Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving"

Transcription

1 Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words expression, equation, inequality, simplify and solve. These words commonly arise in the language of mathematics. What do they mean, and how are they different? An equation is a mathematical statement which says that two quantities are equal. For example, and are equations. An inequality is a statement which says that one quantity is either more or less than another quantity, or possibly equal. We use the symbols when writing inequalities. For example, means a is less than b Means a is greater than b Means a is greater than, or equal to, b Means a is less than, or equal to, b When you encounter an equation or an inequality, your objective is to determine whether it is true. For example, given the inequality you would say it is true because 6 is less than 7. Given the equation you would say that it is true IF x = 5. Equations and inequalities usually involve variables. The values of the variables for which the equation or inequality is satisfied or true are called the solutions. So, x = 5 is the solution of the equation.the process of finding solutions to equations and inequalities is called solving. We never use the word solve in any other context. An expression is a mathematical statement that can be simplified, but not solved. For example, is an expression. It is not an equation or inequality, so no solving is involved. Instead, we would simplify this expression and get 18. Another example is. Although this example does have a variable, this is still not an equation or inequality, so we would not solve for x. Instead, we would simplify this expression to get. During today s meeting, you will learn some tools for simplifying expressions and then use these tools to solve linear equations and inequalities. Part 2 Simplifying Expressions In order to simplify expressions like, it is necessary to understand the order in which operations must be performed. We discussed this in meeting 1. Sometimes, however, it is helpful to have some additional mathematical tools. Here, we discuss three properties of real numbers (i.e. the numbers that you find on a number line) that are useful to know when simplifying expressions.

2 2 For any real numbers a, b and c, the following are true: Commutative Property of Multiplication Commutative Property of Addition Associative Property of Multiplication Associative Property of Addition Distributive Property Of these properties, the first four are probably familiar to you already. The first two properties tell you that you are free to add or multiply two numbers in any order. The second two properties tell you that you are free to add or multiply three numbers in any order. So, what about the fifth property? What does the Distributive Property say? Well, let s try it out. The property says, for example, that appears to be true.. Is this equation true? Both the left and right sides equal 15, so it Example 1: Rewrite each of the following expressions using the Distributive Property. The goal is not to simplify, but to rewrite in an equivalent form. Two of them have been done for you as illustrations. (e) (f) (g) (h) Example 2: For each of the following expressions, the five properties above will make simplification easier. Use the properties to simplify the expressions.

3 3 Now, let s work with expressions that involve variables. Recall that quantities that are being added or subtracted are called terms. Terms that have identical variable parts are called like terms. For example, in the expression which terms are like terms? and are like terms since both have. and are like terms since both have. -9 and 8 are like terms since neither have any obvious variable part. Terms which lack any obvious variable part, like -9 and 8, are called constant terms. The numbers 6, -5, 4, 2, -9 and 8 are called coefficients. Why are like terms important to identify? It turns out that like terms can be combined and simplified. This is done using the Distributive Property. For example, consider the expression : So, the expression can be simplified down to 2v. An alternate way of thinking about this is as follows: 6v means v + v + v + v + v + v 4v means v + v + v + v So, if you subtract 4v from 6v, what do you have left? Canceling v s leaves you with v + v or 2v remaining. Example 3: Simplify the following expressions using the Distributive Property.

4 4 (e) (f) (g) (h) (i) (j) Mathematical expressions often involve fractions. Consequently, it s useful to be able to manipulate fractions. The following simplifications are useful to keep in mind:

5 5 Example 4: Use the simplifications on the previous page to find two equivalent ways of writing each of the following expressions: and and It is also useful to be able to manipulate sums/differences of fractions. Recall that fractions are added/subtracted as follows: Example 5: Use the above fraction property to simplify the following expressions:

6 6 Part 3 Solving Linear Equations and Inequalities Recall from Part 1 that solving is the process of determining when an equation or inequality is satisfied or true, and variable values that that make an equation or inequality true are called the solutions. There are MANY different kinds of equations and inequalities, but today we focus only on linear equations and inequalities, where the left and right sides are linear functions. Example 6: For each of the following linear equations and/or inequalities, determine which of the listed variable values is a solution. To see which values solve the equation, we substitute each of these values into the left and right sides of the equation to see if the two sides are equal: Variable Value Solution (Yes/No) 9-6 No 0 0 Yes To see which values solve the inequality, we substitute each of these values into the left side of the inequality to see if the result is less than or equal to 8: Variable Value Solution (Yes/No) 3 Yes 10 No t = 20 8 Yes We begin our discussion of the solving process by considering how linear equations and inequalities can be manipulated. We rely on the following general principle: Adding, subtracting, multiplying or dividing both sides of an equation by the same non-zero amount will not affect the equality of the two sides. The result is in an equivalent equation whose solution is the same as the original equation. For example, consider the equation. The solution of this equation is x = 11. Adding 3 to both the left and right sides of this equation yields or, rather,. Notice that x =11 also solves this equation.

7 7 Similarly, if we multiply both the left and right sides by 2, we arrive at the equation which also has x = 11 as a solution. Check this! What about inequalities? It turns out that the same principal holds for inequalities, with one exception. The example below highlights the problem: Consider the inequality. If we multiply both the left and right sides of this inequality by 3, we arrive at the inequality. No problem, right? Okay, now let s try multiplying both the left and right sides by -3. If we do this, we arrive at the inequality. Now we have a problem, since -6 is NOT less than -12. This resulting inequality can be corrected, however, if we change the inequality symbol from < to > :. This example illustrates that extra care needs to be taken when multiplying or dividing the left and right sides of an inequality by negative numbers. In order for the resulting inequality to be equivalent to the original inequality and have the same solutions, the inequality symbols need to be reversed. Example 7: Use the above ideas to solve each of the following equations and inequalities. The first one has been done for you as an illustration. Our goal is to convert this equation into an equivalent equation of the form x =. We do this by strategically adding, subtracting, multiplying and dividing both sides of the equation by amounts that simplify the resulting equation, isolate all terms involving the variable on one side of the equation, and isolate all other terms on the other side of the equation. In this example, the quantity on the left hand side is divided by 5. What could we do to both sides of this equation that would simplify the left side? Let s try multiplying both sides of this equation by 5: When the left side of the resulting equation is simplified, it becomes. Now, let s isolate variable terms on the left side of the equation and non-variable terms on the right side. So, we need to move the 1 to the right side of the equation. We do this by adding 1 to both sides of the equation: When simplified, the resulting equation is. Recall that our goal is to convert the original equation into an equation of the form x =. We are close. We currently have, and we want to have x, or rather 1x, on the left side of the equation. To finish, divide both sides of the equation by 2 to get.

8 8 When simplified, the resulting equation is. This is because. If our work above is correct, should be the solution of the original equation. Let s check by substituting into the left side of the equation to see if it equals 7:. Check that is the solution by substituting it into both sides of the original equation to see if they are equal: first!) (Hint: Start by simplifying the left and right sides as much as possible

9 9 Check that is the solution by substituting it into both sides of the original equation to see if they are equal: 2 2 If our work above is correct, then ANY number greater than or equal to -0.6 should be a solution. Let s check some values: x Solution (Yes/No) No -1 6 No Yes 0-4 Yes 4-44 Yes From the table, it appears that values of x less than -0.6 are not solutions, while values that are -0.6 or larger are solutions.

10 10 Section 7 Homework Assignment 1. For each of the equations given, determine whether the specified variable value is a solution. ; ; ; 2. For each of the inequalities, the range of solution values is given. Complete the following table and then explain how the results in the table confirm the solution you are given. ; solution: x Solution (Yes/No) ; solution: t Solution (Yes/No) 3. Simplify each of the following expressions. (e) (f) (g) (h) (i) (j)

11 11 (k) (l) 4. Solve each of the following equations and inequalities. Remember to simplify each side of the equation first! (e) (f) (g) (h) (i) (j) (k) 6 (3w+2) = 1 w 5. How many equivalent ways can you write each of the following expressions? List as many equivalent ways as you can think of. (Although every one of these fractions can be written as a decimal, just focus on equivalent expressions involving fractions.) 6. Suppose a quantity is decreasing linearly at a rate of 2.3 milliliters per minute. The present amount is 46 milliliters. Let t represent the number of minutes elapsed since the present time (independent variable) and let A represent the quantity remaining (dependent variable). Determine an equation relating the variables t and A. Use your function from part to determine the amount remaining after 15 minutes. Use your equation to determine how many minutes will pass before half of the present quantity is gone. You ll have to solve an equation. How long will it take before there are 5 milliliters remaining? 7. Suppose the population of a country is growing linearly at a rate of 634,000 people each year. The current population of the country is 56 million. Let t represent time (in years since the current year) and let P represent the population of this country. Determine an equation relating the variables t and P.

12 12 Use your function from part to project the size of the population in the year Use your function to determine the projected number of years until the population of this country reaches 60 million. How long will it take for the population of this country to double in size from its current population? 8. Recall example 9 from meeting 6 which looked at monthly telephone costs. Write down the equation which related the minutes used each month and the total monthly cost. Write down what the independent and dependent variables are, and give their letter names. Use complete sentences. Write down an equation that you would have to solve in order to determine the number of minutes you can use in a month if you want to spent exactly $50 for that month. Solve this equation and interpret your solution in the context of this problem. Write down an inequality that you would have to solve in order to determine the range of monthly minutes you can use if you want to spend at most $70 each month. Solve this inequality and interpret your solution in the context of this problem. 9. Use the linear functions that you created in exercises 7 and 9 from Meeting 6 to answer the following questions? In what year is the population of the world projected to reach 7.5 billion people? In what year is the number of internet servers in the U.S. projected to reach 400 million? 10. A rental truck company charges a flat fee of $39.95 plus 59 cents per mile for a 26-foot truck. Assume that there is no sales tax. What information above tells you that the relationship between the total cost and the number of miles driven is linear? Determine the algebraic representation for this function. If a person s bill was $90.69, how many miles must they have driven? Suppose there is a 6% sales tax. Determine a new algebraic representation for the function relating total cost to miles driven, and use this function to answer part. 11. For each of the linear functions below, determine the vertical and horizontal intercepts. 12. Earlier this semester, we determined two ways of determining percentage changes. Either you calculate or you calculate. Show that these two calculations are equivalent. In other words, show that.

13 13 Section 7 Answers to Selected Homework Exercises 1. is a solution 2. x Solution (Yes/No) 0-5 Yes 1-1 Yes 2 3 Yes 3 7 No 4 11 No The table above confirms that when x < (g) (i) (k) 4. (f) (g) (i) There are no solutions to this equation In the year 2020, t = 12 years. So, P = million people. Determining t when P = 60 million people yields t = years. In other words, the population is projected to reach 60 million people in the year Determining t when P = 112 million people yields t = 88.3 years. In other words, the population is projected to reach 112 million people in the year = 2096.

14 14 8. In class, we let x represent the number of minutes used each month and y represented the total monthly cost (in dollars). The linear function relating these two variables was. The equation that would need to be solved is. The solution of this equation is x = Consequently, a person should use minutes each month if they want to spend exactly $50 per month. The inequality that would need to be solved is. The solution is. Consequently, a person can talk between minutes each month and not exceed $ The population is projected to reach 7.5 billion people in the year The number of internet servers is projected to reach 400 million in the year Vertical intercept is y = -7; horizontal intercept is x = 7/4.

Solving Linear Equations in One Variable. Worked Examples

Solving Linear Equations in One Variable. Worked Examples Solving Linear Equations in One Variable Worked Examples Solve the equation 30 x 1 22x Solve the equation 30 x 1 22x Our goal is to isolate the x on one side. We ll do that by adding (or subtracting) quantities

More information

Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

More information

2.3 Solving Equations Containing Fractions and Decimals

2.3 Solving Equations Containing Fractions and Decimals 2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions

More information

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality. 8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

More information

Algebra 1 Topic 8: Solving linear equations and inequalities Student Activity Sheet 1; use with Overview

Algebra 1 Topic 8: Solving linear equations and inequalities Student Activity Sheet 1; use with Overview Algebra 1 Topic 8: Student Activity Sheet 1; use with Overview 1. A car rental company charges $29.95 plus 16 cents per mile for each mile driven. The cost in dollars of renting a car, r, is a function

More information

Solutions of Linear Equations in One Variable

Solutions of Linear Equations in One Variable 2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

More information

No Solution Equations Let s look at the following equation: 2 +3=2 +7

No Solution Equations Let s look at the following equation: 2 +3=2 +7 5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are

More information

5.4 Solving Percent Problems Using the Percent Equation

5.4 Solving Percent Problems Using the Percent Equation 5. Solving Percent Problems Using the Percent Equation In this section we will develop and use a more algebraic equation approach to solving percent equations. Recall the percent proportion from the last

More information

Equations, Inequalities, Solving. and Problem AN APPLICATION

Equations, Inequalities, Solving. and Problem AN APPLICATION Equations, Inequalities, and Problem Solving. Solving Equations. Using the Principles Together AN APPLICATION To cater a party, Curtis Barbeque charges a $0 setup fee plus $ per person. The cost of Hotel

More information

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

Objectives. By the time the student is finished with this section of the workbook, he/she should be able

Objectives. By the time the student is finished with this section of the workbook, he/she should be able QUADRATIC FUNCTIONS Completing the Square..95 The Quadratic Formula....99 The Discriminant... 0 Equations in Quadratic Form.. 04 The Standard Form of a Parabola...06 Working with the Standard Form of a

More information

2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses

2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2

More information

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an

More information

Section 1.9 Algebraic Expressions: The Distributive Property

Section 1.9 Algebraic Expressions: The Distributive Property Section 1.9 Algebraic Expressions: The Distributive Property Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Apply the Distributive Property.

More information

Section 4.1 Rules of Exponents

Section 4.1 Rules of Exponents Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells

More information

This assignment will help you to prepare for Algebra 1 by reviewing some of the things you learned in Middle School. If you cannot remember how to complete a specific problem, there is an example at the

More information

Chapter 4 Fractions and Mixed Numbers

Chapter 4 Fractions and Mixed Numbers Chapter 4 Fractions and Mixed Numbers 4.1 Introduction to Fractions and Mixed Numbers Parts of a Fraction Whole numbers are used to count whole things. To refer to a part of a whole, fractions are used.

More information

Pre-Algebra Lecture 6

Pre-Algebra Lecture 6 Pre-Algebra Lecture 6 Today we will discuss Decimals and Percentages. Outline: 1. Decimals 2. Ordering Decimals 3. Rounding Decimals 4. Adding and subtracting Decimals 5. Multiplying and Dividing Decimals

More information

Order of Operations. 2 1 r + 1 s. average speed = where r is the average speed from A to B and s is the average speed from B to A.

Order of Operations. 2 1 r + 1 s. average speed = where r is the average speed from A to B and s is the average speed from B to A. Order of Operations Section 1: Introduction You know from previous courses that if two quantities are added, it does not make a difference which quantity is added to which. For example, 5 + 6 = 6 + 5.

More information

Solving univariate equations

Solving univariate equations Click on the links below to jump directly to the relevant section Solving univariate equations Solving for one variable in a multivariate equation Solving systems of multivariate equations Solving univariate

More information

Section 4.1 Inequalities & Applications. Inequalities. Equations. 3x + 7 = 13 y = 7 3x + 2y = 6. 3x + 7 < 13 y > 7 3x + 2y 6. Symbols: < > 4.

Section 4.1 Inequalities & Applications. Inequalities. Equations. 3x + 7 = 13 y = 7 3x + 2y = 6. 3x + 7 < 13 y > 7 3x + 2y 6. Symbols: < > 4. Section 4.1 Inequalities & Applications Equations 3x + 7 = 13 y = 7 3x + 2y = 6 Inequalities 3x + 7 < 13 y > 7 3x + 2y 6 Symbols: < > 4.1 1 Overview of Linear Inequalities 4.1 Study Inequalities with One

More information

, Seventh Grade Math, Quarter 2

, Seventh Grade Math, Quarter 2 2016.17, Seventh Grade Math, Quarter 2 The following practice standards will be used throughout the quarter: 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively.

More information

Equations and Inequalities

Equations and Inequalities Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.

More information

Solving Quadratic Equations by Completing the Square

Solving Quadratic Equations by Completing the Square 9. Solving Quadratic Equations by Completing the Square 9. OBJECTIVES 1. Solve a quadratic equation by the square root method. Solve a quadratic equation by completing the square. Solve a geometric application

More information

3.5. Solving Inequalities. Introduction. Prerequisites. Learning Outcomes

3.5. Solving Inequalities. Introduction. Prerequisites. Learning Outcomes Solving Inequalities 3.5 Introduction An inequality is an expression involving one of the symbols,, > or

More information

4.4 Equations of the Form ax + b = cx + d

4.4 Equations of the Form ax + b = cx + d 4.4 Equations of the Form ax + b = cx + d We continue our study of equations in which the variable appears on both sides of the equation. Suppose we are given the equation: 3x + 4 = 5x! 6 Our first step

More information

Math 016. Materials With Exercises

Math 016. Materials With Exercises Math 06 Materials With Exercises June 00, nd version TABLE OF CONTENTS Lesson Natural numbers; Operations on natural numbers: Multiplication by powers of 0; Opposite operations; Commutative Property of

More information

Practice Math Placement Exam

Practice Math Placement Exam Practice Math Placement Exam The following are problems like those on the Mansfield University Math Placement Exam. You must pass this test or take MA 0090 before taking any mathematics courses. 1. What

More information

3.4. Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes

3.4. Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes Solving Simultaneous Linear Equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.

More information

The Point-Slope Form

The Point-Slope Form 7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

More information

Solving Rational Equations

Solving Rational Equations Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

More information

Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities

Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.

More information

Linear Equations and Inequalities

Linear Equations and Inequalities Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................

More information

Mathematics Success Level H

Mathematics Success Level H T393 [OBJECTIVE] The student will solve two-step inequalities and graph the solutions on number lines. [MATERIALS] Student pages S132 S140 Transparencies T372 from Lesson 15, T405, T407, T409, T411, T413,

More information

Balancing Chemical Equations

Balancing Chemical Equations Balancing Chemical Equations A mathematical equation is simply a sentence that states that two expressions are equal. One or both of the expressions will contain a variable whose value must be determined

More information

3.3 Addition and Subtraction of Rational Numbers

3.3 Addition and Subtraction of Rational Numbers 3.3 Addition and Subtraction of Rational Numbers In this section we consider addition and subtraction of both fractions and decimals. We start with addition and subtraction of fractions with the same denominator.

More information

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b. PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

More information

MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

More information

MATH Fundamental Mathematics II.

MATH Fundamental Mathematics II. MATH 10032 Fundamental Mathematics II http://www.math.kent.edu/ebooks/10032/fun-math-2.pdf Department of Mathematical Sciences Kent State University December 29, 2008 2 Contents 1 Fundamental Mathematics

More information

A. Factoring Method - Some, but not all quadratic equations can be solved by factoring.

A. Factoring Method - Some, but not all quadratic equations can be solved by factoring. DETAILED SOLUTIONS AND CONCEPTS - QUADRATIC EQUATIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

More information

7. Solving Linear Inequalities and Compound Inequalities

7. Solving Linear Inequalities and Compound Inequalities 7. Solving Linear Inequalities and Compound Inequalities Steps for solving linear inequalities are very similar to the steps for solving linear equations. The big differences are multiplying and dividing

More information

1.4 Compound Inequalities

1.4 Compound Inequalities Section 1.4 Compound Inequalities 53 1.4 Compound Inequalities This section discusses a technique that is used to solve compound inequalities, which is a phrase that usually refers to a pair of inequalities

More information

Preliminary Mathematics

Preliminary Mathematics Preliminary Mathematics The purpose of this document is to provide you with a refresher over some topics that will be essential for what we do in this class. We will begin with fractions, decimals, and

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

Using Proportions to Solve Percent Problems I

Using Proportions to Solve Percent Problems I RP7-1 Using Proportions to Solve Percent Problems I Pages 46 48 Standards: 7.RP.A. Goals: Students will write equivalent statements for proportions by keeping track of the part and the whole, and by solving

More information

Solving a System of Equations

Solving a System of Equations 11 Solving a System of Equations 11-1 Introduction The previous chapter has shown how to solve an algebraic equation with one variable. However, sometimes there is more than one unknown that must be determined

More information

0.7 Quadratic Equations

0.7 Quadratic Equations 0.7 Quadratic Equations 8 0.7 Quadratic Equations In Section 0..1, we reviewed how to solve basic non-linear equations by factoring. The astute reader should have noticed that all of the equations in that

More information

Activity 1: Using base ten blocks to model operations on decimals

Activity 1: Using base ten blocks to model operations on decimals Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division

More information

MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

More information

Chapter 2: Linear Equations and Inequalities Lecture notes Math 1010

Chapter 2: Linear Equations and Inequalities Lecture notes Math 1010 Section 2.1: Linear Equations Definition of equation An equation is a statement that equates two algebraic expressions. Solving an equation involving a variable means finding all values of the variable

More information

TYPES OF NUMBERS. Example 2. Example 1. Problems. Answers

TYPES OF NUMBERS. Example 2. Example 1. Problems. Answers TYPES OF NUMBERS When two or more integers are multiplied together, each number is a factor of the product. Nonnegative integers that have exactly two factors, namely, one and itself, are called prime

More information

M248 Diagnostic Quiz

M248 Diagnostic Quiz THE OPEN UNIVERSITY Faculty of Mathematics and Computing M248 Diagnostic Quiz Prepared by the Course Team [Press to begin] c 2005 The Open University Last Revision Date: March 17, 2006 Version 1.4 Section

More information

Accuplacer Elementary Algebra Study Guide for Screen Readers

Accuplacer Elementary Algebra Study Guide for Screen Readers Accuplacer Elementary Algebra Study Guide for Screen Readers The following sample questions are similar to the format and content of questions on the Accuplacer Elementary Algebra test. Reviewing these

More information

1.6 The Order of Operations

1.6 The Order of Operations 1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

More information

You might be surprised to know that the word T-shirt wasn t really used until

You might be surprised to know that the word T-shirt wasn t really used until Hot Shirts Using Tables, Graphs, and Equations, Part 2 Learning Goals In this lesson, you will: Use different methods to represent a problem situation. Estimate values of expressions that involve decimals.

More information

eday Lessons Mathematics Grade 8 Student Name:

eday Lessons Mathematics Grade 8 Student Name: eday Lessons Mathematics Grade 8 Student Name: Common Core State Standards- Expressions and Equations Work with radicals and integer exponents. 3. Use numbers expressed in the form of a single digit times

More information

5.4 The Quadratic Formula

5.4 The Quadratic Formula Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

More information

Square roots, Inequality Symbols, and More with Fractions

Square roots, Inequality Symbols, and More with Fractions Square roots, Inequality Symbols, and More with Fractions This section discusses some terminology and more how on how to simplify fractions without a calculator. Square roots: The square root symbol is.

More information

0.8 Rational Expressions and Equations

0.8 Rational Expressions and Equations 96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

More information

Rule 2: If the decimal point is moved to the left, the exponent is positive.

Rule 2: If the decimal point is moved to the left, the exponent is positive. Scientific Notation Any quantity can be expressed using a power of ten. As you move the decimal point, you multiply by 10 as many times as necessary to make the numbers equal. Consider the following examples:

More information

The Distributive Property

The Distributive Property Mastering algebra is an important requisite of understanding calculus. The motivation for this review is to refresh algebraic concepts that might not have been encountered for some time, and to try to

More information

Sect Addition, Subtraction, Multiplication, and Division Properties of Equality

Sect Addition, Subtraction, Multiplication, and Division Properties of Equality Sect.1 - Addition, Subtraction, Multiplication, and Division Properties of Equality Concept #1 Definition of a Linear Equation in One Variable An equation is a statement that two quantities are equal.

More information

Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:

Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers: Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules

More information

Chapter 17 Appendix A

Chapter 17 Appendix A The Interest Parity Condition Chapter 17 Appendix A We can derive all of the results in the text with a concept that is widely used in international finance. The interest parity condition shows the relationship

More information

Solving Linear Equations - General Equations

Solving Linear Equations - General Equations 1.3 Solving Linear Equations - General Equations Objective: Solve general linear equations with variables on both sides. Often as we are solving linear equations we will need to do some work to set them

More information

TRIGONOMETRY Compound & Double angle formulae

TRIGONOMETRY Compound & Double angle formulae TRIGONOMETRY Compound & Double angle formulae In order to master this section you must first learn the formulae, even though they will be given to you on the matric formula sheet. We call these formulae

More information

Chapter 4 -- Decimals

Chapter 4 -- Decimals Chapter 4 -- Decimals $34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789

More information

graphs, Equations, and inequalities

graphs, Equations, and inequalities graphs, Equations, and inequalities You might think that New York or Los Angeles or Chicago has the busiest airport in the U.S., but actually it s Hartsfield-Jackson Airport in Atlanta, Georgia. In 010,

More information

Algebra 1A and 1B Summer Packet

Algebra 1A and 1B Summer Packet Algebra 1A and 1B Summer Packet Name: Calculators are not allowed on the summer math packet. This packet is due the first week of school and will be counted as a grade. You will also be tested over the

More information

Multiplication and Division with Rational Numbers

Multiplication and Division with Rational Numbers Multiplication and Division with Rational Numbers Kitty Hawk, North Carolina, is famous for being the place where the first airplane flight took place. The brothers who flew these first flights grew up

More information

Pre-AP Algebra 2 Lesson 2-1 Solving 2x2 Systems. 3x 2y 22 (6,2) 5x y 28 (1, 3)

Pre-AP Algebra 2 Lesson 2-1 Solving 2x2 Systems. 3x 2y 22 (6,2) 5x y 28 (1, 3) Lesson 2-1 Solving 2x2 Systems Objectives: The students will be able to solve a 2 x 2 system of equations graphically and by substitution, as well as by elimination. Materials: paper, pencil, graphing

More information

EQUATIONS. Main Overarching Questions: 1. What is a variable and what does it represent?

EQUATIONS. Main Overarching Questions: 1. What is a variable and what does it represent? EQUATIONS Introduction to Variables, Algebraic Expressions, and Equations (2 days) Overview of Objectives, students should be able to: Main Overarching Questions: 1. Evaluate algebraic expressions given

More information

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. Indices or Powers A knowledge of powers, or indices as they are often called, is essential for an understanding of most algebraic processes. In this section of text you will learn about powers and rules

More information

Learning Objectives for Section 1.1 Linear Equations and Inequalities

Learning Objectives for Section 1.1 Linear Equations and Inequalities Learning Objectives for Section 1.1 Linear Equations and Inequalities After this lecture and the assigned homework, you should be able to solve linear equations. solve linear inequalities. use interval

More information

with "a", "b" and "c" representing real numbers, and "a" is not equal to zero.

with a, b and c representing real numbers, and a is not equal to zero. 3.1 SOLVING QUADRATIC EQUATIONS: * A QUADRATIC is a polynomial whose highest exponent is. * The "standard form" of a quadratic equation is: ax + bx + c = 0 with "a", "b" and "c" representing real numbers,

More information

2.2 Solving Linear Equations With More Than Two Operations

2.2 Solving Linear Equations With More Than Two Operations 2.2 Solving Linear Equations With More Than Two Operations Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations involving more than

More information

Introduce Decimals with an Art Project Criteria Charts, Rubrics, Standards By Susan Ferdman

Introduce Decimals with an Art Project Criteria Charts, Rubrics, Standards By Susan Ferdman Introduce Decimals with an Art Project Criteria Charts, Rubrics, Standards By Susan Ferdman hundredths tenths ones tens Decimal Art An Introduction to Decimals Directions: Part 1: Coloring Have children

More information

All the examples in this worksheet and all the answers to questions are available as answer sheets or videos.

All the examples in this worksheet and all the answers to questions are available as answer sheets or videos. BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com Numbers 3 In this section we will look at - improper fractions and mixed fractions - multiplying and dividing fractions - what decimals mean and exponents

More information

MATH 10034 Fundamental Mathematics IV

MATH 10034 Fundamental Mathematics IV MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

More information

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 5 Subtracting Integers

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 5 Subtracting Integers Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Please watch Section 5 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm

More information

Section 3.2. Graphing linear equations

Section 3.2. Graphing linear equations Section 3.2 Graphing linear equations Learning objectives Graph a linear equation by finding and plotting ordered pair solutions Graph a linear equation and use the equation to make predictions Vocabulary:

More information

3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS 3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

More information

Basic Terminology for Systems of Equations in a Nutshell. E. L. Lady. 3x 1 7x 2 +4x 3 =0 5x 1 +8x 2 12x 3 =0.

Basic Terminology for Systems of Equations in a Nutshell. E. L. Lady. 3x 1 7x 2 +4x 3 =0 5x 1 +8x 2 12x 3 =0. Basic Terminology for Systems of Equations in a Nutshell E L Lady A system of linear equations is something like the following: x 7x +4x =0 5x +8x x = Note that the number of equations is not required

More information

Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur. Lecture - 2 Simple Linear Regression

Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur. Lecture - 2 Simple Linear Regression Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 2 Simple Linear Regression Hi, this is my second lecture in module one and on simple

More information

2.1 Systems of Linear Equations

2.1 Systems of Linear Equations . Systems of Linear Equations Question : What is a system of linear equations? Question : Where do systems of equations come from? In Chapter, we looked at several applications of linear functions. One

More information

CCSS.Math.Content.7.NS.A.3 Solve real-world and mathematical problems involving the four operations with rational numbers. 1

CCSS.Math.Content.7.NS.A.3 Solve real-world and mathematical problems involving the four operations with rational numbers. 1 Grade Level/Course: th grade Mathematics Lesson/Unit Plan Name: Complex Fractions Rationale/Lesson Abstract: For the first time, th graders are being asked to work with complex fractions. Timeframe: Introduction

More information

Solving Inequalities Examples

Solving Inequalities Examples Solving Inequalities Examples 1. Joe and Katie are dancers. Suppose you compare their weights. You can make only one of the following statements. Joe s weight is less than Kate s weight. Joe s weight is

More information

Solving Equations by the Multiplication Property

Solving Equations by the Multiplication Property 2.2 Solving Equations by the Multiplication Property 2.2 OBJECTIVES 1. Determine whether a given number is a solution for an equation 2. Use the multiplication property to solve equations. Find the mean

More information

5.1 Simple and Compound Interest

5.1 Simple and Compound Interest 5.1 Simple and Compound Interest Question 1: What is simple interest? Question 2: What is compound interest? Question 3: What is an effective interest rate? Question 4: What is continuous compound interest?

More information

Free Pre-Algebra Lesson 24 page 1

Free Pre-Algebra Lesson 24 page 1 Free Pre-Algebra Lesson page 1 Lesson Equations with Negatives You ve worked with equations for a while now, and including negative numbers doesn t really change any of the rules. Everything you ve already

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

Reasoning with Equations and Inequalities

Reasoning with Equations and Inequalities Instruction Goal: To provide opportunities for students to develop concepts and skills related to solving systems of linear equations using multiplication and addition Common Core Standards Algebra: Solve

More information

Introduction to Diophantine Equations

Introduction to Diophantine Equations Introduction to Diophantine Equations Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles September, 2006 Abstract In this article we will only touch on a few tiny parts of the field

More information

Chapter 1 Section 5: Equations and Inequalities involving Absolute Value

Chapter 1 Section 5: Equations and Inequalities involving Absolute Value Introduction The concept of absolute value is very strongly connected to the concept of distance. The absolute value of a number is that number s distance from 0 on the number line. Since distance is always

More information

1.3. Properties of Real Numbers Properties by the Pound. My Notes ACTIVITY

1.3. Properties of Real Numbers Properties by the Pound. My Notes ACTIVITY Properties of Real Numbers SUGGESTED LEARNING STRATEGIES: Create Representations, Activating Prior Knowledge, Think/Pair/Share, Interactive Word Wall The local girls track team is strength training by

More information

Graphing Linear Equations in Two Variables

Graphing Linear Equations in Two Variables Math 123 Section 3.2 - Graphing Linear Equations Using Intercepts - Page 1 Graphing Linear Equations in Two Variables I. Graphing Lines A. The graph of a line is just the set of solution points of the

More information

47 Numerator Denominator

47 Numerator Denominator JH WEEKLIES ISSUE #22 2012-2013 Mathematics Fractions Mathematicians often have to deal with numbers that are not whole numbers (1, 2, 3 etc.). The preferred way to represent these partial numbers (rational

More information

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets

More information