Adding and Subtracting Fractions. 1. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.


 Dina Manning
 2 years ago
 Views:
Transcription
1 Tallahassee Community College Adding and Subtracting Fractions Important Ideas:. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.. The numerator of the fraction tells you how many of the equal parts you have.. Fractions cannot be added or subtracted unless they have the same denominators.. If the denominators are not the same, the fractions must be written in an equivalent form with the same denominators.. The Least Common Denominator (LCD) is the Least Common Multiple (LCM) of the denominators. To add or subtract fractions. If the denominators are different find the Least Common Denominator (LCD).. Build equivalent fractions.. Add or subtract the numerators.. Reduce the answer to lowest terms if necessary. We will now work through several examples following these steps.
2 Example Add 8 The denominators are different so we must find the Least Common Denominator (LCD). The LCD will be the Least Common Multiple of 8 and. See worksheet # if you do not remember how to find the LCM of two or more numbers The LCM of 8 and is so the LCD of these fractions is. This means that is the smallest number that both 8 and will divide into. We must now write two new fractions which have a denominator of and are equivalent in value to and. 8 Divide each denominator into the LCD and then multiply the original numerator by the number of times the ()() ()() original denominator divides into the LCD. 8 and This gives us a new addition problem equal to the original problem. 0 Now we add the numerators and place the sum over the LCD: 0 This fraction is already in lowest terms so it does not have to be reduced. It could be changed to a mixed number but in algebra we generally do not do that unless the fraction is the answer to a word problem. By lowest terms we mean that there is no number besides that will divide evenly into both the numerator and the denominator. In other words the Greatest Common Factor (GCF) of the numerator and denominator is.
3 Example : Add 6 0 The denominators are different so we must find the LCD. The LCD will be the LCM of 6 and 0. The LCM of 6 and 0 is so the LCD of these fractions is. This means that is the smallest number that both 6 and 0 will divide into. We will now write two fractions with the same denominator that are equal to the original fractions and 6 0. Divide by each of the original denominators and multiply the original numerators by the number of times each ()() ()() 6 and of the original denominators divides into the LCD. 0 That will give us a new addition problem equivalent to the original problem. When we add the numerators in this problem and place them over the common denominator we get a fraction that is not in lowest terms. We reduce the fraction by finding the prime factorization of both the numerator and the denominator and then canceling common factors. Note that both and were divided by. This means that is the Greatest Common Factor (GCF) of and.
4 Example : Add Note that denominators are the same. We already have a common denominator so we can add the numerators and place them over the common denominator. 6 6 Is in lowest terms? Let s find the prime factorization of the numerator and the denominator and see if there are any common factors which can be cancelled. 6 Note that the product of the cancelled factors is the GCF of 6 and. and is the GCF of 6 and or the biggest number which will divide evenly into 6 and. Example : Add 0 The denominators are different so we must find the LCD. The LCD will be the LCM of, and 0. The LCM of, and 0 is so the LCD is. This means that is the smallest number that, and 0 will all divide into. We will now rewrite the three fractions in equivalent forms with a denominator of. Divide each of the original denominators into the LCD and then multiply each of the original ()() ()() ()() numerators by the number of times the original, and denominator divides into the LCD. 0 This gives us a new addition problem equal to the original problem.
5 Is the fraction in lowest terms? Let s find the prime factorization of the numerator and the denominator and see if there are any common factors which can be cancelled. Note that and do not have any prime factors in common. This means that the biggest number that would divide evenly into and is the number. The GCF of and is. Example : Subtract 6 The denominators are different so we must find the LCD. The LCD will be the LCM the denominators and 6. The LCM of and 6 is so the LCD of these fractions will be. We will now rewrite the two fractions that have a denominator of and are equivalent to the two original fractions. Divide each of the original denominators into the LCD and then multiply each of the original ()() ()() numerators by the number of times each of the and 6 original denominator divides into the LCD. We now have a new subtraction problem which is equal to the original problem. We will subtract the numerators and place them over the common denominator. Is the fraction in lowest terms? We will find the prime factorization of the and and see if there are any common factors which can be cancelled.
6 0 Note that and were divided by. This means that the GCF of and is. Example 6: Subtract 0 8 The denominators are different so we must find the LCD. The LCD will be the LCM the denominators 0 and 8. The LCM of 0 and 8 is so the LCD will be. We will now write two fractions that have a denominator of and are equal to the original fractions. Divide the original denominators into the LCD and then multiply the original ()() ()() numerators by the number of times the 0 and 8 original denominator divides into the LCD. We now have a new subtraction problem that is equal to the original problem. 6 6 Is the fraction in lowest terms? We could find the prime factorization of the numerator and the denominator and see if there are any prime factors which could be cancelled. However, is a prime number and does not divide evenly into so we can safely say that the fraction is in lowest terms. 6
7 Practice Problems
8 Answers to Practice Problems or 0. or
NAME TEST DATE FRACTION STUDY GUIDE/EXTRA PRACTICE PART 1: PRIME OR COMPOSITE?
NAME TEST DATE FRACTION STUDY GUIDE/EXTRA PRACTICE PART 1: PRIME OR COMPOSITE? A prime number is a number that has exactly 2 factors, one and itself. Examples: 2, 3, 5, 11, 31 2 is the only even number
More informationnorth seattle community college
INTRODUCTION TO FRACTIONS If we divide a whole number into equal parts we get a fraction: For example, this circle is divided into quarters. Three quarters, or, of the circle is shaded. DEFINITIONS: The
More informationLowest Common Multiple and Highest Common Factor
Lowest Common Multiple and Highest Common Factor Multiple: The multiples of a number are its times table If you want to find out if a number is a multiple of another number you just need to divide the
More informationIntroduction to Fractions
Introduction to Fractions Fractions represent parts of a whole. The top part of a fraction is called the numerator, while the bottom part of a fraction is called the denominator. The denominator states
More informationFRACTION WORKSHOP. Example: Equivalent Fractions fractions that have the same numerical value even if they appear to be different.
FRACTION WORKSHOP Parts of a Fraction: Numerator the top of the fraction. Denominator the bottom of the fraction. In the fraction the numerator is 3 and the denominator is 8. Equivalent Fractions: Equivalent
More informationHFCC Math Lab Arithmetic  4. Addition, Subtraction, Multiplication and Division of Mixed Numbers
HFCC Math Lab Arithmetic  Addition, Subtraction, Multiplication and Division of Mixed Numbers Part I: Addition and Subtraction of Mixed Numbers There are two ways of adding and subtracting mixed numbers.
More informationPrime Factorization, Greatest Common Factor (GCF), and Least Common Multiple (LCM)
Prime Factorization, Greatest Common Factor (GCF), and Least Common Multiple (LCM) Definition of a Prime Number A prime number is a whole number greater than 1 AND can only be divided evenly by 1 and itself.
More informationChapter 4 Fractions and Mixed Numbers
Chapter 4 Fractions and Mixed Numbers 4.1 Introduction to Fractions and Mixed Numbers Parts of a Fraction Whole numbers are used to count whole things. To refer to a part of a whole, fractions are used.
More informationMULTIPLICATION OF FRACTIONS AND MIXED NUMBERS. 1 of 6 objects, you make 2 (the denominator)
Tallahassee Community College 0 MULTIPLICATION OF FRACTIONS AND MIXED NUMBERS You know that of is. When you get of objects, you make (the denominator) equal groups of the objects and you take (the numerator)
More informationAlgebra 1A and 1B Summer Packet
Algebra 1A and 1B Summer Packet Name: Calculators are not allowed on the summer math packet. This packet is due the first week of school and will be counted as a grade. You will also be tested over the
More informationCommon Multiples. List the multiples of 3. The multiples of 3 are 3 1, 3 2, 3 3, 3 4,...
.2 Common Multiples.2 OBJECTIVES 1. Find the least common multiple (LCM) of two numbers 2. Find the least common multiple (LCM) of a group of numbers. Compare the size of two fractions In this chapter,
More informationFRACTION REVIEW. 3 and. Any fraction can be changed into an equivalent fraction by multiplying both the numerator and denominator by the same number
FRACTION REVIEW A. INTRODUCTION. What is a fraction? A fraction consists of a numerator (part) on top of a denominator (total) separated by a horizontal line. For example, the fraction of the circle which
More informationSection R.2. Fractions
Section R.2 Fractions Learning objectives Fraction properties of 0 and 1 Writing equivalent fractions Writing fractions in simplest form Multiplying and dividing fractions Adding and subtracting fractions
More informationSelfDirected Course: Transitional Math Module 2: Fractions
Lesson #1: Comparing Fractions Comparing fractions means finding out which fraction is larger or smaller than the other. To compare fractions, use the following inequality and equal signs:  greater than
More informationChapter 5. Rational Expressions
5.. Simplify Rational Expressions KYOTE Standards: CR ; CA 7 Chapter 5. Rational Expressions Definition. A rational expression is the quotient P Q of two polynomials P and Q in one or more variables, where
More informationModule 2: Working with Fractions and Mixed Numbers. 2.1 Review of Fractions. 1. Understand Fractions on a Number Line
Module : Working with Fractions and Mixed Numbers.1 Review of Fractions 1. Understand Fractions on a Number Line Fractions are used to represent quantities between the whole numbers on a number line. A
More informationFractions and Linear Equations
Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps
More informationExponents, Factors, and Fractions. Chapter 3
Exponents, Factors, and Fractions Chapter 3 Exponents and Order of Operations Lesson 31 Terms An exponent tells you how many times a number is used as a factor A base is the number that is multiplied
More informationSIMPLIFYING ALGEBRAIC FRACTIONS
Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is
More information18. [Multiples / Factors / Primes]
18. [Multiples / Factors / Primes] Skill 18.1 Finding the multiples of a number. Count by the number i.e. add the number to itself continuously. OR Multiply the number by 1, then 2,,, 5, etc. to get the
More informationSect 3.2  Least Common Multiple
Let's start with an example: Sect 3.2  Least Common Multiple Ex. 1 Suppose a family has two different pies. If they have 2 3 of one type of pie and 3 of another pie, is it possible to combine the pies
More informationGreatest Common Factor and Least Common Multiple
Greatest Common Factor and Least Common Multiple Intro In order to understand the concepts of Greatest Common Factor (GCF) and Least Common Multiple (LCM), we need to define two key terms: Multiple: Multiples
More information3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼
cups cups cup Fractions are a form of division. When I ask what is / I am asking How big will each part be if I break into equal parts? The answer is. This a fraction. A fraction is part of a whole. The
More informationHFCC Math Lab Intermediate Algebra  7 FINDING THE LOWEST COMMON DENOMINATOR (LCD)
HFCC Math Lab Intermediate Algebra  7 FINDING THE LOWEST COMMON DENOMINATOR (LCD) Adding or subtracting two rational expressions require the rational expressions to have the same denominator. Example
More informationFraction Competency Packet
Fraction Competency Packet Developed by: Nancy Tufo Revised 00: Sharyn Sweeney Student Support Center North Shore Community College To use this booklet, review the glossary, study the examples, then work
More information3.3 Addition and Subtraction of Rational Numbers
3.3 Addition and Subtraction of Rational Numbers In this section we consider addition and subtraction of both fractions and decimals. We start with addition and subtraction of fractions with the same denominator.
More informationPREPARATION FOR MATH TESTING at CityLab Academy
PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRETEST
More informationFRACTIONS COMMON MISTAKES
FRACTIONS COMMON MISTAKES 0/0/009 Fractions Changing Fractions to Decimals How to Change Fractions to Decimals To change fractions to decimals, you need to divide the numerator (top number) by the denominator
More informationSimplification Problems to Prepare for Calculus
Simplification Problems to Prepare for Calculus In calculus, you will encounter some long epressions that will require strong factoring skills. This section is designed to help you develop those skills.
More information5 means to write it as a product something times something instead of a sum something plus something plus something.
Intermediate algebra Class notes Factoring Introduction (section 6.1) Recall we factor 10 as 5. Factoring something means to think of it as a product! Factors versus terms: terms: things we are adding
More informationClick on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section Basic review Writing fractions in simplest form Comparing fractions Converting between Improper fractions and whole/mixed numbers Operations
More information2.6 Adding and Subtracting Fractions and Mixed Numbers with Unlike Denominators
2.6 Adding and Subtracting Fractions and Mixed Numbers with Unlike Denominators Learning Objective(s) 1 Find the least common multiple (LCM) of two or more numbers. 2 Find the Least Common Denominator
More informationSequential Skills. Strands and Major Topics
Sequential Skills This set of charts lists, by strand, the skills that are assessed, taught, and practiced in the Skills Tutorial program. Each Strand ends with a Mastery Test. You can enter correlating
More informationObjectives: In this fractions unit, we will
Objectives: In this fractions unit, we will subtract and add fractions with unlike denominators (pp. 101 102) multiply fractions(pp.109 110) Divide fractions (pp. 113 114) Review: Which is greater, 1/3
More informationFractions to decimals
Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of
More information3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
More informationHOW TO COMPARE FRACTIONS
HOW TO COMPARE FRACTIONS Introducing: common denominator least common denominator like fractions unlike fractions. Compare Fractions 1 The fractions 3 / 4 and 2 / 4 have the same denominator. Fractions
More information47 Numerator Denominator
JH WEEKLIES ISSUE #22 20122013 Mathematics Fractions Mathematicians often have to deal with numbers that are not whole numbers (1, 2, 3 etc.). The preferred way to represent these partial numbers (rational
More informationSolutions of Linear Equations in One Variable
2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools
More informationIntroduction to Fractions
Section 0.6 Contents: Vocabulary of Fractions A Fraction as division Undefined Values First Rules of Fractions Equivalent Fractions Building Up Fractions VOCABULARY OF FRACTIONS Simplifying Fractions Multiplying
More information1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes
Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.
More informationFRACTIONS OPERATIONS
FRACTIONS OPERATIONS Summary 1. Elements of a fraction... 1. Equivalent fractions... 1. Simplification of a fraction... 4. Rules for adding and subtracting fractions... 5. Multiplication rule for two fractions...
More informationName Date Block. Algebra 1 Laws of Exponents/Polynomials Test STUDY GUIDE
Name Date Block Know how to Algebra 1 Laws of Eponents/Polynomials Test STUDY GUIDE Evaluate epressions with eponents using the laws of eponents: o a m a n = a m+n : Add eponents when multiplying powers
More informationTips, tricks and formulae on H.C.F and L.C.M. Follow the steps below to find H.C.F of given numbers by prime factorization method.
Highest Common Factor (H.C.F) Tips, tricks and formulae on H.C.F and L.C.M H.C.F is the highest common factor or also known as greatest common divisor, the greatest number which exactly divides all the
More informationNow that we have a handle on the integers, we will turn our attention to other types of numbers.
1.2 Rational Numbers Now that we have a handle on the integers, we will turn our attention to other types of numbers. We start with the following definitions. Definition: Rational Number any number that
More informationARITHMETIC. Overview. Testing Tips
ARITHMETIC Overview The Arithmetic section of ACCUPLACER contains 17 multiple choice questions that measure your ability to complete basic arithmetic operations and to solve problems that test fundamental
More informationAccuplacer Arithmetic Study Guide
Testing Center Student Success Center Accuplacer Arithmetic Study Guide I. Terms Numerator: which tells how many parts you have (the number on top) Denominator: which tells how many parts in the whole
More informationFractions, Ratios, and Proportions Work Sheets. Contents
Fractions, Ratios, and Proportions Work Sheets The work sheets are grouped according to math skill. Each skill is then arranged in a sequence of work sheets that build from simple to complex. Choose the
More informationPreAlgebra Homework 2 Factors: Solutions
PreAlgebra Homework 2 Factors: Solutions 1. Find all of the primes between 70 and 100. : First, reject the obvious nonprime numbers. None of the even numbers can be a prime because they can be divided
More information1.5 Greatest Common Factor and Least Common Multiple
1.5 Greatest Common Factor and Least Common Multiple This chapter will conclude with two topics which will be used when working with fractions. Recall that factors of a number are numbers that divide into
More informationChapter R.4 Factoring Polynomials
Chapter R.4 Factoring Polynomials Introduction to Factoring To factor an expression means to write the expression as a product of two or more factors. Sample Problem: Factor each expression. a. 15 b. x
More informationChanging a Mixed Number to an Improper Fraction
Example: Write 48 4 48 4 = 48 8 4 8 = 8 8 = 2 8 2 = 4 in lowest terms. Find a number that divides evenly into both the numerator and denominator of the fraction. For the fraction on the left, there are
More information1. When the least common multiple of 8 and 20 is multiplied by the greatest common factor of 8 and 20, what is the result?
Black Equivalent Fractions and LCM 1. When the least common multiple of 8 and 20 is multiplied by the greatest common factor of 8 and 20, what is the result? 2. The sum of three consecutive integers is
More informationGreatest Common Factor (GCF) Factoring
Section 4 4: Greatest Common Factor (GCF) Factoring The last chapter introduced the distributive process. The distributive process takes a product of a monomial and a polynomial and changes the multiplication
More informationNF512 Flexibility with Equivalent Fractions and Pages 110 112
NF5 Flexibility with Equivalent Fractions and Pages 0 Lowest Terms STANDARDS preparation for 5.NF.A., 5.NF.A. Goals Students will equivalent fractions using division and reduce fractions to lowest terms.
More informationAdding and Subtracting Mixed Numbers and Improper Fractions
Just like our counting numbers (1, 2, 3, ), fractions can also be added and subtracted. When counting improper fractions and mixed numbers, we are counting the number wholes and parts. Note: The rules
More informationNumerical and Algebraic Fractions
Numerical and Algebraic Fractions Aquinas Maths Department Preparation for AS Maths This unit covers numerical and algebraic fractions. In A level, solutions often involve fractions and one of the Core
More informationFRACTIONS MODULE Part I
FRACTIONS MODULE Part I I. Basics of Fractions II. Rewriting Fractions in the Lowest Terms III. Change an Improper Fraction into a Mixed Number IV. Change a Mixed Number into an Improper Fraction BMR.Fractions
More informationBasic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704.
Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. The purpose of this Basic Math Refresher is to review basic math concepts so that students enrolled in PUBP704:
More informationIntroduction to Fractions, Equivalent and Simplifying (12 days)
Introduction to Fractions, Equivalent and Simplifying (12 days) 1. Fraction 2. Numerator 3. Denominator 4. Equivalent 5. Simplest form Real World Examples: 1. Fractions in general, why and where we use
More information1.3 Polynomials and Factoring
1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.
More informationThe GMAT Guru. Prime Factorization: Theory and Practice
. Prime Factorization: Theory and Practice The following is an ecerpt from The GMAT Guru Guide, available eclusively to clients of The GMAT Guru. If you would like more information about GMAT Guru services,
More informationCOMPASS Numerical Skills/PreAlgebra Preparation Guide. Introduction Operations with Integers Absolute Value of Numbers 13
COMPASS Numerical Skills/PreAlgebra Preparation Guide Please note that the guide is for reference only and that it does not represent an exact match with the assessment content. The Assessment Centre
More informationGRE MATH REVIEW #2. Fractions
GRE MATH REVIEW #2 Fractions A fraction is just a shorthand way of expressing a division problem. In other words, 5/2 = 5 2. The Numerator is the top number in a fraction and the Denominator is the bottom
More informationmade up of 2 parts, a Saying a 3 To say or write a 7  seven eighths 8
Day 1 Fractions Obj: To learn how to write fractions, define,and classify fractions Def Fraction Numerator Denominator Fraction part of a whole; made up of 2 parts, a numerator and denominator. The denominator
More informationSection 1. Finding Common Terms
Worksheet 2.1 Factors of Algebraic Expressions Section 1 Finding Common Terms In worksheet 1.2 we talked about factors of whole numbers. Remember, if a b = ab then a is a factor of ab and b is a factor
More informationFactoring Whole Numbers
2.2 Factoring Whole Numbers 2.2 OBJECTIVES 1. Find the factors of a whole number 2. Find the prime factorization for any number 3. Find the greatest common factor (GCF) of two numbers 4. Find the GCF for
More informationTo Simplify or Not to Simplify
Overview Activity ID: 8942 Math Concepts Materials Students will discuss fractions and what it means to simplify them Number sense TI34 using prime factorization. Students will then use the calculator
More informationAddition with Unlike Denominators
Lesson. Addition with Unlike Denominators Karen is stringing a necklace with beads. She puts green beads on _ of the string and purple beads on of the string. How much of the string does Karen cover with
More informationLesson 4. Factors and Multiples. Objectives
Student Name: Date: Contact Person Name: Phone Number: Lesson 4 Factors and Multiples Objectives Understand what factors and multiples are Write a number as a product of its prime factors Find the greatest
More informationPrime Time: Homework Examples from ACE
Prime Time: Homework Examples from ACE Investigation 1: Building on Factors and Multiples, ACE #8, 28 Investigation 2: Common Multiples and Common Factors, ACE #11, 16, 17, 28 Investigation 3: Factorizations:
More informationFractions. If the top and bottom numbers of a fraction are the same then you have a whole one.
What do fractions mean? Fractions Academic Skills Advice Look at the bottom of the fraction first this tells you how many pieces the shape (or number) has been cut into. Then look at the top of the fraction
More informationCHAPTER 7: FACTORING POLYNOMIALS
CHAPTER 7: FACTORING POLYNOMIALS FACTOR (noun) An of two or more quantities which form a product when multiplied together. 1 can be rewritten as 3*, where 3 and are FACTORS of 1. FACTOR (verb)  To factor
More informationLesson 3: Fractions and Mixed Numerals
Lesson 3: Fractions and Mixed Numerals Fractions Sept. 26th A fraction is a whole divided into some number of equal parts. The denominator of the fraction is the bottom number. It tells you how many equal
More informationEAP/GWL Rev. 1/2011 Page 1 of 5. Factoring a polynomial is the process of writing it as the product of two or more polynomial factors.
EAP/GWL Rev. 1/2011 Page 1 of 5 Factoring a polynomial is the process of writing it as the product of two or more polynomial factors. Example: Set the factors of a polynomial equation (as opposed to an
More informationCancelling a Fraction: Rules
Cancelling a Fraction: Rules The process of canceling involves taking fractions with larger numbers on top and bottom and rewriting those fractions with smaller numbers ensuring the value of the fraction
More informationPreAlgebra Class 3  Fractions I
PreAlgebra Class 3  Fractions I Contents 1 What is a fraction? 1 1.1 Fractions as division............................... 2 2 Representations of fractions 3 2.1 Improper fractions................................
More informationName: Date: Adding Zero. Addition. Worksheet A
A DIVISION OF + + + + + Adding Zero + + + + + + + + + + + + + + + Addition Worksheet A + + + + + Adding Zero + + + + + + + + + + + + + + + Addition Worksheet B + + + + + Adding Zero + + + + + + + + + +
More informationA fraction is a noninteger quantity expressed in terms of a numerator and a denominator.
1 Fractions Adding & Subtracting A fraction is a noninteger quantity expressed in terms of a numerator and a denominator. 1. FRACTION DEFINITIONS 1) Proper fraction: numerator is less than the denominator.
More informationMultiplying and Dividing Fractions
Multiplying and Dividing Fractions 1 Overview Fractions and Mixed Numbers Factors and Prime Factorization Simplest Form of a Fraction Multiplying Fractions and Mixed Numbers Dividing Fractions and Mixed
More informationSimplifying SquareRoot Radicals Containing Perfect Square Factors
DETAILED SOLUTIONS AND CONCEPTS  OPERATIONS ON IRRATIONAL NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!
More information17 Greatest Common Factors and Least Common Multiples
17 Greatest Common Factors and Least Common Multiples Consider the following concrete problem: An architect is designing an elegant display room for art museum. One wall is to be covered with large square
More information1.2 Linear Equations and Rational Equations
Linear Equations and Rational Equations Section Notes Page In this section, you will learn how to solve various linear and rational equations A linear equation will have an variable raised to a power of
More informationArithmetic Review: Equivalent Fractions
OpenStaxCNX module: m2 Arithmetic Review: Equivalent Fractions Wade Ellis Denny Burzynski This work is produced by OpenStaxCNX and licensed under the Creative Commons Attribution License.0 Abstract This
More informationThe Euclidean Algorithm
The Euclidean Algorithm A METHOD FOR FINDING THE GREATEST COMMON DIVISOR FOR TWO LARGE NUMBERS To be successful using this method you have got to know how to divide. If this is something that you have
More informationPreviously, you learned the names of the parts of a multiplication problem. 1. a. 6 2 = 12 6 and 2 are the. b. 12 is the
Tallahassee Community College 13 PRIME NUMBERS AND FACTORING (Use your math book with this lab) I. Divisors and Factors of a Number Previously, you learned the names of the parts of a multiplication problem.
More informationDay One: Least Common Multiple
Grade Level/Course: 5 th /6 th Grade Math Lesson/Unit Plan Name: Using Prime Factors to find LCM and GCF. Rationale/Lesson Abstract: The objective of this two part lesson is to give students a clear understanding
More informationIntroduction: This lesson provides students with an opportunity to identify and apply mean, median, mode, and range.
Mean, Median, Mode, and Range Energy Education Introduction: This lesson provides students with an opportunity to identify and apply mean, median, mode, and range. Objectives: Develop a strategic approach
More informationLab 7. Addition and Subtraction of Fractional Numbers
Lab 7 Addition and Subtraction of Fractional Numbers Objectives: 1. The teacher will understand how to create single unit models (models for 1) that can be used to model more than one fraction at a time.
More informationAnswers to Basic Algebra Review
Answers to Basic Algebra Review 1. 1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract
More information6.1 The Greatest Common Factor; Factoring by Grouping
386 CHAPTER 6 Factoring and Applications 6.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.
More informationSection 6.1 Factoring Expressions
Section 6.1 Factoring Expressions The first method we will discuss, in solving polynomial equations, is the method of FACTORING. Before we jump into this process, you need to have some concept of what
More informationTool 1. Greatest Common Factor (GCF)
Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When
More informationSometimes it is easier to leave a number written as an exponent. For example, it is much easier to write
4.0 Exponent Property Review First let s start with a review of what exponents are. Recall that 3 means taking four 3 s and multiplying them together. So we know that 3 3 3 3 381. You might also recall
More informationCancelling Fractions: Rules
Cancelling Fractions: Rules The process of cancelling involves taking fractions with large numerators and denominators (top and bottom numbers) and rewriting them with smaller numerators and denominators
More informationRound decimals to the nearest whole number
Round decimals to the nearest whole number Learning Objective Simplifying Fractions Simplified Fractions To simplify a fraction, we find an equivalent fraction which uses the smallest numbers possible.
More informationSupplemental Worksheet Problems To Accompany: The PreAlgebra Tutor: Volume 1 Section 8 Powers and Exponents
Supplemental Worksheet Problems To Accompany: The PreAlgebra Tutor: Volume 1 Please watch Section 8 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm
More informationMean, Median, Mode, Range and Outlier
Mean, Median, Mode, Range and Outlier For Learning to Happen: Take out a calculator. 1 Sum the answer to an addition problem. Addend the numbers you added together to get the sum. Or how many total numbers
More informationStandardsBased Progress Mathematics. Progress in Mathematics
SADLIER StandardsBased Progress Mathematics Aligned to SADLIER Progress in Mathematics Grade 5 Contents Chapter 1 Place Value, Addition, and Subtraction......... 2 Chapter 2 Multiplication....................................
More information+ = has become. has become. Maths in School. Fraction Calculations in School. by Kate Robinson
+ has become 0 Maths in School has become 0 Fraction Calculations in School by Kate Robinson Fractions Calculations in School Contents Introduction p. Simplifying fractions (cancelling down) p. Adding
More information