Core Maths C1. Revision Notes

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

Transcription

1 Core Maths C Revision Notes November 0

2 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the square Method... Factorising quadratics... 6 Solving quadratic equations by factorising by completing the square... 6 by using the formula... 6 The discriminant b 4ac... 7 Miscellaneous quadratic equations... 7 Quadratic graphs... 8 Simultaneous equations... 9 Two linear equations... 9 One linear and one quadratic Inequalities... 0 Linear inequalities... 0 Quadratic inequalities... 0 Coordinate geometry... Distance between two points... Gradient... Equation of a line... Parallel and perpendicular lines... 4 Sequences and series... Definition by a formula n = f(n)... Definitions of the form n+ = f( n )... Series and Σ notation... Arithmetic series... Proof of the formula for the sum of an arithmetic series... Curve sketching... 4 Standard graphs... 4 Transformations of graphs... Translations... Stretches... Reflections in the -ais... 8 Reflections in the y ais... 8 C 4/04/0 SDB

3 6 Differentiation... 0 General result... 0 Tangents and Normals... 0 Tangents... 0 Normals... 7 Integration... Indefinite integrals... Finding the arbitrary constant... Inde... C 4/04/0 SDB

4 Algebra Indices Rules of indices a m a n = a m+n (a ) n = a mn a m a n = a m n a 0 = a n = n a a n m n = n a n ( ) n m a = a = a m Eamples: (i) 4 = + 4 = = = = 7 4 = 7 6 = (ii) = = + = = = 9 0 = = = + = = (iii) (6 ) 4 = 6 4 = 6 = 6. (iv) = = ( 4) = 6 (v) = since minus means turn upside down =, since on bottom of fraction is cube root, = = Eample: (6 a ) (8 b ) = ( 4 ) a ( ) b = 4a b = 4a b. Eample: Find if 9 = 7 +. Solution: First notice that 9 = and 7 = and so 9 = 7 + ( ) = ( ) + 4 = + 4 = + =. C 4/04/0 SDB

5 Surds A surd is a nasty root i.e. a root which is not rational Thus 64 8 =, 7 =, 4 = are rational and not surds and, 4, 7 are irrational and are surds. Simplifying surds Eample: To simplify 0 we notice that 0 = = 0 = = =. Eample: To simplify 40 we notice that 40 = 8 = 40 = 8 = 8 =. Rationalising the denominator Rationalising means getting rid of surds. We remember that multiplying (a + b) by (a b) gives a b squaring both a and b at the same time!! which has the effect of Eample: Rationalise the denominator of +. Solution: + = = = + 4. Quadratic functions A quadratic function is a function a + b + c, where a, b and c are constants and the highest power of is. Completing the square. Method Rule: ] The coefficient of must be. ] Halve the coefficient of, square it then add it and subtract it. Eample: Complete the square in Solution: ] The coefficient of is already, 4 C 4/04/0 SDB

6 ] the coefficient of is 6, halve it to give then square to give 9 and add and subtract = = ( ). Notice that the minimum value of the epression is when =, since the minimum value of ( ) is 0. Eample: Complete the square in + 4. Solution: ] The coefficient of is not, so we must fiddle it to make it, and then go on to step ]. + 4 = ( + 8) = ( ) = ( + 4) 48 = ( + 4) Notice that the minimum value of the epression is when = 4, since the minimum value of ( + 4) is 0. Thus the verte of the curve is at ( 4, ). Method Eample: Re-write + 7 in completed square form Solution: We know that we need -6 (half the coefficient of ) and that ( 6) = = ( 6) 7 Notice that the minimum value of the epression is 7 when = 6, since the minimum value of ( 6) is 0. Thus the verte of the curve is at (6, 7). Eample: Epress + in completed square form. Solution: The coefficient of is not so we must take out + = ( + 4) and we know that ( + ) = , so + 4 = ( + ) 4 + = ( + 4) = [( + ) 4] = ( + ) 4 Notice that the minimum value of the epression is 4 when =, since the minimum value of ( ) is 0. Thus the verte of the curve is at (, 4). C 4/04/0 SDB

7 Factorising quadratics All the coefficients must be whole numbers (integers) then the factors will also have whole number coefficients. Eample: Factorise Solution: Looking at the 0 and the 6 we see that possible factors are (0 ± ), (0 ± ), (0 ± ), (0 ± 6), ( ± ), ( ± ), ( ± ), ( ± 6), ( ± ), ( ± ), ( ± ), ( ± 6), ( ± ), ( ± ), ( ± ), ( ± 6), Also the 6 tells us that the factors must have opposite signs, and by trial and error or common sense = ( + )( ). Solving quadratic equations. by factorising. Eample: + 6 = 0 ( )( ) = 0 = 0 or = 0 = or =. Eample: + 8 = 0 ( + 8) = 0 = 0 or + 8 = 0 = 0 or = 8 N.B. Do not divide through by first: you will lose the root of = 0. by completing the square Eample: 6 = 0 6 = and ( ) = = + 9 ( ) = ( ) = ± = ± = or by using the formula always try to factorise first. Eample: a + b + c = 0 = b ± b 4ac a = 0 will not factorise, so we use the formula with a =, b =, c = = ± ( ) 4 ( ) =. or C 4/04/0 SDB

8 The discriminant b 4ac In the formula for the quadratic equation a + b + c = 0 = b ± b 4ac a i) there will be two distinct real roots if b 4ac > 0 ii) there will be only one real root if b 4ac = 0 iii) there will be no real roots if b 4ac < 0 Eample: For what values of k does the equation k + = 0 have i) two distinct real roots, ii) eactly one real root iii) no real roots. Solution: The discriminant b 4ac = ( k) 4 = k 60 i) for two distinct real roots k 60 > 0 k > 60 k < 60, or k > + 60 and ii) for only one real root k 60 = 0 k = ± 60 and iii) for no real roots k 60 < 0 60 < k < Miscellaneous quadratic equations a) sin sin = 0. Put y = sin to give y y = 0 (y )(y + ) = 0 y = or y = ½ sin = or ½ = 90, 0 or 0 from 0 to 60. b) = 0 Notice that = ( ) and put y = to give y 0y + 9 = 0 (y 9)(y ) = 0 y = 9 or y = = 9 or = = or = 0. c) y y + = 0. Put y = to give + = 0 and solve to give = or y = = 4 or. C 4/04/0 SDB 7

9 Quadratic graphs a) If a > 0 the parabola will be the right way up i) if b 4ac > 0 the curve will meet the -ais in two points. ii) if b 4ac = 0 the curve will meet the -ais in only one point (it will touch the ais) iii) if b 4ac < 0 the curve will not meet the -ais. b) a) If a < 0 the parabola will be the wrong way up i) if b 4ac > 0 the curve will meet the -ais in two points. ii) if b 4ac = 0 the curve will meet the -ais in only one point (it will touch the ais) iii) if b 4ac < 0 the curve will not meet the -ais. Note: When sketching the curve of a quadratic function you should always show the value on the y-ais and if you have factorised you should show the values where it meets the -ais, if you have completed the square you should give the co-ordinates of the verte. 8 C 4/04/0 SDB

10 Simultaneous equations Two linear equations Eample: Solve y = 4 and 4 + 7y =. Solution: Make the coefficients of (or y) equal then add or subtract the equations to eliminate (or y). Here 4 times the first equation gives 8y = 6 and times the second equation gives + y = 4 Subtracting gives 9y = 9 y = Put y = in equation one = 4 + y = 4 + = Check in equation two: L.H.S. = = = R.H.S. One linear and one quadratic. Find (or y) from the Linear equation and substitute in the Quadratic equation. Eample: Solve y =, y y = Solution: From first equation = y + Substitute in second (y + ) y y = 4y + y + 9 y y = y + 9y + 4 = 0 (y + )(y + 4) = 0 y = ½ or y = 4 = or = from the linear equation. Check in quadratic for =, y = ½ L.H.S. = ( ½) ( ½) = = R.H.S. and for =, y = 4 L.H.S. = ( ) ( 4) ( 4) = + = = R.H.S. C 4/04/0 SDB 9

11 Inequalities Linear inequalities Solving algebraic inequalities is just like solving equations, add, subtract, multiply or divide the same number to, from, etc. BOTH SIDES EXCEPT - if you multiply or divide both sides by a NEGATIVE number then you must TURN THE INEQUALITY SIGN ROUND. Eample: Solve + < Solution: sub from B.S. < + 4 sub 4 from B.S. - < divide B.S. by - and turn the inequality sign round > -.. Eample: Solve > 6 Solution: We must be careful here since the square of a negative number is positive giving the full range of solutions as < -4 or > +4. Quadratic inequalities Always sketch a graph and find where the curve meets the -ais Eample: Find the values of which satisfy 0. Solution: = 0 y ( + )( ) = 0 = / or We want the part of the curve which is above or on the -ais / or - 0 C 4/04/0 SDB

12 Coordinate geometry Distance between two points Distance between P (a, b ) and Q (a, b ) is ( a a ) + ( b b ) Gradient Gradient of PQ is m b = b a a Equation of a line Equation of the line PQ, above, is y = m + c and use a point to find c or the equation of the line with gradient m through the point (, y ) is y y = m( ) or the equation of the line through the points (, y ) and (, y ) is y y = y y (you do not need to know this one!!) Parallel and perpendicular lines Two lines are parallel if they have the same gradient and they are perpendicular if the product of their gradients is. Eample: Find the equation of the line through (4½, ) and perpendicular to the line joining the points A (, 7) and B (6, -). Solution: 7 Gradient of AB is = 4 6 gradient of line perpendicular to AB is ¼, (product of perpendicular gradients is ) so we want the line through (4½, ) with gradient ¼. Using y y = m( ) y = ¼ ( 4½) 4y = - ½ or + 8y + = 0. C 4/04/0 SDB

13 4 Sequences and series A sequence is any list of numbers. Definition by a formula n = f(n) Eample: The definition n = n gives = =, = = 7, = =,. Definitions of the form n+ = f( n ) These have two parts: (i) a starting value (or values) (ii) a method of obtaining each term from the one(s) before. Eamples: (i) The definition = and n = n + defines the sequence,,, 07,... (ii) The definition =, =, n = n + n defines the sequence,,,,, 8,,, 4, 6,.... This is the Fibonacci sequence. Series and Σ notation A series is the sum of the first so many terms of a sequence. For a sequence whose nth term is n = n + the sum of the first n terms is a series S n = n = (n + ) n i i= This is written in Σ notation as S n = n = ( i + ) and is a finite series of n terms. i= An infinite series has an infinite number of terms S = i= Arithmetic series An arithmetic series is a series in which each term is a constant amount bigger (or smaller) than the previous term: this constant amount is called the common difference. Eamples:, 7,,, 9,,.... with common difference 4 8,,, 9, 6,,... with common difference. i. Generally an arithmetic series can be written as S n = a + (a + d) + (a + d) + (a + d) + (a + 4d) +... upto n terms, where the first term is a and the common difference is d. The nth term n = a + (n )d The sum of the first n terms of the above arithmetic series is C 4/04/0 SDB

14 n S n = ( a + ( n ) d), or S n = ( L ) n a + where L is the last term. Eample: Find the nth term and the sum of the first 00 terms of the arithmetic series with rd term and 7 th term 7. Solution: 7 = + 4 d 7 = + 4 d d = = d = 6 = nth term n = a + (n )d = + (n ) and S 00 = 00 / ( + (00 ) ) = 470. Proof of the formula for the sum of an arithmetic series You must know this proof. First write down the general series and then write it down in reverse order S n = a + (a + d) + (a + d) (a + (n )d) + (a + (n )d S n = (a + (n )d + (a + (n )d) + (a + (n )d) + + (a + d) + a ADD S n = (a + (n )d) + (a + (n )d) + (a + (n )d) + (a + (n )d) + (a + (n )d) S n = n(a + (n )d) S n = n / (a + (n )d), Which can be written as S n = n / (a + a + (n )d) = n / (a + L), where L is the last term. C 4/04/0 SDB

15 Curve sketching Standard graphs y y y y = y = - y = y y y y = y = / y = / y y y = The eponential curve y = y = is like y = but steeper: similarly for y = and y = 7 /, etc. a b c > a b > y = ( a)( b)( c) y = ( a) ( b) a b c > a b > y = (a )( b)( c) y = (a )( b) 4 C 4/04/0 SDB

16 Transformations of graphs Translations (i) If the graph of y = + is translated through + in the y-direction the equation of the new graph is y = + + ; and in general if we know that y is given by some formula involving, which we write as y = f (), then the new curve after a translation through + units in the y direction is y = f () +. (ii) If the graph of y = + is translated through + in the -direction the equation of the new graph is y = ( - ) + ( - ); and if y = f (), then the new curve after a translation through + units in the -direction is y = f ( - ): i.e. we replace by ( - ) everywhere in the formula for y: note the minus sign, -, which seems wrong but is correct! Eample: 4 Y The graph of y = ( - ) + is the graph of y = + after a translation of + y = y = ( - ) X In general y = or y = f () becomes y = ( - a) + b a or y = f ( - a) + b after a translation through b Stretches (i) If the graph of y = + is stretched by a factor of + in the y-direction.then the equation of the new graph is y = ( + ); and in general if y is given by some formula involving, which we write as y = f (), then the new curve after a stretch by a factor of + in the y-direction is y = f (). C 4/04/0 SDB

17 Eample: y = - 4 Y The graph of y = - becomes y = ( - ) after a stretch of factor in the y-direction X y = ( - ) -6 In general y = or y = f () becomes y = a or y = af () after a stretch in the y-direction of factor a. (ii) If the graph of y = + is stretched by a factor of + in the -direction then the equation of the new graph is y = + and in general if y is given by some formula involving, which we write as y = f (), then the new curve after a a stretch by a factor of + in the -direction is y = f i.e. we replace by everywhere in the formula for y. 6 C 4/04/0 SDB

18 Eample: In this eample the graph of y = 4 has been stretched by a factor of in the -direction to form a new graph with equation y = 4 y = y = 4 8 Y X (iii) Note that to stretch by a factor of ¼ in the -direction we replace by that y = f () becomes y = f (4) = so 4 4 Eample: In this eample the graph of y = - 9 has been stretched by a factor of in the -direction to form a new graph with equation ( ) 9( ) y = = 7 7, The new equation is formed by replacing by = in the original equation. Y y = X ( ) 9( ) y = C 4/04/0 SDB 7

19 Reflections in the -ais When reflecting in the -ais all the positive y-coordinates become negative and vice versa and so the image of y = f () after reflection in the -ais is y = f (). Eample: The image of y = + after reflection in the -ais is y = f () = ( + ) = + y = +. y y = +. Reflections in the y ais When reflecting in the y-ais the y-coordinate for = + becomes the y-coordinate for = and the y-coordinate for = becomes the y-coordinate for = +. Thus the equation of the new graph is found by replacing by and the image of y = f () after reflection in the y ais is y = f ( ). Eample: The image of y = + after reflection in the y-ais is y = ( ) + ( ) = y y = + y = C 4/04/0 SDB

20 Old equation Transformation New equation y = f () y = f () Translation through Stretch with factor a in the y-direction. a b y = f ( - a) + b y = a f () y = f () y = f () Stretch with factor a in the -direction. Stretch with factor in the -direction. a y = f a y = f( a ) y = f () Reflection in the -ais y = - f () y = f () Reflection in the y-ais y = f (-) C 4/04/0 SDB 9

21 6 Differentiation General result Differentiating is finding the gradient of the curve. y = n dy d = n n, or f () = n f () = n n Eamples: a) y = dy = 6 7 d b) 7 f () = 7 = 7 f ( ) 7 = = c) 8 dy 4 4 y = = 8 = 8 = 4 d d) f () = ( + )( ) multiply out first = f ( ) = 4 e) 7 4 y = split up first 7 4 dy 4 = = 4 = 6 = d Tangents and Normals Tangents Eample: Find the equation of the tangent to y = 7 + at the point where =. Solution: We first find the gradient when =. y = 7 + dy d = 6 7 and when =, dy d = 6 7 =. so the gradient when = is. The equation is of the form y = m + c where m is the gradient so we have y = + c. To find c we must find a point on the line, namely the point on the curve when =. When = the y value on the curve is 7 + =, i.e. when =, y =. Substituting these values in y = + c we get = + c c = 7 the equation of the tangent is y = 7. 0 C 4/04/0 SDB

22 Normals (The normal to a curve is the line at 90 o to the tangent at that point). We first remember that if two lines with gradients m and m are perpendicular then m m =. Eample: Find the equation of the normal to the curve y = + at the point where =. Solution: We first find the gradient of the tangent when =. y = + dy d = = when = gradient of the tangent is m = 4 = ½. If gradient of the normal is m then m m = ½ m = m = Thus the equation of the normal must be of the form y = + c. From the equation y = + the value of y when = is y = + = Substituting = and y = in the equation of the normal y = + c we have = + c c = 7 equation of the normal is y = + 7. C 4/04/0 SDB

23 7 Integration Indefinite integrals n+ n d = + C provided that n n + N.B. NEVER FORGET THE ARBITRARY CONSTANT + C. Eamples: = d 4 4 = + C = + C ( )( + ) d = + d a) d 6 b) = + ½ + C. + 4 d = + d = + + C = + C 9 c) multiply out first split up first Finding the arbitrary constant If you know the derivative (gradient) function and a point on the curve you can find C. dy Eample: Solve =, given that y = 4 when =. d Solution: y = d = + C but y = 4 when = 4 = + C C = 6 y = + 6. C 4/04/0 SDB

24 Inde Differentiation, 0 Distance between two points, Equation of a line, Gradient, Graphs Reflections, 8 Standard graphs, 4 Stretches, Translations, Indices, Inequalities linear inequalities, 0 quadratic inequalities, 0 Integrals finding arbitrary constant, indefinite, Normals, Parallel and perpendicular lines, Quadratic equations b 4ac, 7 completing the square, 6 factorising, 6 formula, 6 miscellaneous, 7 Quadratic functions, 4 completing the square, 4 factorising, 6 verte of curve, Quadratic graphs, 8 Series Arithmetic, Arithmetic, proof of sum, Sigma notation, Simultaneous equations one linear equations and one quadratic, 9 two linear equations, 9 Surds, 4 rationalising the denominator, 4 Tangents, 0 C 4/04/0 SDB

The Not-Formula Book for C1

Not The Not-Formula Book for C1 Everything you need to know for Core 1 that won t be in the formula book Examination Board: AQA Brief This document is intended as an aid for revision. Although it includes

y intercept Gradient Facts Lines that have the same gradient are PARALLEL

CORE Summar Notes Linear Graphs and Equations = m + c gradient = increase in increase in intercept Gradient Facts Lines that have the same gradient are PARALLEL If lines are PERPENDICULAR then m m = or

Core Maths C2. Revision Notes

Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

Core Maths C3. Revision Notes

Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...

Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities

Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.

STRAND: ALGEBRA Unit 3 Solving Equations

CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic

Section 5.0A Factoring Part 1

Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)( + 5) (

Question: What is the quadratic fmula? Question: What is the discriminant? Question: How do you determine if a quadratic equation has no real roots? The discriminant is negative ie Question: How do you

Objectives. By the time the student is finished with this section of the workbook, he/she should be able

QUADRATIC FUNCTIONS Completing the Square..95 The Quadratic Formula....99 The Discriminant... 0 Equations in Quadratic Form.. 04 The Standard Form of a Parabola...06 Working with the Standard Form of a

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

1.1 Solving a Linear Equation ax + b = 0

1.1 Solving a Linear Equation ax + b = 0 To solve an equation ax + b = 0 : (i) move b to the other side (subtract b from both sides) (ii) divide both sides by a Example: Solve x = 0 (i) x- = 0 x = (ii)

Equations and Inequalities

Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.

Edexcel AS and A-level Modular Mathematics

Core Mathematics Edexcel AS and A-level Modular Mathematics Greg Attwood Alistair Macpherson Bronwen Moran Joe Petran Keith Pledger Geoff Staley Dave Wilkins Contents The highlighted sections will help

x 2 would be a solution to d y

CATHOLIC JUNIOR COLLEGE H MATHEMATICS JC PRELIMINARY EXAMINATION PAPER I 0 System of Linear Equations Assessment Objectives Solution Feedback To use a system of linear c equations to model and solve y

g = l 2π g = bd b c d = ac bd. Therefore to write x x and as a single fraction we do the following

OCR Core 1 Module Revision Sheet The C1 exam is 1 hour 30 minutes long. You are not allowed any calculator 1. Before you go into the exam make sureyou are fully aware of the contents of theformula booklet

Roots and Coefficients of a Quadratic Equation Summary

Roots and Coefficients of a Quadratic Equation Summary For a quadratic equation with roots α and β: Sum of roots = α + β = and Product of roots = αβ = Symmetrical functions of α and β include: x = and

COGNITIVE TUTOR ALGEBRA

COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,

Mathematics Higher Tier, Algebraic Fractions

These solutions are for your personal use only. DO NOT photocopy or pass on to third parties. If you are a school or an organisation and would like to purchase these solutions please contact Chatterton

Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract

0 The Quadratic Function TERMINOLOGY Ais of smmetr: A line about which two parts of a graph are smmetrical. One half of the graph is a reflection of the other Coefficient: A constant multiplied b a pronumeral

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

Arithmetic Operations. The real numbers have the following properties: In particular, putting a 1 in the Distributive Law, we get

Review of Algebra REVIEW OF ALGEBRA Review of Algebra Here we review the basic rules and procedures of algebra that you need to know in order to be successful in calculus. Arithmetic Operations The real

Mathematics 31 Pre-calculus and Limits

Mathematics 31 Pre-calculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals

The x-intercepts of the graph are the x-values for the points where the graph intersects the x-axis. A parabola may have one, two, or no x-intercepts.

Chapter 10-1 Identify Quadratics and their graphs A parabola is the graph of a quadratic function. A quadratic function is a function that can be written in the form, f(x) = ax 2 + bx + c, a 0 or y = ax

Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

Name Date Block. Algebra 1 Laws of Exponents/Polynomials Test STUDY GUIDE

Name Date Block Know how to Algebra 1 Laws of Eponents/Polynomials Test STUDY GUIDE Evaluate epressions with eponents using the laws of eponents: o a m a n = a m+n : Add eponents when multiplying powers

Math Xa Algebra Practice Problems (Solutions) Fall 2008 Directions Please read carefully! You will not be allowed to use a calculator or any other aids on the Algebra Pre-Test or Post-Test. Be sure to

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

Year 9 set 1 Mathematics notes, to accompany the 9H book.

Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

Algebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , )

Algebra I Pacing Guide Days Units Notes 9 Chapter 1 (1.1-1.4, 1.6-1.7) Expressions, Equations and Functions Differentiate between and write expressions, equations and inequalities as well as applying order

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills

SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)

Methods to Solve Quadratic Equations We have been learning how to factor epressions. Now we will apply factoring to another skill you must learn solving quadratic equations. a b c 0 is a second-degree

Identify examples of field properties: commutative, associative, identity, inverse, and distributive.

Topic: Expressions and Operations ALGEBRA II - STANDARD AII.1 The student will identify field properties, axioms of equality and inequality, and properties of order that are valid for the set of real numbers

Contents. Number. Algebra. Exam board specification map Introduction Topic checker Topic checker answers. iv vi x xv

Contents Exam board specification map Introduction Topic checker Topic checker answers iv vi x xv Number The decimal number system Fraction calculations Fractions, decimals and percentages Powers and roots

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

1.6 Powers of 10 and standard form Write a number in standard form. Calculate with numbers in standard form.

Unit/section title 1 Number Unit objectives (Edexcel Scheme of Work Unit 1: Powers, decimals, HCF and LCM, positive and negative, roots, rounding, reciprocals, standard form, indices and surds) 1.1 Number

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

Algebra II Pacing Guide First Nine Weeks

First Nine Weeks SOL Topic Blocks.4 Place the following sets of numbers in a hierarchy of subsets: complex, pure imaginary, real, rational, irrational, integers, whole and natural. 7. Recognize that the

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents

Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

Testing Center Student Success Center x x 18 12x I. Factoring and expanding polynomials

Testing Center Student Success Center Accuplacer Study Guide The following sample questions are similar to the format and content of questions on the Accuplacer College Level Math test. Reviewing these

Chapter 3. Algebra. 3.1 Rational expressions BAa1: Reduce to lowest terms

Contents 3 Algebra 3 3.1 Rational expressions................................ 3 3.1.1 BAa1: Reduce to lowest terms...................... 3 3.1. BAa: Add, subtract, multiply, and divide............... 5

Math 1111 Journal Entries Unit I (Sections , )

Math 1111 Journal Entries Unit I (Sections 1.1-1.2, 1.4-1.6) Name Respond to each item, giving sufficient detail. You may handwrite your responses with neat penmanship. Your portfolio should be a collection

1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

National 5 Mathematics Course Assessment Specification (C747 75)

National 5 Mathematics Course Assessment Specification (C747 75) Valid from August 013 First edition: April 01 Revised: June 013, version 1.1 This specification may be reproduced in whole or in part for

Lesson 9.1 Solving Quadratic Equations 1. Sketch the graph of a quadratic equation with a. One -intercept and all nonnegative y-values. b. The verte in the third quadrant and no -intercepts. c. The verte

MATH 11 Quadratic Functions and Parabolas A quadratic function has the form Dr. Neal, Fall 2008 f () = a 2 + b + c where a 0. The graph of the function is a parabola that opens upward if a > 0, and opens

Actually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is

QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.

LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to,

LINEAR INEQUALITIES When we use the equal sign in an equation we are stating that both sides of the equation are equal to each other. In an inequality, we are stating that both sides of the equation are

Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

Level 2 Certificate Further MATHEMATICS

Level 2 Certificate Further MATHEMATICS 83601 Paper 1 non-calculator Report on the Examination Specification 8360 June 2013 Version: 1.0 Further copies of this Report are available from aqa.org.uk Copyright

Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of

Substitute 4 for x in the function, Simplify.

Page 1 of 19 Review of Eponential and Logarithmic Functions An eponential function is a function in the form of f ( ) = for a fied ase, where > 0 and 1. is called the ase of the eponential function. The

What are the place values to the left of the decimal point and their associated powers of ten?

The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

Rational Exponents. Given that extension, suppose that. Squaring both sides of the equation yields. a 2 (4 1/2 ) 2 a 2 4 (1/2)(2) a a 2 4 (2)

SECTION 0. Rational Exponents 0. OBJECTIVES. Define rational exponents. Simplify expressions with rational exponents. Estimate the value of an expression using a scientific calculator. Write expressions

Skill Builders. (Extra Practice) Volume I

Skill Builders (Etra Practice) Volume I 1. Factoring Out Monomial Terms. Laws of Eponents 3. Function Notation 4. Properties of Lines 5. Multiplying Binomials 6. Special Triangles 7. Simplifying and Combining

MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

Section 9.1 Roots, Radicals, and Rational Exponents

Section 9. Roots, Radicals, and Rational Exponents SQUARE ROOTS The square root of a is written as N. If N ;, then b a. Note: For to be defined in the real number system, a 0. NOTATION: a / a is the RADICAL

Key Topics What will ALL students learn? What will the most able students learn?

2013 2014 Scheme of Work Subject MATHS Year 9 Course/ Year Term 1 Key Topics What will ALL students learn? What will the most able students learn? Number Written methods of calculations Decimals Rounding

Functions in Economics

chapter one Functions in Economics OBJECTIVES In this chapter you learn to n Appreciate why economists use mathematics n Plot points on graphs and handle negative values n Epress relationships using linear

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an

GCSE Maths Linear Higher Tier Grade Descriptors

GSE Maths Linear Higher Tier escriptors Fractions /* Find one quantity as a fraction of another Solve problems involving fractions dd and subtract fractions dd and subtract mixed numbers Multiply and divide

Polynomials Past Papers Unit 2 Outcome 1

PSf Polnomials Past Papers Unit 2 utcome 1 Multiple Choice Questions Each correct answer in this section is worth two marks. 1. Given p() = 2 + 6, which of the following are true? I. ( + 3) is a factor

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

Algebra C/D Borderline Revision Document

Algebra C/D Borderline Revision Document Algebra content that could be on Exam Paper 1 or Exam Paper 2 but: If you need to use a calculator for *** shown (Q8 and Q9) then do so. Questions are numbered

Advanced Algebra 2. I. Equations and Inequalities

Advanced Algebra 2 I. Equations and Inequalities A. Real Numbers and Number Operations 6.A.5, 6.B.5, 7.C.5 1) Graph numbers on a number line 2) Order real numbers 3) Identify properties of real numbers

Able Enrichment Centre - Prep Level Curriculum

Able Enrichment Centre - Prep Level Curriculum Unit 1: Number Systems Number Line Converting expanded form into standard form or vice versa. Define: Prime Number, Natural Number, Integer, Rational Number,

2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses

College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2

IB Maths SL Sequence and Series Practice Problems Mr. W Name

IB Maths SL Sequence and Series Practice Problems Mr. W Name Remember to show all necessary reasoning! Separate paper is probably best. 3b 3d is optional! 1. In an arithmetic sequence, u 1 = and u 3 =

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

REVISED GCSE Scheme of Work Mathematics Higher Unit 6. For First Teaching September 2010 For First Examination Summer 2011 This Unit Summer 2012

REVISED GCSE Scheme of Work Mathematics Higher Unit 6 For First Teaching September 2010 For First Examination Summer 2011 This Unit Summer 2012 Version 1: 28 April 10 Version 1: 28 April 10 Unit T6 Unit

Simultaneous Equations

Paper Reference(s) 666/01 Edexcel GCE Core Mathematics C1 Advanced Subsidiary Simultaneous Equations Calculators may NOT be used for these questions. Information for Candidates A booklet Mathematical Formulae

ALGEBRA I A PLUS COURSE OUTLINE

ALGEBRA I A PLUS COURSE OUTLINE OVERVIEW: 1. Operations with Real Numbers 2. Equation Solving 3. Word Problems 4. Inequalities 5. Graphs of Functions 6. Linear Functions 7. Scatterplots and Lines of Best

Curriculum Mapping - Key Stage 3 Subject : Mathematics Topics addressed Skills acquired Cross-curricular links Progression links to future years

Year 7 (CORE) Sequences and rules Order, add and subtract decimals Order, add and subtract negative s Rounding and estimates Paper and pencil methods to add, subtract, divide and multiply Perimeter and

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

GCSE MATHEMATICS. 43602H Unit 2: Number and Algebra (Higher) Report on the Examination. Specification 4360 November 2014. Version: 1.

GCSE MATHEMATICS 43602H Unit 2: Number and Algebra (Higher) Report on the Examination Specification 4360 November 2014 Version: 1.0 Further copies of this Report are available from aqa.org.uk Copyright

Packet 1 for Unit 2 Intercept Form of a Quadratic Function. M2 Alg 2

Packet 1 for Unit Intercept Form of a Quadratic Function M Alg 1 Assignment A: Graphs of Quadratic Functions in Intercept Form (Section 4.) In this lesson, you will: Determine whether a function is linear

Solving Rational Equations and Inequalities

8-5 Solving Rational Equations and Inequalities TEKS 2A.10.D Rational functions: determine the solutions of rational equations using graphs, tables, and algebraic methods. Objective Solve rational equations

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

Algebra Practice Problems for Precalculus and Calculus

Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials

SAT Math Hard Practice Quiz. 5. How many integers between 10 and 500 begin and end in 3?

SAT Math Hard Practice Quiz Numbers and Operations 5. How many integers between 10 and 500 begin and end in 3? 1. A bag contains tomatoes that are either green or red. The ratio of green tomatoes to red

hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining

Multiplying Polynomials 5

Name: Date: Start Time : End Time : Multiplying Polynomials 5 (WS#A10436) Polynomials are expressions that consist of two or more monomials. Polynomials can be multiplied together using the distributive

Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

Assessment Schedule 2013

NCEA Level Mathematics (9161) 013 page 1 of 5 Assessment Schedule 013 Mathematics with Statistics: Apply algebraic methods in solving problems (9161) Evidence Statement ONE Expected Coverage Merit Excellence

APPENDIX A. Radicals and Rational Eponents 779 Appendies Overview This section contains a review of some basic algebraic skills. (You should read Section P. before reading this appendi.) Radical and rational

Algebra 1-2. A. Identify and translate variables and expressions.

St. Mary's College High School Algebra 1-2 The Language of Algebra What is a variable? A. Identify and translate variables and expressions. The following apply to all the skills How is a variable used

FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

7.7 Solving Rational Equations

Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate

Common Curriculum Map. Discipline: Math Course: College Algebra

Common Curriculum Map Discipline: Math Course: College Algebra August/September: 6A.5 Perform additions, subtraction and multiplication of complex numbers and graph the results in the complex plane 8a.4a

Fortismere: Maths GCSE Grade Descriptors Grade Description Clip 1 Interpreting Real-Life Tables 6 1 Names of Angles 13 1 Ordering Decimals 3 1 Ordering Integers 2 1 Pictograms 16 1 Place Value 1 1 Polygons

West Windsor-Plainsboro Regional School District Algebra I Part 2 Grades 9-12

West Windsor-Plainsboro Regional School District Algebra I Part 2 Grades 9-12 Unit 1: Polynomials and Factoring Course & Grade Level: Algebra I Part 2, 9 12 This unit involves knowledge and skills relative