Radicals  Rational Exponents


 Arlene Clark
 1 years ago
 Views:
Transcription
1 8. Radicals  Rational Exponents Objective: Convert between radical notation and exponential notation and simplify expressions with rational exponents using the properties of exponents. When we simplify radicals with exponents, we divide the exponent by the index. Another way to write division is with a fraction bar. This idea is how we will define rational exponents. Definition of Rational Exponents: a n m = m a ) n The denominator of a rational exponent becomes the index on our radical, likewise the index on the radical becomes the denominator of the exponent. We can use this property to change any radical expression into an exponential expression. Example. x ) = x x ) = x) a = ) a xy ) =xy) Index is denominator Negative exponents from reciprocals We can also change any rational exponent into a radical expression by using the denominator as the index. Example. a = a) x = x ) mn) = mn ) xy) 9 = 9 xy ) Index is denominator Negative exponent means reciprocals World View Note: Nicole Oresme, a Mathematician born in Normandy was the first to use rational exponents. He used the notation 9p to represent 9. However his notation went largely unnoticed. The ability to change between exponential expressions and radical expressions allows us to evaluate problems we had no means of evaluating before by changing to a radical. Example. Change to radical, denominator is index, negative means reciprocal ) Evaluate radical
2 ) Evaluate exponent 8 Our solution The largest advantage of being able to change a radical expression into an exponential expression is we are now allowed to use all our exponent properties to simplify. The following table reviews all of our exponent properties. Properties of Exponents a n =+n ab) m = b m a m = a n =am n a b ) m = = b m am a m ) n = n a 0 = a b ) m = b m When adding and subtracting with fractions we need to be sure to have a common denominator. When multiplying we only need to multiply the numerators together and denominators together. The following examples show several different problems, using different properties to simplify the rational exponents. Example. Example. a b a b Need common denominator ona s) and b s0) a b 0 a b 0 Add exponents on a s and b s a b 0 x ) y Multiply by each exponent x y 0 Example. x y x y x y 0 x y x y x y 0 In numerator, need common denominator to add exponents Add exponents in numerator, in denominator, y 0 =
3 x 9 y x x y Subtract exponents on x, reduce exponent on y Negative exponent moves down to denominator y x Example. x y 9x y x y 0 9x y 0 x 9 y x 9 y 0 ) ) Using order of operations, simplify inside parenthesis first Need common denominators before we can subtract exponents Subtract exponents, be careful of the negative: 0 ) = = 9 0 The negative exponent will flip the fraction The exponent goes on each factor 9 x 9 0 y 0 Evaluate 9 and and move negative exponent x 0 y 9 0 It is important to remember that as we simplify with rational exponents we are using the exact same properties we used when simplifying integer exponents. The only difference is we need to follow our rules for fractions as well. It may be worth reviewing your notes on exponent properties to be sure your comfortable with using the properties. Beginning and Intermediate Algebra by Tyler Wallace is licensed under a Creative Commons Attribution.0 Unported License.
4 8. Practice  Rational Exponents Write each expression in radical form. ) m ) 0r) ) x) ) b) Write each expression in exponential form. ) ) v ) x ) n ) Evaluate. 8) a 9) 8 0) ) ) 00 Simplify. Your answer should contain only positive exponents. ) yx xy ) a b ) ) a b 0 a 9) uv u v ) ) x 0 y ) x 0 ) a ) ) b b b y y y 9) m n mn mn) n ) 0 ) ) x y y) xy ) uv ) v v ) v v ) x y ) 0 y xy 8) x 0) x xy ) 0 ) u v u ) ) x y x y xy ) ab b a b 8) y ) xy 0) ) y 0 xy ) xy 0 ) y x y
5 ) y y xy ) ) Beginning and Intermediate Algebra by Tyler Wallace is licensed under a Creative Commons Attribution.0 Unported License.
6 8. ) m ) ) 0r ) ) x ) ) b ) ) x) ) v ) n 8) a) 9) 0) ) 8 ) 000 ) x y ) v Answers  Rational Exponents ) ) ) ab a 8) y x 9) u v 0) ) y ) v u ) b a ) y x ) y ) a b ) m 8 8) 9) n yx n 0) y x ) xy ) x 0 y ) u v ) x y Beginning and Intermediate Algebra by Tyler Wallace is licensed under a Creative Commons Attribution.0 Unported License.
Radicals  Multiply and Divide Radicals
8. Radicals  Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals
More informationPolynomials  Negative Exponents
5.2 Polynomials  Negative Exponents Objective: Simplify expressions with negative exponents using the properties of exponents. There are a few special exponent properties that deal with exponents that
More informationPreAlgebra  Order of Operations
0.3 PreAlgebra  Order of Operations Objective: Evaluate expressions using the order of operations, including the use of absolute value. When simplifying expressions it is important that we simplify them
More informationPreAlgebra  Integers
0.1 PreAlgebra  Integers Objective: Add, Subtract, Multiply and Divide Positive and Negative Numbers. The ability to work comfortably with negative numbers is essential to success in algebra. For this
More informationRadicals  Rationalize Denominators
8. Radicals  Rationalize Denominators Objective: Rationalize the denominators of radical expressions. It is considered bad practice to have a radical in the denominator of a fraction. When this happens
More informationRational Expressions  Complex Fractions
7. Rational Epressions  Comple Fractions Objective: Simplify comple fractions by multiplying each term by the least common denominator. Comple fractions have fractions in either the numerator, or denominator,
More informationExponents, Radicals, and Scientific Notation
General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =
More informationPolynomials  Multiplying
5.5 Polynomials  Multiplying Multiplying polynomials can take several different forms based on what we are multiplying. We will first look at multiplying monomials, then monomials by polynomials and finish
More informationPolynomials  Multiplying Polynomials
5.5 Polynomials  Multiplying Polynomials Objective: Multiply polynomials. Multiplying polynomials can take several different forms based on what we are multiplying. We will first look at multiplying monomials,
More informationNegative Integer Exponents
7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions
More informationFactoring  Grouping
6.2 Factoring  Grouping Objective: Factor polynomials with four terms using grouping. The first thing we will always do when factoring is try to factor out a GCF. This GCF is often a monomial like in
More informationSometimes it is easier to leave a number written as an exponent. For example, it is much easier to write
4.0 Exponent Property Review First let s start with a review of what exponents are. Recall that 3 means taking four 3 s and multiplying them together. So we know that 3 3 3 3 381. You might also recall
More informationSect Exponents: Multiplying and Dividing Common Bases
40 Sect 5.1  Exponents: Multiplying and Dividing Common Bases Concept #1 Review of Exponential Notation In the exponential expression 4 5, 4 is called the base and 5 is called the exponent. This says
More informationAlgebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
More informationInequalities  Absolute Value Inequalities
3.3 Inequalities  Absolute Value Inequalities Objective: Solve, graph and give interval notation for the solution to inequalities with absolute values. When an inequality has an absolute value we will
More information1.3 Order of Operations
1.3 Order of Operations As it turns out, there are more than just 4 basic operations. There are five. The fifth basic operation is that of repeated multiplication. We call these exponents. There is a bit
More informationRational Expressions  Least Common Denominators
7.3 Rational Expressions  Least Common Denominators Objective: Idenfity the least common denominator and build up denominators to match this common denominator. As with fractions, the least common denominator
More informationHFCC Math Lab Intermediate Algebra  7 FINDING THE LOWEST COMMON DENOMINATOR (LCD)
HFCC Math Lab Intermediate Algebra  7 FINDING THE LOWEST COMMON DENOMINATOR (LCD) Adding or subtracting two rational expressions require the rational expressions to have the same denominator. Example
More informationRadicals  Multiply and Divide Radicals
8. Radicals  Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals
More informationRules for Exponents and the Reasons for Them
Print this page Chapter 6 Rules for Exponents and the Reasons for Them 6.1 INTEGER POWERS AND THE EXPONENT RULES Repeated addition can be expressed as a product. For example, Similarly, repeated multiplication
More informationeday Lessons Mathematics Grade 8 Student Name:
eday Lessons Mathematics Grade 8 Student Name: Common Core State Standards Expressions and Equations Work with radicals and integer exponents. 3. Use numbers expressed in the form of a single digit times
More informationSIMPLIFYING SQUARE ROOTS
40 (88) Chapter 8 Powers and Roots 8. SIMPLIFYING SQUARE ROOTS In this section Using the Product Rule Rationalizing the Denominator Simplified Form of a Square Root In Section 8. you learned to simplify
More informationInequalities  Solve and Graph Inequalities
3.1 Inequalities  Solve and Graph Inequalities Objective: Solve, graph, and give interval notation for the solution to linear inequalities. When we have an equation such as x = 4 we have a specific value
More informationGraphing  Parallel and Perpendicular Lines
. Graphing  Parallel and Perpendicular Lines Objective: Identify the equation of a line given a parallel or perpendicular line. There is an interesting connection between the slope of lines that are parallel
More informationFactoring  Trinomials where a = 1
6.3 Factoring  Trinomials where a = 1 Objective: Factor trinomials where the coefficient of x 2 is one. Factoring with three terms, or trinomials, is the most important type of factoring to be able to
More informationExample 1. Rise 4. Run 6. 2 3 Our Solution
. Graphing  Slope Objective: Find the slope of a line given a graph or two points. As we graph lines, we will want to be able to identify different properties of the lines we graph. One of the most important
More informationGraphing  SlopeIntercept Form
2.3 Graphing  SlopeIntercept Form Objective: Give the equation of a line with a known slope and yintercept. When graphing a line we found one method we could use is to make a table of values. However,
More informationThis is a square root. The number under the radical is 9. (An asterisk * means multiply.)
Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize
More informationChapter 7  Roots, Radicals, and Complex Numbers
Math 233  Spring 2009 Chapter 7  Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the
More informationExponents and Exponential Functions
Exponents and Exponential Functions Brenda Meery Kaitlyn Spong Say Thanks to the Authors Click http://www.ck2.org/saythanks (No sign in required) To access a customizable version of this book, as well
More informationSession 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:
Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules
More informationScientific Notation and Powers of Ten Calculations
Appendix A Scientific Notation and Powers of Ten Calculations A.1 Scientific Notation Often the quantities used in chemistry problems will be very large or very small numbers. It is much more convenient
More informationPolynomials  Exponent Properties
5.1 Polynomials  Exponent Properties Ojective: Simplify expressions using the properties of exponents. Prolems with expoenents can often e simplified using a few asic exponent properties. Exponents represent
More informationOrder of Operations  PEMDAS. Rules for Multiplying or Dividing Positive/Negative Numbers
Order of Operations  PEMDAS *When evaluating an expression, follow this order to complete the simplification: Parenthesis ( ) EX. (52)+3=6 (5 minus 2 must be done before adding 3 because it is in parenthesis.)
More informationSolving Linear Equations  General Equations
1.3 Solving Linear Equations  General Equations Objective: Solve general linear equations with variables on both sides. Often as we are solving linear equations we will need to do some work to set them
More informationRational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have
8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents
More information2 is the BASE 5 is the EXPONENT. Power Repeated Standard Multiplication. To evaluate a power means to find the answer in standard form.
Grade 9 Mathematics Unit : Powers and Exponent Rules Sec.1 What is a Power 5 is the BASE 5 is the EXPONENT The entire 5 is called a POWER. 5 = written as repeated multiplication. 5 = 3 written in standard
More informationMBA Jump Start Program
MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right
More information27 = 3 Example: 1 = 1
Radicals: Definition: A number r is a square root of another number a if r = a. is a square root of 9 since = 9 is also a square root of 9, since ) = 9 Notice that each positive number a has two square
More informationCOWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2
COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level This study guide is for students trying to test into College Algebra. There are three levels of math study guides. 1. If x and y 1, what
More information5.1 Radical Notation and Rational Exponents
Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
More informationBasic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704.
Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. The purpose of this Basic Math Refresher is to review basic math concepts so that students enrolled in PUBP704:
More informationRational Exponents. Given that extension, suppose that. Squaring both sides of the equation yields. a 2 (4 1/2 ) 2 a 2 4 (1/2)(2) a a 2 4 (2)
SECTION 0. Rational Exponents 0. OBJECTIVES. Define rational exponents. Simplify expressions with rational exponents. Estimate the value of an expression using a scientific calculator. Write expressions
More information2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
More informationFINDING THE LEAST COMMON DENOMINATOR
0 (7 18) Chapter 7 Rational Expressions GETTING MORE INVOLVED 7. Discussion. Evaluate each expression. a) Onehalf of 1 b) Onethird of c) Onehalf of x d) Onehalf of x 7. Exploration. Let R 6 x x 0 x
More information10.6 Functions  Compound Interest
10.6 Functions  Compound Interest Objective: Calculate final account balances using the formulas for compound and continuous interest. An application of exponential functions is compound interest. When
More informationProperty: Rule: Example:
Math 1 Unit 2, Lesson 4: Properties of Exponents Property: Rule: Example: Zero as an Exponent: a 0 = 1, this says that anything raised to the zero power is 1. Negative Exponent: Multiplying Powers with
More informationFractions and Linear Equations
Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps
More informationExponents. Say we wanted to multiply 2 by itself 10 times. We could write it as, = 1024
Exponents Sa we wanted to multipl 2 b itself 10 times. We could write it as, 2 2 2 2 2 2 2 2 2 2 = 1024 However, this is clearl too long and it s not immediatel clear as to how man 2 s we actuall are multipling
More informationEXPONENT LAWS. Verbalize: same base, things multiplied, add the exponents. Verbalize: same base, things divided, subtract the exponents
2. EXPONENT LAWS tools needed for working with exponents EXPONENT LAWS x m x n x m+n The exponent laws are the tools needed for working with expressions involving exponents. They are stated precisely below,
More informationThe wavelength of infrared light is meters. The digits 3 and 7 are important but all the zeros are just place holders.
Section 6 2A: A common use of positive and negative exponents is writing numbers in scientific notation. In astronomy, the distance between 2 objects can be very large and the numbers often contain many
More informationSystems of Equations  Addition/Elimination
4.3 Systems of Equations  Addition/Elimination Objective: Solve systems of equations using the addition/elimination method. When solving systems we have found that graphing is very limited when solving
More informationQuadratics  Build Quadratics From Roots
9.5 Quadratics  Build Quadratics From Roots Objective: Find a quadratic equation that has given roots using reverse factoring and reverse completing the square. Up to this point we have found the solutions
More informationClick on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section Basic review Writing fractions in simplest form Comparing fractions Converting between Improper fractions and whole/mixed numbers Operations
More informationChapter 4  Decimals
Chapter 4  Decimals $34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value  1.23456789
More information( 7) + 4 = (9) =  3 ( 3) + 7 = ( 3) = 2
WORKING WITH INTEGERS: 1. Adding Rules: Positive + Positive = Positive: 5 + 4 = 9 Negative + Negative = Negative: ( 7) + ( 2) =  9 The sum of a negative and a positive number: First subtract: The answer
More informationExponents. Learning Objectives 41
Eponents 1 to  Learning Objectives 1 The product rule for eponents The quotient rule for eponents The power rule for eponents Power rules for products and quotient We can simplify by combining the like
More information( yields. Combining the terms in the numerator you arrive at the answer:
Algebra Skillbuilder Solutions: 1. Starting with, you ll need to find a common denominator to add/subtract the fractions. If you choose the common denominator 15, you can multiply each fraction by one
More informationSimplification of Radical Expressions
8. Simplification of Radical Expressions 8. OBJECTIVES 1. Simplify a radical expression by using the product property. Simplify a radical expression by using the quotient property NOTE A precise set of
More information6 Proportion: Fractions, Direct and Inverse Variation, and Percent
6 Proportion: Fractions, Direct and Inverse Variation, and Percent 6.1 Fractions Every rational number can be written as a fraction, that is a quotient of two integers, where the divisor of course cannot
More informationFactoring  Factoring Special Products
6.5 Factoring  Factoring Special Products Objective: Identify and factor special products including a difference of squares, perfect squares, and sum and difference of cubes. When factoring there are
More informationExpanding brackets and factorising
Chapter 7 Expanding brackets and factorising This chapter will show you how to expand and simplify expressions with brackets solve equations and inequalities involving brackets factorise by removing a
More informationSystems of Equations  Substitution
4.2 Systems of Equations  Substitution Objective: Solve systems of equations using substitution. When solving a system by graphing has several limitations. First, it requires the graph to be perfectly
More informationCopy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2  Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers  {1,2,3,4,...}
More informationSupplemental Worksheet Problems To Accompany: The PreAlgebra Tutor: Volume 1 Section 8 Powers and Exponents
Supplemental Worksheet Problems To Accompany: The PreAlgebra Tutor: Volume 1 Please watch Section 8 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm
More informationWelcome to Math 19500 Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013
Welcome to Math 19500 Video Lessons Prof. Department of Mathematics The City College of New York Fall 2013 An important feature of the following Beamer slide presentations is that you, the reader, move
More informationSupplemental Worksheet Problems To Accompany: The PreAlgebra Tutor: Volume 1 Section 9 Order of Operations
Supplemental Worksheet Problems To Accompany: The PreAlgebra Tutor: Volume 1 Please watch Section 9 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm
More information1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
More informationExponents and Radicals
Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of
More informationBig Bend Community College. Beginning Algebra MPC 095. Lab Notebook
Big Bend Community College Beginning Algebra MPC 095 Lab Notebook Beginning Algebra Lab Notebook by Tyler Wallace is licensed under a Creative Commons Attribution 3.0 Unported License. Permissions beyond
More informationOperations with Algebraic Expressions: Multiplication of Polynomials
Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the
More informationMultiplication and Division Properties of Radicals. b 1. 2. a Division property of radicals. 1 n ab 1ab2 1 n a 1 n b 1 n 1 n a 1 n b
488 Chapter 7 Radicals and Complex Numbers Objectives 1. Multiplication and Division Properties of Radicals 2. Simplifying Radicals by Using the Multiplication Property of Radicals 3. Simplifying Radicals
More informationSIMPLIFYING ALGEBRAIC FRACTIONS
Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is
More informationWhat are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
More informationUnit 7: Radical Functions & Rational Exponents
Date Period Unit 7: Radical Functions & Rational Exponents DAY 0 TOPIC Roots and Radical Expressions Multiplying and Dividing Radical Expressions Binomial Radical Expressions Rational Exponents 4 Solving
More informationA.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents
Appendix A. Exponents and Radicals A11 A. Exponents and Radicals What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of radicals. Simplify
More information3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
More informationTo Evaluate an Algebraic Expression
1.5 Evaluating Algebraic Expressions 1.5 OBJECTIVES 1. Evaluate algebraic expressions given any signed number value for the variables 2. Use a calculator to evaluate algebraic expressions 3. Find the sum
More informationx n = 1 x n In other words, taking a negative expoenent is the same is taking the reciprocal of the positive expoenent.
Rules of Exponents: If n > 0, m > 0 are positive integers and x, y are any real numbers, then: x m x n = x m+n x m x n = xm n, if m n (x m ) n = x mn (xy) n = x n y n ( x y ) n = xn y n 1 Can we make sense
More informationIndices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková
Indices and Surds The term indices refers to the power to which a number is raised. Thus x is a number with an index of. People prefer the phrase "x to the power of ". Term surds is not often used, instead
More information1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes
Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.
More information2. Simplify. College Algebra Student SelfAssessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses
College Algebra Student SelfAssessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2
More informationAlgebra Unit 6 Syllabus revised 2/27/13 Exponents and Polynomials
Algebra Unit 6 Syllabus revised /7/13 1 Objective: Multiply monomials. Simplify expressions involving powers of monomials. Preassessment: Exponents, Fractions, and Polynomial Expressions Lesson: Pages
More information1.3 Polynomials and Factoring
1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.
More informationThe gas can has a capacity of 4.17 gallons and weighs 3.4 pounds.
hundred million$ ten million$ million$ 00,000,000 0,000,000,000,000 00,000 0,000,000 00 0 0 0 0 0 0 0 0 0 Session 26 Decimal Fractions Explain the meaning of the values stated in the following sentence.
More informationLESSON 6.2 POLYNOMIAL OPERATIONS I
LESSON 6.2 POLYNOMIAL OPERATIONS I Overview In business, people use algebra everyday to find unknown quantities. For example, a manufacturer may use algebra to determine a product s selling price in order
More informationChapter 5. Rational Expressions
5.. Simplify Rational Expressions KYOTE Standards: CR ; CA 7 Chapter 5. Rational Expressions Definition. A rational expression is the quotient P Q of two polynomials P and Q in one or more variables, where
More informationRational Numbers. Say Thanks to the Authors Click (No sign in required)
Rational Numbers Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org
More informationStudent Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 8 Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain
More informationMATH 65 NOTEBOOK CERTIFICATIONS
MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1
More informationBeginning and Intermediate Algebra Tyler Wallace
Beginning and Intermediate Algebra Tyler Wallace Page 1 of 1 Beginning and Intermediate Algebra An open source (CCBY) textbook Available for free download at: http://wallace.ccfaculty.org/book/book.html
More informationUSING THE PROPERTIES TO SIMPLIFY EXPRESSIONS
5 (1 5) Chapter 1 Real Numbers and Their Properties 1.8 USING THE PROPERTIES TO SIMPLIFY EXPRESSIONS In this section The properties of the real numbers can be helpful when we are doing computations. In
More information3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼
cups cups cup Fractions are a form of division. When I ask what is / I am asking How big will each part be if I break into equal parts? The answer is. This a fraction. A fraction is part of a whole. The
More informationGrade 6 Math Circles. Exponents
Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles November 4/5, 2014 Exponents Quick Warmup Evaluate the following: 1. 4 + 4 + 4 +
More informationLinear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (1,3), (3,3), (2,3)}
Linear Equations Domain and Range Domain refers to the set of possible values of the xcomponent of a point in the form (x,y). Range refers to the set of possible values of the ycomponent of a point in
More informationChapter 1: Order of Operations, Fractions & Percents
HOSP 1107 (Business Math) Learning Centre Chapter 1: Order of Operations, Fractions & Percents ORDER OF OPERATIONS When finding the value of an expression, the operations must be carried out in a certain
More informationCOLLEGE ALGEBRA. Paul Dawkins
COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5
More informationIntroduction to Fractions
Introduction to Fractions Fractions represent parts of a whole. The top part of a fraction is called the numerator, while the bottom part of a fraction is called the denominator. The denominator states
More information3. Power of a Product: Separate letters, distribute to the exponents and the bases
Chapter 5 : Polynomials and Polynomial Functions 5.1 Properties of Exponents Rules: 1. Product of Powers: Add the exponents, base stays the same 2. Power of Power: Multiply exponents, bases stay the same
More informationOrder of Operations More Essential Practice
Order of Operations More Essential Practice We will be simplifying expressions using the order of operations in this section. Automatic Skill: Order of operations needs to become an automatic skill. Failure
More information