Tom wants to find two real numbers, a and b, that have a sum of 10 and have a product of 10. He makes this table.


 Aubrie Newman
 1 years ago
 Views:
Transcription
1 Sum and Product This problem gives you the chance to: use arithmetic and algebra to represent and analyze a mathematical situation solve a quadratic equation by trial and improvement Tom wants to find two real numbers, a and b, that have a sum of 0 and have a product of 0. He makes this table. Sum of a and b a b Product of a and b a. How can Tom find b if he knows a? b. Draw a ring around any of these algebraic statements that express the relationships between a and b correctly. a + b =0 b = a +0 b =0 " a a =0 " b a =0b b =0a ab =0 b = 0 a! 2. Explain what happens to the product of a and b (in the last column of the table) as a increases from 0 to0.! Copyright 2007 by Mathematics Assessment Page 36 Sum and Product Test 0
2 3. Tom looks at the table and says, If the product of a and b is 0, a must be somewhere between and 2 or between 8 and 9. a. Explain how the table shows this. b. Tom tries to find the value between and 2. He decides to try a =.5 Complete this table to show his calculations. Sum of a and b a b Product of a and b 0.5 c. Which of these two statements is correct? Explain how you decided. a must be between and.5 a must be between.5 and 2 d. Find the values of a and b correct to two decimal places. Show your calculations. 8 Copyright 2007 by Mathematics Assessment Page 37 Sum and Product Test 0
3 Sum and Product Rubric The core elements of performance required by this task are: use arithmetic and algebra to represent and analyze a mathematical situation solve a quadratic equation by trial and improvement Based on these, credit for specific aspects of performance should be assigned as follows. a. Gives correct answer: Subtract a from 0 or divide 0 by a. points section points b. Draws rings around! a + b =0 b = a +0 b =0 " a a =0 " b a =0b b =0a ab =0 b = 0 a 2 2. Gives correct! explanation such as: The product starts at zero, increases up to a maximum of 25, then decreases back to zero. 3.a b c d Gives correct explanation such as: The product is less than 0 when a is and more than 0 when a is 2, so a must be between and 2. Similarly for 8 and 9. Gives correct answer: 8.5, 2.75 Gives correct explanation such as: The product is less than 0 when a is and more than 0 when a is.5, so a must be between and.5 Gives correct answers:.3 and 8.87 Shows correct work such as:.3 x 8.87 = x 8.88 = Total Points 8 5 Copyright 2007 by Mathematics Assessment Page 38 Sum and Product Test 0
4 Sum and Product Work the task and look at the rubric. What are the key mathematical ideas being assessed in this task? What do you think students might struggle with? Look at student work for b. How many of your students recognized and circled the multiplication and division relationships for a and b? Why do you think so many students struggled with this? Now look at the explanations in 2, 3a, and 3b. What was missing from students explanations? Did they focus on a and b instead of the product? Did they forget to quantify and describe how the pattern changes? Did their explanations make sense or did they describe something irrelevant? Did they describe a pattern that didn t fit all the data? What types of opportunities do students have in your class to make sense of a table of data and describe trends? How do you help students understand the qualities and expectations about mathematical explanations or descriptions? What kinds of class discussions do students engage in to help them see differences in qualities of explanations and learn the logic of a mathematically convincing argument? Look at work for part 3d. How many of your students did not attempt this part of the task? How many of your students picked values for a and b that did not add to 0? How many of your students picked negative values for a or b? How many of your students chose numbers with only decimal place? How many of your students only tried or showed evidence of one set of values, rather than testing for closer combination or to check that their solution was optimal? How many of your students used their response from the table in 3b? How many of your students tried to use algebra to solve for a and b, but got stuck because they couldn t factor the expression or didn t know what to do after they made an equation? What are the implications for instruction that you see from looking at this work? What are the big ideas that students are missing? Geometry
5 Looking at Student Work on Sum and Product Student A is able to write very specific explanations. The student is also able to use algebra to solve for a and b in part 3d. Student A Geometry
6 Many students attempted to use algebra to solve for a and b, but struggled because they did not remember the quadratic formula. See the work of Student B. Student B Geometry
7 Student C had difficulty working with decimals. The student subtracted incorrectly in 3b. The student incorrectly uses a negative sign in the quadratic formula. Student C does not check to see if the answer makes sense. A brief glance should show that the values do not at to 0 in his solution to 3d. Student C Geometry
8 Student D notices a pattern in the differences between the products, rather than trying to describe the products themselves. Do student sin your class get enough opportunities to make descriptions about trends? Student D Many students struggled with the demands in part 3d. Student E only tried one set of numbers and doesn t test to see if it can be improved. Student F finds the 2 closest sets of values, but does not understand decimal place value enough to pick the best choice. Student E Student F Geometry
9 Geometry Task 3 Sum and Product Student Task Core Idea 3 Algebraic Properties and Representations Use arithmetic and algebra to represent and analyze a mathematical situation and solve a quadratic equation by trial and improvement. Represent and analyze mathematical situations and structures using algebraic symbols. Solve equations involving radicals and exponents in contextualized problems. Mathematics of the task: Ability to read and interpret constraints and make sense of a table of values Ability to make mathematical descriptions of information in a table and quantify relationships Understand and use guess and check and/or use the quadratic formula to find an optimal solution to match the constraints of the task Recognize multiple representations of expressions for two sets of constraints to describe the relationship between two variables Based on teacher observations, this is what geometry students knew and were able to do: Solving for b and finding the product of a and b in part 3b of the task. Describing how to find b in part a of the task Describing why a must be located in a particular place on the number line based on values in the table in 3a Areas of difficulty for geometry students: Calculating and comparing with decimals Identifying algebraic expressions to show the relationship between a and b if their product is 0 Describing the trends in the product column of the table Explaining why a must be between and.5 Finding the values for a and b to two decimal points Solving a quadratic expression that doesn t factor Geometry
10 The maximum score available for this task is 8 points. The minimum score for a level 3 response, meeting standards, is 4 points. Most students 94% could fill out the guess and test table for a and the product of a and b in part 3. More than half the students, 62%, could find use division or subtraction to find a in part, describe how the product changes as the value of a increases from0 to 0, explain why the value of b falls between two values on the table, and fill in a guess and test table. 7% of the students met all the demands of the task including identifying 5 ways to express the relationship of a and b using both constraints of the problem and calculate values of a and b to two decimal places to come closest to a product of % of the students scored no points on this task. 75% of these students attempted the task. Geometry
11 Sum and Product Points Understandings Misunderstandings 0 75% of the students with this score attempted the task. Students had difficulty using the guess and test table in 3b. They couldn t compute Students could subtract.5 from 0 to solve for b and multiply with decimals to complete part 3b of the task. 4 Students with this score could usually describe the product trend in 2, explain why a is between certain values in 3a, fill in the table in 3b, and describe why the value of a is located between and.5. 5 Students could find the value of b using algebra, describe the trend in products, fill in the table, and describe where a was located. accurately with decimals for find b. Students struggled with describing the pattern in the products in the table. Students did not quantify information, giving examples such as a and b cycles, so the product also cycles. Some students gave inaccurate trends, such as the product is always 0 or the product always increases. 9% of the students did not attempt this part of the task. Many students struggled with describing how to find a in part. 9% said to use a formula. Some said it s a pattern. Others could not express the mathematics using descriptions reversing the operation, such as subtract 0 from a, or using the wrong variable, subtract b from 0. Some students used both variables in their rules, like subtract b from a or multiply a and b. Students struggled with finding all the equivalent expressions in b and solving for a and b to two decimal places. 37% did not attempt to solve for a and b in 3d. 0% attempted to use algebra, but could not complete the process using the quadratic formula. 7 Students could not find the multiplication and division expression that met the constraints for a and b in part b of the task. 70% of all students omitted these options. 8 Students could use a guess and test table to think about the relationships between two variables with different constraints. They could describe trends and reason about the value of a that would meet all the constraints. They could find the value of a and b to two decimal places. Geometry
12 Implications for Instruction Students at this grade level should be comfortable doing calculations with decimals. Many students struggled with subtracting decimal values from 0 to find b. Are there structures in place in your school geometry program to allow students to fill in holes or misconceptions in their arithmetic skills? Can students drop in and out of remedial or ramp up: classes to work on specific topics like decimal calculations, percents, or expressions and equations? Students at this grade level should understand operations, knowing the inverse relationship between addition and subtraction and the inverse relationship between multiplication and division. Students should be able to express these relations in words and symbols. Students should routinely have opportunities to solve rich tasks which incorporate a variety of current and past knowledge to solve nonroutine problems. Part of the problemsolving repertoire should involve identifying all the constraints needed in the solution. Another part of the problemsolving repertoire should include asking themselves questions, such as is this the optimal solution?, can I get closer?, how do I know? Helping students gain this skill of selftalk is important. Good students seem to have this idea, but making the ideas of selftalk explicit, helps all students to pick up this strategy. A great deal of time is devoted in traditional American algebra textbooks to factoring quadratic expressions to find solutions to the problem. In many European texts, more time is devoted to going straight to using the quadratic formula, which will work for all cases. This would be a good topic for discussion in planning for an Algebra Course or to consider when evaluating Algebra texts. How would this allow more time for other important algebraic topics? What topics would you like to see developed in more detail? Geometry
Circles in Triangles. This problem gives you the chance to: use algebra to explore a geometric situation
Circles in Triangles This problem gives you the chance to: use algebra to explore a geometric situation A This diagram shows a circle that just touches the sides of a right triangle whose sides are 3 units,
More informationHigh School Functions Building Functions Build a function that models a relationship between two quantities.
Performance Assessment Task Coffee Grade 10 This task challenges a student to represent a context by constructing two equations from a table. A student must be able to solve two equations with two unknowns
More informationParallelogram. This problem gives you the chance to: use measurement to find the area and perimeter of shapes
Parallelogram This problem gives you the chance to: use measurement to find the area and perimeter of shapes 1. This parallelogram is drawn accurately. Make any measurements you need, in centimeters, and
More informationA REI.2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
Performance Assessment Task Magic Squares Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures with algebraic
More informationExpressions and Equations Understand the connections between proportional relationships, lines, and linear equations.
Performance Assessment Task Squares and Circles Grade 8 The task challenges a student to demonstrate understanding of the concepts of linear equations. A student must understand relations and functions,
More informationGrade Level Year Total Points Core Points % At Standard 9 2003 10 5 7 %
Performance Assessment Task Number Towers Grade 9 The task challenges a student to demonstrate understanding of the concepts of algebraic properties and representations. A student must make sense of the
More informationE B F C 17 A D A D 16 B A G C 11
Mystery Letters This problem gives you the chance to: form and solve equations A A A A 8 E B F C 17 A D A D 16 B A G C 11 9 11 14 18 In this table, each letter of the alphabet represents a different number.
More informationMarie has a winter hat made from a circle, a rectangular strip and eight trapezoid shaped pieces. y inches. 3 inches
Winter Hat This problem gives you the chance to: calculate the dimensions of material needed for a hat use circle, circumference and area, trapezoid and rectangle Marie has a winter hat made from a circle,
More information0.75 75% ! 3 40% 0.65 65% Percent Cards. This problem gives you the chance to: relate fractions, decimals and percents
Percent Cards This problem gives you the chance to: relate fractions, decimals and percents Mrs. Lopez makes sets of cards for her math class. All the cards in a set have the same value. Set A 3 4 0.75
More informationBalanced Assessment Test Algebra 2008
Balanced Assessment Test Algebra 2008 Core Idea Task Score Representations Expressions This task asks students find algebraic expressions for area and perimeter of parallelograms and trapezoids. Successful
More informationTotal Student Count: 3170. Grade 8 2005 pg. 2
Grade 8 2005 pg. 1 Total Student Count: 3170 Grade 8 2005 pg. 2 8 th grade Task 1 Pen Pal Student Task Core Idea 3 Algebra and Functions Core Idea 2 Mathematical Reasoning Convert cake baking temperatures
More informationMarie has a winter hat made from a circle, a rectangular strip and eight trapezoid shaped pieces. y inches. 3 inches. 24 inches
Winter Hat This problem gives you the chance to: calculate the dimensions of material needed for a hat use circle, circumference and area, trapezoid and rectangle Marie has a winter hat made from a circle,
More informationPerformance Assessment Task Picking Fractions Grade 4. Common Core State Standards Math  Content Standards
Performance Assessment Task Picking Fractions Grade 4 The task challenges a student to demonstrate understanding of the concept of equivalent fractions. A student must understand how the number and size
More informationHow Old Are They? This problem gives you the chance to: form expressions form and solve an equation to solve an age problem. Will is w years old.
How Old Are They? This problem gives you the chance to: form expressions form and solve an equation to solve an age problem Will is w years old. Ben is 3 years older. 1. Write an expression, in terms of
More informationPerformance Assessment Task Cindy s Cats Grade 5. Common Core State Standards Math  Content Standards
Performance Assessment Task Cindy s Cats Grade 5 This task challenges a student to use knowledge of fractions to solve one and multistep problems with fractions. A student must show understanding of
More informationGrade Level Year Total Points Core Points % At Standard %
Performance Assessment Task Marble Game task aligns in part to CCSSM HS Statistics & Probability Task Description The task challenges a student to demonstrate an understanding of theoretical and empirical
More informationPerformance Assessment Task Bikes and Trikes Grade 4. Common Core State Standards Math  Content Standards
Performance Assessment Task Bikes and Trikes Grade 4 The task challenges a student to demonstrate understanding of concepts involved in multiplication. A student must make sense of equal sized groups of
More informationHigh School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable.
Performance Assessment Task Quadratic (2009) Grade 9 The task challenges a student to demonstrate an understanding of quadratic functions in various forms. A student must make sense of the meaning of relations
More informationThis problem gives you the chance to: calculate and interpret mean, medium and mode in a given table of realistic data
Suzi s Company This problem gives you the chance to: calculate and interpret mean, medium and mode in a given table of realistic data Suzi is the chief executive of a small company, TechScale, which makes
More informationNumber Factors. Number Factors Number of factors 1 1 1 16 1, 2, 4, 8, 16 5 2 1, 2 2 17 1, 17 2 3 1, 3 2 18 1, 2, 3, 6, 9, 18 6 4 1, 2, 4 3 19 1, 19 2
Factors This problem gives you the chance to: work with factors of numbers up to 30 A factor of a number divides into the number exactly. This table shows all the factors of most of the numbers up to 30.
More informationCindy s Cats. Cindy has 3 cats: Sammy, Tommy and Suzi.
Cindy s Cats This problem gives you the chance to: solve fraction problems in a practical context Cindy has 3 cats: Sammy, Tommy and Suzi. 1. Cindy feeds them on Cat Crunchies. Each day Sammy eats 1 2
More informationPerformance Assessment Task Peanuts and Ducks Grade 2. Common Core State Standards Math  Content Standards
Performance Assessment Task Peanuts and Ducks Grade 2 The task challenges a student to demonstrate understanding of concepts involved in addition and subtraction. A student must be fluent with addition
More informationPerformance Assessment Task Parking Cars Grade 3. Common Core State Standards Math  Content Standards
Performance Assessment Task Parking Cars Grade 3 This task challenges a student to use their understanding of scale to read and interpret data in a bar graph. A student must be able to use knowledge of
More informationInteger Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions
Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.
More informationOperations and Algebraic Thinking Represent and solve problems involving addition and subtraction. Add and subtract within 20. MP.
Performance Assessment Task Incredible Equations Grade 2 The task challenges a student to demonstrate understanding of concepts involved in addition and subtraction. A student must be able to understand
More informationGCSE MATHEMATICS. 43602H Unit 2: Number and Algebra (Higher) Report on the Examination. Specification 4360 November 2014. Version: 1.
GCSE MATHEMATICS 43602H Unit 2: Number and Algebra (Higher) Report on the Examination Specification 4360 November 2014 Version: 1.0 Further copies of this Report are available from aqa.org.uk Copyright
More informationOperations and Algebraic Thinking Represent and solve problems involving multiplication and division.
Performance Assessment Task The Answer is 36 Grade 3 The task challenges a student to use knowledge of operations and their inverses to complete number sentences that equal a given quantity. A student
More informationEach plank of wood measures 1 inch by 9 inches by 48 inches. Each brick measures 3 inches by 4.5 inches by 9 inches.
Shelves This problem gives you the chance to: solve problems in a spatial context identify and distinguish the four point graphs related to this situation Pete is making a bookcase for his books and other
More informationGENERAL COMMENTS. Grade 12 PreCalculus Mathematics Achievement Test (January 2016)
GENERAL COMMENTS Grade 12 PreCalculus Mathematics Achievement Test (January 2016) Student Performance Observations The following observations are based on local marking results and on comments made by
More informationMinistry of Education. The Ontario Curriculum Exemplars Grade 6. Mathematics. Samples of Student Work: A Resource for Teachers
Ministry of Education The Ontario Curriculum Exemplars Grade 6 Mathematics Samples of Student Work: A Resource for Teachers 2002 Contents Introduction......................................................
More informationHigh School Functions Interpreting Functions Understand the concept of a function and use function notation.
Performance Assessment Task Printing Tickets Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures using algebra.
More informationG C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Performance Assessment Task Circle and Squares Grade 10 This task challenges a student to analyze characteristics of 2 dimensional shapes to develop mathematical arguments about geometric relationships.
More information1. I have 4 sides. My opposite sides are equal. I have 4 right angles. Which shape am I?
Which Shape? This problem gives you the chance to: identify and describe shapes use clues to solve riddles Use shapes A, B, or C to solve the riddles. A B C 1. I have 4 sides. My opposite sides are equal.
More informationN Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
Performance Assessment Task Swimming Pool Grade 9 The task challenges a student to demonstrate understanding of the concept of quantities. A student must understand the attributes of trapezoids, how to
More informationShape Hunting This problem gives you the chance to: identify and describe solid shapes
Shape Hunting This problem gives you the chance to: identify and describe solid shapes Detective Sherlock Shapehunter tracks down solid shapes using clues provided by eyewitnesses. Here are some eyewitness
More informationHigh School Algebra Reasoning with Equations and Inequalities Solve systems of equations.
Performance Assessment Task Graphs (2006) Grade 9 This task challenges a student to use knowledge of graphs and their significant features to identify the linear equations for various lines. A student
More informationSecond Grade Mars 2009 Overview of Exam. Task Descriptions. Algebra, Patterns, and
Second Grade Mars 2009 Overview of Exam Task Descriptions Core Idea Task Algebra, Patterns, and Same Number, Same Shape Functions The task asks students to think about variables and unknowns in number
More informationStudents have to guess whether the next card will have a higher or a lower number than the one just turned.
Card Game This problem gives you the chance to: figure out and explain probabilities Mrs Jakeman is teaching her class about probability. She has ten cards, numbered 1 to 10. She mixes them up and stands
More informationALGEBRA 2/ TRIGONOMETRY
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA 2/ TRIGONOMETRY Friday, June 14, 2013 1:15 4:15 p.m. SAMPLE RESPONSE SET Table of Contents Practice Papers Question 28.......................
More informationLevel 2 Certificate Further MATHEMATICS
Level 2 Certificate Further MATHEMATICS 83601 Paper 1 noncalculator Report on the Examination Specification 8360 June 2013 Version: 1.0 Further copies of this Report are available from aqa.org.uk Copyright
More informationQuadratic Functions. Copyright Cengage Learning. All rights reserved.
Quadratic Functions 4 Copyright Cengage Learning. All rights reserved. Solving by the Quadratic Formula 2 Example 1 Using the quadratic formula Solve the following quadratic equations. Round your answers
More informationSolving Rational Equations
Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,
More informationMathematics Assessment Collaborative Tool Kits for Teachers Looking and Learning from Student Work 2009 Grade Eight
Mathematics Assessment Collaborative Tool Kits for Teachers Looking and Learning from Student Work 2009 Grade Eight Contents by Grade Level: Overview of Exam Grade Level Results Cut Score and Grade History
More informationGrade Level Year Total Points Core Points % At Standard %
Performance Assessment Task Vincent s Graphs This task challenges a student to use understanding of functions to interpret and draw graphs. A student must be able to analyze a graph and understand the
More information1.6 The Order of Operations
1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative
More informationPerformance Assessment Task Leapfrog Fractions Grade 4 task aligns in part to CCSSM grade 3. Common Core State Standards Math Content Standards
Performance Assessment Task Leapfrog Fractions Grade 4 task aligns in part to CCSSM grade 3 This task challenges a student to use their knowledge and understanding of ways of representing numbers and fractions
More informationBasic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704.
Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. The purpose of this Basic Math Refresher is to review basic math concepts so that students enrolled in PUBP704:
More informationProperties of Real Numbers
16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should
More informationThe Deadly Sins of Algebra
The Deadly Sins of Algebra There are some algebraic misconceptions that are so damaging to your quantitative and formal reasoning ability, you might as well be said not to have any such reasoning ability.
More informationSummer Mathematics Packet Say Hello to Algebra 2. For Students Entering Algebra 2
Summer Math Packet Student Name: Say Hello to Algebra 2 For Students Entering Algebra 2 This summer math booklet was developed to provide students in middle school an opportunity to review grade level
More information6 th grade Task 2 Gym
experiences understanding what the mean reflects about the data and how changes in data will affect the average. The purpose of statistics is to give a picture about the data. Students need to be able
More information1.3. Properties of Real Numbers Properties by the Pound. My Notes ACTIVITY
Properties of Real Numbers SUGGESTED LEARNING STRATEGIES: Create Representations, Activating Prior Knowledge, Think/Pair/Share, Interactive Word Wall The local girls track team is strength training by
More informationPerformance Assessment Task Gym Grade 6. Common Core State Standards Math  Content Standards
Performance Assessment Task Gym Grade 6 This task challenges a student to use rules to calculate and compare the costs of memberships. Students must be able to work with the idea of breakeven point to
More informationPupils analyse a numerical puzzle, solve some examples and then deduce that a further example is impossible.
Task description Pupils analyse a numerical puzzle, solve some examples and then deduce that a further example is impossible. Suitability National Curriculum levels 5 to 7 Time Resources 30 minutes to
More informationSession 7 Fractions and Decimals
Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,
More informationPage Name of MARS Task Year Math Strand Notes
MARS Tasks Course Page Name of MARS Task Year Math Strand Notes * Rectangles w/fixed Area 004 GM, PFA Length & height in fixed areas * At the Gym 004 GM Work with radius, area, volume * Birds Eggs 004
More informationMathematics. What to expect Resources Study Strategies Helpful Preparation Tips Problem Solving Strategies and Hints Test taking strategies
Mathematics Before reading this section, make sure you have read the appropriate description of the mathematics section test (computerized or paper) to understand what is expected of you in the mathematics
More informationStatistics and Probability Investigate patterns of association in bivariate data.
Performance Assessment Task Scatter Diagram Grade 9 task aligns in part to CCSSM grade 8 This task challenges a student to select and use appropriate statistical methods to analyze data. A student must
More informationExpressions and Equations
Expressions and Equations Standard: CC.6.EE.2 Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation Subtract y from 5 as 5 y.
More informationPerformance Assessment Task Fair Game? Grade 7. Common Core State Standards Math  Content Standards
Performance Assessment Task Fair Game? Grade 7 This task challenges a student to use understanding of probabilities to represent the sample space for simple and compound events. A student must use information
More informationAlgebra 1: Topic 1 Notes
Algebra 1: Topic 1 Notes Review: Order of Operations Please Parentheses Excuse Exponents My Multiplication Dear Division Aunt Addition Sally Subtraction Table of Contents 1. Order of Operations & Evaluating
More informationCOGNITIVE TUTOR ALGEBRA
COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,
More informationa b Grade 6 Math Circles Fall 2010 Exponents and Binary Numbers Powers What is the product of three 2s? =
1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Powers What is the product of three 2s? 2 2 2 = What is the product of five 2s? 2 2 2 2 2 = Grade 6 Math
More informationUsing games to support. WinWin Math Games. by Marilyn Burns
4 WinWin Math Games by Marilyn Burns photos: bob adler Games can motivate students, capture their interest, and are a great way to get in that paperandpencil practice. Using games to support students
More informationCommon Core Mathematics Challenge
Level: Domain: Cluster: Grade Five Number and Operations Fractions Use equivalent fractions as a strategy to add and subtract fractions. Standard Add and subtract fraction with unlike denominators (including
More informationPowerTeaching i3: Algebra I Mathematics
PowerTeaching i3: Algebra I Mathematics Alignment to the Common Core State Standards for Mathematics Standards for Mathematical Practice and Standards for Mathematical Content for Algebra I Key Ideas and
More informationCalculus for Middle School Teachers. Problems and Notes for MTHT 466
Calculus for Middle School Teachers Problems and Notes for MTHT 466 Bonnie Saunders Fall 2010 1 I Infinity Week 1 How big is Infinity? Problem of the Week: The Chess Board Problem There once was a humble
More informationGranny s Balloon Trip
Granny s Balloon Trip This problem gives you the chance to: represent data using tables and graphs On her eightieth birthday, Sarah s granny went for a trip in a hot air balloon. This table shows the schedule
More informationPerformance Assessment Task Baseball Players Grade 6. Common Core State Standards Math  Content Standards
Performance Assessment Task Baseball Players Grade 6 The task challenges a student to demonstrate understanding of the measures of center the mean, median and range. A student must be able to use the measures
More informationTime needed. Before the lesson Assessment task:
Formative Assessment Lesson Materials Alpha Version Beads Under the Cloud Mathematical goals This lesson unit is intended to help you assess how well students are able to identify patterns (both linear
More informationDraft Material. Determine the derivatives of polynomial functions by simplifying the algebraic expression lim h and then
CHAPTER : DERIVATIVES Specific Expectations Addressed in the Chapter Generate, through investigation using technology, a table of values showing the instantaneous rate of change of a polynomial function,
More informationRepton Manor Primary School. Maths Targets
Repton Manor Primary School Maths Targets Which target is for my child? Every child at Repton Manor Primary School will have a Maths Target, which they will keep in their Maths Book. The teachers work
More informationRepresenting and Comparing Fractions in Elementary Mathematics Teaching! Session 9: Investigating strategies for comparing fractions!
Session 9: Investigating strategies for comparing fractions Description of the session In this session, participants will first have a conversation about a CCA from last session focused on their most recent
More informationIntegration Unit 5 Quadratic Toolbox 1: Working with Square Roots. Using your examples above, answer the following:
Integration Unit 5 Quadratic Toolbox 1: Working with Square Roots Name Period Objective 1: Understanding Square roots Defining a SQUARE ROOT: Square roots are like a division problem but both factors must
More informationLies My Calculator and Computer Told Me
Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing
More information3.5. Solving Inequalities. Introduction. Prerequisites. Learning Outcomes
Solving Inequalities 3.5 Introduction An inequality is an expression involving one of the symbols,, > or
More informationChapter 10 Expanding Our Number System
Chapter 10 Expanding Our Number System Thus far we have dealt only with positive numbers, and, of course, zero. Yet we use negative numbers to describe such different phenomena as cold temperatures and
More informationLesson Plan Solving OneStep Linear Inequalities. Teacher Candidate: Grade Level/Subject Unit Title Lesson Title Duration Lesson Outcomes
Teacher Candidate: Grade Level/Subject Unit Title Lesson Title Duration Lesson Outcomes Chiara Shah 9 th /Algebra I Unit 4: Solving and Graphing Inequalities 6.1 Solving OneStep Linear Inequalities 45
More informationMathematics Success Level H
T393 [OBJECTIVE] The student will solve twostep inequalities and graph the solutions on number lines. [MATERIALS] Student pages S132 S140 Transparencies T372 from Lesson 15, T405, T407, T409, T411, T413,
More informationUnit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.
Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L34) is a summary BLM for the material
More informationUnit 3: Algebra. Date Topic Page (s) Algebra Terminology 2. Variables and Algebra Tiles 3 5. Like Terms 6 8. Adding/Subtracting Polynomials 9 12
Unit 3: Algebra Date Topic Page (s) Algebra Terminology Variables and Algebra Tiles 3 5 Like Terms 6 8 Adding/Subtracting Polynomials 9 1 Expanding Polynomials 13 15 Introduction to Equations 16 17 One
More informationNumbers and Operations in Base 10 and Numbers and Operations Fractions
Numbers and Operations in Base 10 and Numbers As the chart below shows, the Numbers & Operations in Base 10 (NBT) domain of the Common Core State Standards for Mathematics (CCSSM) appears in every grade
More informationGeometry Solve real life and mathematical problems involving angle measure, area, surface area and volume.
Performance Assessment Task Pizza Crusts Grade 7 This task challenges a student to calculate area and perimeters of squares and rectangles and find circumference and area of a circle. Students must find
More informationKenken For Teachers. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 27, 2010. Abstract
Kenken For Teachers Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 7, 00 Abstract Kenken is a puzzle whose solution requires a combination of logic and simple arithmetic skills.
More informationF.IF.7b: Graph Root, Piecewise, Step, & Absolute Value Functions
F.IF.7b: Graph Root, Piecewise, Step, & Absolute Value Functions F.IF.7b: Graph Root, Piecewise, Step, & Absolute Value Functions Analyze functions using different representations. 7. Graph functions expressed
More informationClick on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is
More informationSan Diego State University. San Diego State University
High School Students Conceptions of the Minus Sign 1 Lisa L. Lamb Lisa.Lamb@sdsu.edu 619594 0774 Bonnie P. Schappelle bschappe@sunstroke.sdsu.edu 619594 2875 Jessica Pierson Bishop jpierson@mail.sdsu.edu
More information2 is the BASE 5 is the EXPONENT. Power Repeated Standard Multiplication. To evaluate a power means to find the answer in standard form.
Grade 9 Mathematics Unit : Powers and Exponent Rules Sec.1 What is a Power 5 is the BASE 5 is the EXPONENT The entire 5 is called a POWER. 5 = written as repeated multiplication. 5 = 3 written in standard
More informationPilot Flyskole AS Hangarveien 13 N3241 Sandefjord Tlf Epost Preparatory Course.
Pilot Flyskole AS Hangarveien 13 N3241 Sandefjord Tlf +47 9705 6840 Epost post@pilot.no www.pilot.no Preparatory Course Mathematics Pilot Flight School 2014 Order of operations Operations means things
More informationeday Lessons Mathematics Grade 8 Student Name:
eday Lessons Mathematics Grade 8 Student Name: Common Core State Standards Expressions and Equations Work with radicals and integer exponents. 3. Use numbers expressed in the form of a single digit times
More information3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
More informationSimple Regression Theory I 2010 Samuel L. Baker
SIMPLE REGRESSION THEORY I 1 Simple Regression Theory I 2010 Samuel L. Baker Regression analysis lets you use data to explain and predict. A simple regression line drawn through data points In Assignment
More informationCORE Assessment Module Module Overview
CORE Assessment Module Module Overview Content Area Mathematics Title Speedy Texting Grade Level Grade 7 Problem Type Performance Task Learning Goal Students will solve reallife and mathematical problems
More informationNumber Talks. 1. Write an expression horizontally on the board (e.g., 16 x 25).
Number Talks Purposes: To develop computational fluency (accuracy, efficiency, flexibility) in order to focus students attention so they will move from: figuring out the answers any way they can to...
More informationPerformance Assessment Task Which Shape? Grade 3. Common Core State Standards Math  Content Standards
Performance Assessment Task Which Shape? Grade 3 This task challenges a student to use knowledge of geometrical attributes (such as angle size, number of angles, number of sides, and parallel sides) to
More information8 as the number of objects in each share when 56 objects are partitioned equally. them. shares or a number of groups can be expressed as 56 8.
Tennessee Department of Education: Task: Matthew s Dilemma 3 rd Grade Matthew did not know the answer to 72 divided by 8. Are each of the following an appropriate way for Matthew to think about the problem?
More informationMath Released Set 2015. Algebra 1 PBA Item #13 Two Real Numbers Defined M44105
Math Released Set 2015 Algebra 1 PBA Item #13 Two Real Numbers Defined M44105 Prompt Rubric Task is worth a total of 3 points. M44105 Rubric Score Description 3 Student response includes the following
More informationFactoring Quadratic Trinomials
Factoring Quadratic Trinomials Student Probe Factor Answer: Lesson Description This lesson uses the area model of multiplication to factor quadratic trinomials Part 1 of the lesson consists of circle puzzles
More informationWest WindsorPlainsboro Regional School District Algebra I Part 2 Grades 912
West WindsorPlainsboro Regional School District Algebra I Part 2 Grades 912 Unit 1: Polynomials and Factoring Course & Grade Level: Algebra I Part 2, 9 12 This unit involves knowledge and skills relative
More informationACT TEST TAKING STRATEGIES ENGLISH TEST READING PASSAGES
ACT TEST TAKING STRATEGIES ENGLISH TEST READING PASSAGES 1. Skim each paragraph, answer the questions that pertain to it, then read on. 2. The long answer is not always better. When in doubt, take it out.
More information