9. Definition 1. The principal square root of a positive number a, written a, is the positive number b such that b 2 = a. Thus, in this class when we ask for 9 the answer is 3 (positive) since 3 2 = 9. REMARK 2. However, keep in mind that for square roots there is always the principal (positive) square root and the negative square roots EX 2. Find the following: When you square any real number, you get a positive number (for example 7 2 = 49 and ( 7) 2 = 49). Therefore, it is impossible to find a number such that b 2 = 49. Thus 49 is not a real number. 1

2 7.1.3 Cube Roots The story for cube roots (index equal to three) is a little simpler. For each real number, there is only one cube root. EX 3. Find the following cube roots: Radical Functions We can use radical expressions to form radical functions: EX For the function f(x) = x, graph by plotting points and find the domain. 2. For the function f(x) = 3 x, graph by plotting points and find the domain. 3. For: (a) f(x) = 7x + 4 find f(3) (b) g(x) = 9x + 1 find g(1) 2

3 4. For: (a) f(x) = 3 7x 1 find f(4) (b) g(x) = 3 13x 1 find g( 2) Understand Odd and Even Roots Recall that the index is the number which indicates which root we are taking. This number can either be even or odd. Radicals with odd indices are called odd roots: 3 a, 5 a, 7 a,... With an odd index any real number can be the radicand and: An odd root of a positive number is positive. An odd root of a negative number is negative. Radicals with even indices are called even roots: a, 4 a, 6 a,... With an even index the radicand must be positive and the root will be positive. EX 5. Evaluate: Evaluate Radicals Using Absolute Values For any real number a, a 2 = a. For example: 3 2 = 3 ( 3) 2 = 3 REMARK 3. We will only use this method with square roots. EX 6. Simplify:

4 (x + 5) 2 4. a 2 8a Simplify, assume all variables represent positive values 81x Rational Exponents In this section we learn new notation to write radical expressions as exponential expressions Changing Radical Expressions to Exponential Expressions We us the following notation: n a = a 1 n REMARK 4. When a is nonnegative, n can be any integer. When a is negative, n must be odd. EX Write in exponential form: (a) 5 (b) 4 17xy 2. Write each expression in radical form: (a) (25) 1 2 (b) (12x 3 y 2 ) 1 7 4

5 7.2.2 Simplify Radical Expressions We extend this notation further as follows: n am = ( n a) m = a m n for any real number a, and integers m and n. EX Write in exponential form: (a) z 3 (b) ( 3 y) 4 (c) 5 y 2 2. Write in exponential form and simplify (a) 5 x 2 0 (b) ( 3 r) Write each expression in radical form (a) m 3 5 (b) (5ab) Simplify: (a) (b) ( 20 z) 4 REMARK 5. What if the index matches the power? n an = ( n a) n = a nn = a 1 = a Rules of Exponents All the rules we had with exponents before still apply with rational exponents: For all real numbers a and b and all rational numbers m and n, Product rule a m a n = a m+n a Quotient rule m a = a m n, a 0 n Negative exponent rule a m = 1 a, a 0 m Zero exponent rule a 0 = 1, a 0 Raising a power to a power (a m ) n = a m n Raising a product to a power (ab) m = a m b m Raising a quotient to a power ( a b )m = am b, b 0 m 5

6 EX Evaluate (a) (b) ( 32) Evaluate: ( ) Simplify each expression (and write without negative exponents) (a) (5x 4 y 6 ) 1 2 (b) 2x 1 4 (4x x 1 6 ) (c) ( 3x 2 z 3 5 z 2 5 ) Simplify (a) 16 (3y) 4 (b) ( 3 ab 2 c 4 ) 2 1 6

7 (c) 3 x Factor Expressions with Rational Exponents To factor expressions with rational exponents, we factor out the term with the smallest (or most negative) exponent. EX 10. Factor x x 4 7 7

8 7.3 Simplifying Radicals In this section we will use the product and quotient rules for radicals to simplify radical expressions. To begin we study perfect powers Perfect Powers The simplest perfect power is a perfect square, a number or expression which is the square of an expression. EX 11. The following are examples of perfect squares: Numbers 1, 4, 9, 16, 25,... Variables x 2, x 4, x 6, x 8, x 10,,... Similarly we have perfect cubes: EX 12. The following are perfect cubes: Numbers 1, 8, 27, 64, 125,... Variables x 3, x 6, x 9, x 12, x 15,,... More generally, perfect powers for an index n: Variables x n, x 2n, x 3n, x 4n, x 5n,,... REMARK 6. Note that we can tell if a power is a perfect power for a given n if the power is 7 divisible by the index. For example: n 35. The exponent 35 is divisible by the index 7, so n 35 is a perfect power for the index Simplifying Using the Product Rule for Radicals Recall the product rule for exponents: For nonnegative real numbers a and b, n n a b = n ab EX 13. List all the ways we can factor 75 using the product rule: 8

9 To Simplify Radicals: 1. For any numbers under the radical (other than 1), write it as a product of two numbers, one of which is the largest perfect power for the index. 2. For each variable factor, write it as a product of two factors, one of which is the largest perfect power of the variable for the index. 3. Use the product rule to seperate the perfect powers under one radical sign. 4. Simplify the radical containing the perfect power. EX 14. Simpflify the following radicals: x 8 4. y r 43 REMARK 7. After simplifying the radicand we will not have a variable under the radical with an exponent greater than or equal to the index. 6. x 14 y x9 y x 7 y 14 z 5 9

11 Like radicals are added in the same manner as like terms, numerical coefficients are added. EX 17. Simplify x + 2x x 6 REMARK 9. It is frequently necessary to simplify radicals before addition or subtraction can be done. Steps: (a) Simplify each radical expression. (b) Combine like radicals x 4 xy 2 + y x 8. 3 x 13 y 2 3 x 4 y 11 REMARK 10. It is tempting but wrong to do the following: n a + n b n a + b 11

12 7.4.2 Mulitply Radicals To multiply radicals we use the product rule. EX 18. Multiply and Simplify. 1. 3x 5 6x x 2 3 9x x9 y x 2 y x( 27x 12) 5. ( m + n)( m n) 6. (2 5 3) 2 7. ( 3 x 2 3 3y)( 3 x y 2 ) 8. (4 + 5)(4 5) 12

13 7.5 Dividing Radicals Rationalizing Denominators Generally we do not leave radicals in the denominators of expressions. When we remove a radical from a denominator it is called rationalizing the denominator. To Rationalize a Denominator: Multiply both the numerator and the denominator of the fraction by a radical that will result in the radicand in the denominator becoming perfect power. EX 19. Simplify. 1. y a 5 3 b 3. x 2 3y 4. 3 x 7 y 10 4z Rationalize a Denominator Using the Conjugate Sometimes an expression will have a binomial in the denominator. To rationalize in this case, we have to multiply by the conjugate. Definition 3. The conjugate of a binomial is a binomial having the same two terms with the sign of the second term changed. EX 20. Expression Conjugate m n m + n 13

14 Why is this useful? Let s see: EX Multiply: (4 + 3)(4 3) 2. Simplify Simplify m+ n m n Review of Radical Simplification How do we know if a radical is simpified? A radical is simplified if: 1. No perfect powers are factors of the radicand and all exponents in the radicand are less than the index. 2. There are no fractions in the radicand. 3. No denominator contains a radical. EX 22. Simplify 1. 50x

15 7.5.4 Expressions with Different Indices We can use the rules of radicals to divide expressions with divide radical expressions where ther indices are different. EX 23. Simplify (m+n) 5 3 (m+n) a4 b 5 ab Solving Radical Equations A radical equation is an equation that contains a variable in the radicand. EX 24. Some examples of radical equations: y = 8, x 6 3 = 0, 3 x + 11 = 8 To Solve Radical Equations: 1. Rewrite the equation so that one radical containing a variable is by itself (isolated) on one side of the equation. 2. Raise each side of the equation to a power equal to the index of the radical. 3. Combine like terms 4. If the equation still contains a term with a variable in a radicand repeat steps 1 through Solve the resulting equation for the variable. 6. Check all solutions in the original equation for extraneous solutions. EX 25. Solve. 1. y = 8 2. x 6 3 = 0 15

16 3. 3 x + 11 = 8 4. x + 5 = 0 REMARK 11. It is necessary to always check your solutions to these equations! 5. 5x + 4 = x 4 6. x 3 x 4 = x = 2 x 2 + x 3 8. For f(x) = 2(x + 5) 1 3 and g(x) = (23x 5) 1 3 find values of x for which f(x) = g(x). 9. 3x + 1 2x 1 = 1 16

17 7.7 A Brief Introduction to Complex Numbers As we saw earlier, negative numbers don t have square roots. This is somehow unsatisifying. To resolve this, we invent a new number system called the complex numbers. We define the imaginary unit: 1 = i Thus n = 1 n = 1 n = i n and in particular i 2 = 1. EX 26. Write as a complex number (with i) More generally, a complex number is a number of the form: a + bi where a and b are real numbers and i 2 = 1. a is called the real part and bi is called the imaginary part. EX 27. Complex number arithmetic: 1. Add (8 + 5i) + ( 6 i) Subtract (7 50) ( 8 72) 3. Multiply 2i(9 3i) 17

18 4. Multiply 16( 2 + 5) 5. Multiply (2 + 8)(4 2) 18

### Pre Cal 2 1 Lesson with notes 1st.notebook. January 22, Operations with Complex Numbers

0 2 Operations with Complex Numbers Objectives: To perform operations with pure imaginary numbers and complex numbers To use complex conjugates to write quotients of complex numbers in standard form Complex

### 27 = 3 Example: 1 = 1

Radicals: Definition: A number r is a square root of another number a if r = a. is a square root of 9 since = 9 is also a square root of 9, since ) = 9 Notice that each positive number a has two square

### HFCC Math Lab Intermediate Algebra - 17 DIVIDING RADICALS AND RATIONALIZING THE DENOMINATOR

HFCC Math Lab Intermediate Algebra - 17 DIVIDING RADICALS AND RATIONALIZING THE DENOMINATOR Dividing Radicals: To divide radical expression we use Step 1: Simplify each radical Step 2: Apply the Quotient

### 5.1 Radical Notation and Rational Exponents

Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

### Chapter 15 Radical Expressions and Equations Notes

Chapter 15 Radical Expressions and Equations Notes 15.1 Introduction to Radical Expressions The symbol is called the square root and is defined as follows: a = c only if c = a Sample Problem: Simplify

### This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

8. Simplification of Radical Expressions 8. OBJECTIVES 1. Simplify a radical expression by using the product property. Simplify a radical expression by using the quotient property NOTE A precise set of

### Unit 7: Radical Functions & Rational Exponents

Date Period Unit 7: Radical Functions & Rational Exponents DAY 0 TOPIC Roots and Radical Expressions Multiplying and Dividing Radical Expressions Binomial Radical Expressions Rational Exponents 4 Solving

### Math 002 Intermediate Algebra

Math 002 Intermediate Algebra Student Notes & Assignments Unit 4 Rational Exponents, Radicals, Complex Numbers and Equation Solving Unit 5 Homework Topic Due Date 7.1 BOOK pg. 491: 62, 64, 66, 72, 78,

### STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### Rules for Exponents and the Reasons for Them

Print this page Chapter 6 Rules for Exponents and the Reasons for Them 6.1 INTEGER POWERS AND THE EXPONENT RULES Repeated addition can be expressed as a product. For example, Similarly, repeated multiplication

### ALGEBRA I A PLUS COURSE OUTLINE

ALGEBRA I A PLUS COURSE OUTLINE OVERVIEW: 1. Operations with Real Numbers 2. Equation Solving 3. Word Problems 4. Inequalities 5. Graphs of Functions 6. Linear Functions 7. Scatterplots and Lines of Best

### Unit 1 Review Part 1 3 combined Handout KEY.notebook. September 26, 2013

Math 10c Unit 1 Factors, Powers and Radicals Key Concepts 1.1 Determine the prime factors of a whole number. 650 3910 1.2 Explain why the numbers 0 and 1 have no prime factors. 0 and 1 have no prime factors

Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of

### Square Roots. Learning Objectives. Pre-Activity

Section 1. Pre-Activity Preparation Square Roots Our number system has two important sets of numbers: rational and irrational. The most common irrational numbers result from taking the square root of non-perfect

### The Product Property of Square Roots states: For any real numbers a and b, where a 0 and b 0, ab = a b.

Chapter 9. Simplify Radical Expressions Any term under a radical sign is called a radical or a square root expression. The number or expression under the the radical sign is called the radicand. The radicand

### ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

### Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents

### Negative Integer Exponents

7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions

### Equations and Inequalities

Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### Exponents, Radicals, and Scientific Notation

General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =

### Rational Exponents. Given that extension, suppose that. Squaring both sides of the equation yields. a 2 (4 1/2 ) 2 a 2 4 (1/2)(2) a a 2 4 (2)

SECTION 0. Rational Exponents 0. OBJECTIVES. Define rational exponents. Simplify expressions with rational exponents. Estimate the value of an expression using a scientific calculator. Write expressions

9.2 Simplifying Radical Expressions 9.2 OBJECTIVES. Simplify expressions involving numeric radicals 2. Simplify expressions involving algebraic radicals In Section 9., we introduced the radical notation.

### 3. Power of a Product: Separate letters, distribute to the exponents and the bases

Chapter 5 : Polynomials and Polynomial Functions 5.1 Properties of Exponents Rules: 1. Product of Powers: Add the exponents, base stays the same 2. Power of Power: Multiply exponents, bases stay the same

### 2 is the BASE 5 is the EXPONENT. Power Repeated Standard Multiplication. To evaluate a power means to find the answer in standard form.

Grade 9 Mathematics Unit : Powers and Exponent Rules Sec.1 What is a Power 5 is the BASE 5 is the EXPONENT The entire 5 is called a POWER. 5 = written as repeated multiplication. 5 = 3 written in standard

### Algebra II Pacing Guide First Nine Weeks

First Nine Weeks SOL Topic Blocks.4 Place the following sets of numbers in a hierarchy of subsets: complex, pure imaginary, real, rational, irrational, integers, whole and natural. 7. Recognize that the

### A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents

Appendix A. Exponents and Radicals A11 A. Exponents and Radicals What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of radicals. Simplify

### SIMPLIFYING SQUARE ROOTS

40 (8-8) Chapter 8 Powers and Roots 8. SIMPLIFYING SQUARE ROOTS In this section Using the Product Rule Rationalizing the Denominator Simplified Form of a Square Root In Section 8. you learned to simplify

### The notation above read as the nth root of the mth power of a, is a

Let s Reduce Radicals to Bare Bones! (Simplifying Radical Expressions) By Ana Marie R. Nobleza The notation above read as the nth root of the mth power of a, is a radical expression or simply radical.

### Math 1111 Journal Entries Unit I (Sections , )

Math 1111 Journal Entries Unit I (Sections 1.1-1.2, 1.4-1.6) Name Respond to each item, giving sufficient detail. You may handwrite your responses with neat penmanship. Your portfolio should be a collection

### Math Course: Algebra II Grade 10

MATH 401 Algebra II 1/2 credit 5 times per week (1 st Semester) Taught in English Math Course: Algebra II Grade 10 This is a required class for all 10 th grade students in the Mexican and/or U.S. Diploma

### 1. The algebra of exponents 1.1. Natural Number Powers. It is easy to say what is meant by a n a (raised to) to the (power) n if n N.

CHAPTER 3: EXPONENTS AND POWER FUNCTIONS 1. The algebra of exponents 1.1. Natural Number Powers. It is easy to say what is meant by a n a (raised to) to the (power) n if n N. For example: In general, if

Chapter 9: Quadratic Functions 9.3 SIMPLIFYING RADICAL EXPRESSIONS Vertex formula f(x)=ax 2 +Bx+C standard d form X coordinate of vertex is Use this value in equation to find y coordinate of vertex form

### Identify examples of field properties: commutative, associative, identity, inverse, and distributive.

Topic: Expressions and Operations ALGEBRA II - STANDARD AII.1 The student will identify field properties, axioms of equality and inequality, and properties of order that are valid for the set of real numbers

### A.1 Radicals and Rational Exponents

APPENDIX A. Radicals and Rational Eponents 779 Appendies Overview This section contains a review of some basic algebraic skills. (You should read Section P. before reading this appendi.) Radical and rational

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### Arithmetic Operations. The real numbers have the following properties: In particular, putting a 1 in the Distributive Law, we get

Review of Algebra REVIEW OF ALGEBRA Review of Algebra Here we review the basic rules and procedures of algebra that you need to know in order to be successful in calculus. Arithmetic Operations The real

### Chapter 4 -- Decimals

Chapter 4 -- Decimals \$34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789

### Algebra I Notes Review Real Numbers and Closure Unit 00a

Big Idea(s): Operations on sets of numbers are performed according to properties or rules. An operation works to change numbers. There are six operations in arithmetic that "work on" numbers: addition,

MA 134 Lecture Notes August 20, 2012 Introduction The purpose of this lecture is to... Introduction The purpose of this lecture is to... Learn about different types of equations Introduction The purpose

### Section 9.1 Roots, Radicals, and Rational Exponents

Section 9. Roots, Radicals, and Rational Exponents SQUARE ROOTS The square root of a is written as N. If N ;, then b a. Note: For to be defined in the real number system, a 0. NOTATION: a / a is the RADICAL

### COLLEGE ALGEBRA. Paul Dawkins

In order to simplifying radical expression, it s important to understand a few essential properties. Product Property of Like Bases a a = a Multiplication of like bases is equal to the base raised to the

### West Windsor-Plainsboro Regional School District Algebra I Part 2 Grades 9-12

West Windsor-Plainsboro Regional School District Algebra I Part 2 Grades 9-12 Unit 1: Polynomials and Factoring Course & Grade Level: Algebra I Part 2, 9 12 This unit involves knowledge and skills relative

### Algebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , )

Algebra I Pacing Guide Days Units Notes 9 Chapter 1 (1.1-1.4, 1.6-1.7) Expressions, Equations and Functions Differentiate between and write expressions, equations and inequalities as well as applying order

### MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

9.4 Multiplying and Dividing Radicals 9.4 OBJECTIVES 1. Multiply and divide expressions involving numeric radicals 2. Multiply and divide expressions involving algebraic radicals In Section 9.2 we stated

### Sometimes it is easier to leave a number written as an exponent. For example, it is much easier to write

4.0 Exponent Property Review First let s start with a review of what exponents are. Recall that 3 means taking four 3 s and multiplying them together. So we know that 3 3 3 3 381. You might also recall

### Solution: There are TWO square roots of 196, a positive number and a negative number. So, since and 14 2

5.7 Introduction to Square Roots The Square of a Number The number x is called the square of the number x. EX) 9 9 9 81, the number 81 is the square of the number 9. 4 4 4 16, the number 16 is the square

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

CHAPTER REAL NUMBERS AND RADICALS Traditionally, we use units such as inches or meters to measure length, but we could technically measure with any sized unit.two line segments are called commeasurable

### The x-intercepts of the graph are the x-values for the points where the graph intersects the x-axis. A parabola may have one, two, or no x-intercepts.

Chapter 10-1 Identify Quadratics and their graphs A parabola is the graph of a quadratic function. A quadratic function is a function that can be written in the form, f(x) = ax 2 + bx + c, a 0 or y = ax

### 2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

### Chapter 4 Fractions and Mixed Numbers

Chapter 4 Fractions and Mixed Numbers 4.1 Introduction to Fractions and Mixed Numbers Parts of a Fraction Whole numbers are used to count whole things. To refer to a part of a whole, fractions are used.

### 1.1 Solving a Linear Equation ax + b = 0

1.1 Solving a Linear Equation ax + b = 0 To solve an equation ax + b = 0 : (i) move b to the other side (subtract b from both sides) (ii) divide both sides by a Example: Solve x = 0 (i) x- = 0 x = (ii)

### Algebra and Geometry Review (61 topics, no due date)

Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

Simplifying Radical Expressions Why? Then You simplified radicals. (Lesson 0-2) Now Simplify radical expressions by using the Product Property of Square roots. Simplify radical expressions by using the

### Lesson 9: Radicals and Conjugates

Student Outcomes Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or cube root) of their sum. Students convert expressions to simplest radical form.

### Algebra 1: Topic 1 Notes

Algebra 1: Topic 1 Notes Review: Order of Operations Please Parentheses Excuse Exponents My Multiplication Dear Division Aunt Addition Sally Subtraction Table of Contents 1. Order of Operations & Evaluating

### Module: Graphing Linear Equations_(10.1 10.5)

Module: Graphing Linear Equations_(10.1 10.5) Graph Linear Equations; Find the equation of a line. Plot ordered pairs on How is the Graph paper Definition of: The ability to the Rectangular Rectangular

### Developmental Math Course Outcomes and Objectives

Developmental Math Course Outcomes and Objectives I. Math 0910 Basic Arithmetic/Pre-Algebra Upon satisfactory completion of this course, the student should be able to perform the following outcomes and

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

### 6-1. Roots and Radical Expressions. Vocabulary. Review. Vocabulary Builder. Use Your Vocabulary. 1. Circle the exponents in each expression.

6- Roots and Radical Expressions Vocabulary Review. Circle the exponents in each expression. 7 t a 7 b x y 0. Underline the expression that is read five to the second power.. List the correct numbers or

### MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

### COGNITIVE TUTOR ALGEBRA

COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,

### 8-6 Radical Expressions and Rational Exponents. Warm Up Lesson Presentation Lesson Quiz

8-6 Radical Expressions and Rational Exponents Warm Up Lesson Presentation Lesson Quiz Holt Algebra ALgebra2 2 Warm Up Simplify each expression. 1. 7 3 7 2 16,807 2. 11 8 11 6 121 3. (3 2 ) 3 729 4. 5.

9. Operations with Radicals (9 1) 87 9. OPERATIONS WITH RADICALS In this section Adding and Subtracting Radicals Multiplying Radicals Conjugates In this section we will use the ideas of Section 9.1 in

### 1.6 The Order of Operations

1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

### eday Lessons Mathematics Grade 8 Student Name:

eday Lessons Mathematics Grade 8 Student Name: Common Core State Standards- Expressions and Equations Work with radicals and integer exponents. 3. Use numbers expressed in the form of a single digit times

### HFCC Math Lab Intermediate Algebra - 7 FINDING THE LOWEST COMMON DENOMINATOR (LCD)

HFCC Math Lab Intermediate Algebra - 7 FINDING THE LOWEST COMMON DENOMINATOR (LCD) Adding or subtracting two rational expressions require the rational expressions to have the same denominator. Example

### Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

### Welcome to Math 19500 Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013

Welcome to Math 19500 Video Lessons Prof. Department of Mathematics The City College of New York Fall 2013 An important feature of the following Beamer slide presentations is that you, the reader, move

### Seeing Structure in Expressions

Set : Simplifying Radical Expressions with Variables Instruction Goal: To provide opportunities for students to develop concepts and skills related to simplifying radical expressions with variables Common

### CC-20 CC Objective MATHEMATICAL PRACTICES. Lesson. L Vocabulary. ANSWER CONNECT THE MATH n

1 Interactive Learning Solve It! PURPOSE PROCESS 2 FACILITATE Q [to divide into two equal parts] Q a [8] Q a b [ 1 2 a] ANSWER CONNECT THE MATH n 2 Guided Instruction Problem 1 Q [3] Q [4] 7-5 CC-20 CC-9

### ARE YOU A RADICAL OR JUST A SQUARE ROOT? EXAMPLES

ARE YOU A RADICAL OR JUST A SQUARE ROOT? EXAMPLES 1. Squaring a number means using that number as a factor two times. 8 8(8) 64 (-8) (-8)(-8) 64 Make sure students realize that x means (x ), not (-x).

### LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

### ALGEBRA I / ALGEBRA I SUPPORT

Suggested Sequence: CONCEPT MAP ALGEBRA I / ALGEBRA I SUPPORT August 2011 1. Foundations for Algebra 2. Solving Equations 3. Solving Inequalities 4. An Introduction to Functions 5. Linear Functions 6.

### 7.1 Graphs of Quadratic Functions in Vertex Form

7.1 Graphs of Quadratic Functions in Vertex Form Quadratic Function in Vertex Form A quadratic function in vertex form is a function that can be written in the form f (x) = a(x! h) 2 + k where a is called

### Multiplication and Division Properties of Radicals. b 1. 2. a Division property of radicals. 1 n ab 1ab2 1 n a 1 n b 1 n 1 n a 1 n b

488 Chapter 7 Radicals and Complex Numbers Objectives 1. Multiplication and Division Properties of Radicals 2. Simplifying Radicals by Using the Multiplication Property of Radicals 3. Simplifying Radicals

### Lesson 9: Radicals and Conjugates

Student Outcomes Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or cube root) of their sum. Students convert expressions to simplest radical form.

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Portable Assisted Study Sequence ALGEBRA IIA

SCOPE This course is divided into two semesters of study (A & B) comprised of five units each. Each unit teaches concepts and strategies recommended for intermediate algebra students. The first half of

### MTH304: Honors Algebra II

MTH304: Honors Algebra II This course builds upon algebraic concepts covered in Algebra. Students extend their knowledge and understanding by solving open-ended problems and thinking critically. Topics

### Wentzville School District Curriculum Development Template Stage 1 Desired Results

Wentzville School District Curriculum Development Template Stage 1 Desired Results Unit Title: Radicals and Radical Expressions Course: Middle School Algebra 1 Unit 10 Radicals and Radical Expressions

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### Operations on Decimals

Operations on Decimals Addition and subtraction of decimals To add decimals, write the numbers so that the decimal points are on a vertical line. Add as you would with whole numbers. Then write the decimal

### SIMPLIFYING SQUARE ROOTS EXAMPLES

SIMPLIFYING SQUARE ROOTS EXAMPLES 1. Definition of a simplified form for a square root The square root of a positive integer is in simplest form if the radicand has no perfect square factor other than

### Order of Operations More Essential Practice

Order of Operations More Essential Practice We will be simplifying expressions using the order of operations in this section. Automatic Skill: Order of operations needs to become an automatic skill. Failure

### Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

### Definition of an nth Root

Radicals and Complex Numbers 7 7. Definition of an nth Root 7.2 Rational Exponents 7.3 Simplifying Radical Expressions 7.4 Addition and Subtraction of Radicals 7.5 Multiplication of Radicals 7.6 Rationalization

### Section 5.0A Factoring Part 1

Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)( + 5) (

### SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property

498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1

8. Radicals - Rational Exponents Objective: Convert between radical notation and exponential notation and simplify expressions with rational exponents using the properties of exponents. When we simplify