SIMPLIFYING SQUARE ROOTS

Size: px
Start display at page:

Download "SIMPLIFYING SQUARE ROOTS"

Transcription

1 40 (8-8) Chapter 8 Powers and Roots 8. SIMPLIFYING SQUARE ROOTS In this section Using the Product Rule Rationalizing the Denominator Simplified Form of a Square Root In Section 8. you learned to simplify some radical expressions using the product rule. In this section you will learn three basic rules to follow for writing expressions involving square roots in simplest form. These rules can be extended to radicals with index greater than, but we will not do that in this text. Using the Product Rule We can use the product rule to simplify square roots of certain numbers. For example, 4 9 Factor 4 as Because 4 is not a perfect square, we cannot write 4 without the radical symbol. However, is considered a simpler expression that represents the exact value of 4. When simplifying square roots, we can factor the perfect squares out of the radical and replace them with their square roots. Look for the factors 4, 9,,,, 49, and so on. E X A M P L E calculator close-up You can use a calculator to see that and agree for the first 0 digits (out of infinitely many). Having the same first 0 digits does not make =. The product rule for radicals guarantees that they are equal. Simplifying radicals using the product rule Simplify. a) b) 0 c) a) Because 4, we can use the product rule to write 4. b) 0 c) Note that 4, 9, and are perfect squares and are factors of. In factoring out a perfect square, it is most efficient to use the largest perfect square: If we had factored out 9, we could still get the correct answer as follows: Rationalizing the Denominator Radicals such as,, and are irrational numbers. So a fraction such as has an irrational denominator. Because fractions with rational denominators are considered simpler than fractions with irrational denominators, we usually convert fractions with irrational denominators to equivalent ones with rational denominators. That is, we rationalize the denominator.

2 8. Simplifying Square Roots (8-9) 4 E X A M P L E Rationalizing denominators Simplify each expression by rationalizing its denominator. a) b) a) Because, we multiply numerator and denominator by : Multiply numerator and denominator by. b) Because, multiply the numerator and denominator by : Multiply numerator and denominator by. Simplified Form of a Square Root When we simplify any expression, we try to write a simpler expression that is equivalent to the original. However, one person s idea of simpler is sometimes different from another person s. For a square root the expression must satisfy three conditions to be in simplified form. These three conditions provide specific rules to follow for simplifying square roots. Simplified Form for Square Roots An expression involving a square root is in simplified form if it has. no perfect-square factors inside the radical,. no fractions inside the radical, and. no radicals in the denominator. Because a decimal is a form of a fraction, a simplified square root should not contain any decimal numbers. Also, a simplified expression should use the fewest number of radicals possible. So we write rather than even though both and are both in simplified form. E X A M P L E Simplified form for square roots Write each radical expression in simplified form. a) 00 b) c) 0 a) We must remove the perfect square factor of 00 from inside the radical:

3 4 (8-0) Chapter 8 Powers and Roots calculator b) We first use the quotient rule to remove the fraction from inside the radical: close-up Using a calculator to check simplification problems will help you to understand the concepts. 0 Quotient rule for radicals c) The numerator and denominator have a common factor of : 0 Reduce. 0 Note that we could have simplified by first using the quotient rule to get 0 0 and then reducing 0. Another way to simplify 0 is to first multiply the numerator and denominator by. You should try these alternatives. Of course, the simplified form is by any method. In the next example we simplify some expressions involving variables. Remember that any exponential expression with an even exponent is a perfect square. E X A M P L E 4 Radicals containing variables Simplify each expression. All variables represent nonnegative real numbers. a) x b) 8a 9 c) 8a 4 b a) x x x The largest perfect square factor of x is x. x x xx For any nonnegative x, x x. b) 8a 9 4a 8 a The largest perfect square factor of 8a 9 is 4a 8. a 4 a 4a 8 a 4 c) 8a 4 b 9a 4 b b Factor out the perfect squares. a b b 9a 4 b a b

4 8. Simplifying Square Roots (8-) 4 If square roots of variables appear in the denominator, then we rationalize the denominator. E X A M P L E helpful hint If you are going to compute the value of a radical expression with a calculator, it doesn t matter if the denominator is rational. However, rationalizing the denominator provides another opportunity to practice building up the denominator of a fraction and multiplying radicals. Radicals containing variables Simplify each expression. All variables represent positive real numbers. a) a b) a b c) a a a) a a a a a b) a b a b a b b b ab b Multiply numerator and denominator by a. a a a Quotient rule for radicals a c) a a a a a 4 a a a 4 a Factor out the perfect square. a a a a Factor the denominator. Divide out the common factor. CAUTION Do not attempt to reduce an expression like the one in Example (c): a a You cannot divide out common factors when one is inside a radical.

5 44 (8-) Chapter 8 Powers and Roots WARM-UPS True or false? Explain your answer.. 0 True. 8 9 False. True False. a aa for any positive value of a. True. a 9 a for any positive value of a. False. y y 8 y for any positive value of y. True 8. False 9. 4 False 0. 8 False 8. EXERCISES Reading and Writing After reading this section, write out the answers to these questions. Use complete sentences.. How do we simplify a radical with the product rule? We use the product rule to factor out a perfect square from inside a square root.. Which integers are perfect squares? The perfect squares are, 4, 9,,, and so on.. What does it mean to rationalize a denominator? To rationalize a denominator means to rewrite the expression so that the denominator is a rational number. 4. What is simplified form for a square root? A square root in simplified form has no perfect squares or fractions inside the radical and no radicals in the denominator.. How do you simplify a square root that contains a variable? To simplify a square root containing variables, use the same techniques as we use on square roots of numbers.. How can you tell if an exponential expression is a perfect square? Any even power of a variable is a perfect square. Assume that all variables in the exercises represent positive real numbers. Simplify each radical. See Example Simplify each expression by rationalizing the denominator. See Example Write each radical expression in simplified form. See Example

6 8. Simplifying Square Roots (8-) 4 Simplify each expression. See Example a y 0 4. a 9 a 4 y a 4 a 4. t 4. 8a 48. 8w 9 t t a w 4 w 49. 0a 4 b 9 0. xy. xy a b 4 b xyy xyxy. 4xy. a b 8 c 4. xy z 9 4 x yxy ab 4 ca xy 4 z xy Simplify each expression. See Example.... x x a x x a x x a b y 0x 0b b y y x x. x y. w. 0 y x xy 0w xy y w x 4. 4 x y. 8 y xy y x xxy y s. 8 t s st t Simplify each expression.. 80x 8. 90y yx 9 4xx y 40 0 y 4 x yx 0x x y 0. 48xy.. x x 4xy y 4x x x yx p. 4. 0t. a b a b c 4 p p q t t a b c pq q 0t t a b 8 cac. n4 b n b c 4xy. 8m 8. n nb c x 9 y xy m n mn n 4 b c nb y n x 9 4 y m n Solve each problem. 8. Economic order quantity. The formula for economic order quantity E A I S was used in Exercise 8 of Section 8.. a) Express the right-hand side in simplified form. E AIS I b) Find E when A, S $4, and I $80.. FIGURE FOR EXERCISE Landing speed. Aircraft design engineers determine the proper landing speed V (in ft/sec) by using the formula V 84L, CS where L is the gross weight of the aircraft in pounds, C is the coefficient of lift, and S is the wing surface area in square feet. a) Express the right-hand side in simplified form. V 9 LCS CS b) Find V when L 800 pounds, C.8, and S 00 square feet..4 Use a calculator to evaluate each expression FIGURE FOR EXERCISE 84

Simplifying Numerical Square Root Expressions

Simplifying Numerical Square Root Expressions 10.1.1 Simplifying Numerical Square Root Expressions Definitions 1. The square of an integer is called a perfect square integer. Since 1 2 =1, 2 2 = 4, 3 2 = 9, 4 2 =16, etc..., the perfect square integers

More information

Simplification of Radical Expressions

Simplification of Radical Expressions 8. Simplification of Radical Expressions 8. OBJECTIVES 1. Simplify a radical expression by using the product property. Simplify a radical expression by using the quotient property NOTE A precise set of

More information

Simplifying Radical Expressions

Simplifying Radical Expressions 9.2 Simplifying Radical Expressions 9.2 OBJECTIVES. Simplify expressions involving numeric radicals 2. Simplify expressions involving algebraic radicals In Section 9., we introduced the radical notation.

More information

RADICALS 7.2. section. Radical Notation

RADICALS 7.2. section. Radical Notation 7. Radicals (7-11) 97 b) The average radius of the orbit of Saturn is 9.0 AU. Use the accompanying graph to estimate the number of years it takes Saturn to make one orbit of the sun. a) 1. AU b) 7 years

More information

A.2 EXPONENTS AND RADICALS

A.2 EXPONENTS AND RADICALS A4 Appendix A Review of Fundamental Concepts of Algebra A. EXPONENTS AND RADICALS What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of

More information

Section 9.1- Radical Expressions and Graphs

Section 9.1- Radical Expressions and Graphs Chapter 9 Section 9.1- Radical Expressions and Graphs Objective: 1. Find square roots. 2. Decide whether a given root is rational, irrational, or not a real number. 3. Find cube, fourth, and other roots.

More information

Date: Section P.2: Exponents and Radicals. Properties of Exponents: Example #1: Simplify. a.) 3 4. b.) 2. c.) 3 4. d.) Example #2: Simplify. b.) a.

Date: Section P.2: Exponents and Radicals. Properties of Exponents: Example #1: Simplify. a.) 3 4. b.) 2. c.) 3 4. d.) Example #2: Simplify. b.) a. Properties of Exponents: Section P.2: Exponents and Radicals Date: Example #1: Simplify. a.) 3 4 b.) 2 c.) 34 d.) Example #2: Simplify. a.) b.) c.) d.) 1 Square Root: Principal n th Root: Example #3: Simplify.

More information

Chapter 7: Radicals and Complex Numbers Lecture notes Math 1010

Chapter 7: Radicals and Complex Numbers Lecture notes Math 1010 Section 7.1: Radicals and Rational Exponents Definition of nth root of a number Let a and b be real numbers and let n be an integer n 2. If a = b n, then b is an nth root of a. If n = 2, the root is called

More information

Square Roots. Learning Objectives. Pre-Activity

Square Roots. Learning Objectives. Pre-Activity Section 1. Pre-Activity Preparation Square Roots Our number system has two important sets of numbers: rational and irrational. The most common irrational numbers result from taking the square root of non-perfect

More information

Chapter 7 - Roots, Radicals, and Complex Numbers

Chapter 7 - Roots, Radicals, and Complex Numbers Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

More information

Numbers, Operations, and Expressions. 1) Determine the classification(s) for each number below. List all that apply. 3

Numbers, Operations, and Expressions. 1) Determine the classification(s) for each number below. List all that apply. 3 Numbers, Operations, and Expressions Review of Natural Numbers, Whole Numbers, Integers, and Rational Numbers 1) Determine the classification(s) for each number below. List all that apply. a) 11 b) 9.8

More information

Exponents, Polynomials and Functions. Copyright Cengage Learning. All rights reserved.

Exponents, Polynomials and Functions. Copyright Cengage Learning. All rights reserved. Exponents, Polynomials and Functions 3 Copyright Cengage Learning. All rights reserved. 3.1 Rules for Exponents Copyright Cengage Learning. All rights reserved. Rules for Exponents The basic concept of

More information

Intermediate Algebra

Intermediate Algebra Intermediate Algebra George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 102 George Voutsadakis (LSSU) Intermediate Algebra August 2013 1 / 40 Outline 1 Radicals

More information

A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents

A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents Appendix A. Exponents and Radicals A11 A. Exponents and Radicals What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of radicals. Simplify

More information

Negative Integer Exponents

Negative Integer Exponents 7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions

More information

Radicals - Multiply and Divide Radicals

Radicals - Multiply and Divide Radicals 8. Radicals - Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals

More information

USING THE PROPERTIES TO SIMPLIFY EXPRESSIONS

USING THE PROPERTIES TO SIMPLIFY EXPRESSIONS 5 (1 5) Chapter 1 Real Numbers and Their Properties 1.8 USING THE PROPERTIES TO SIMPLIFY EXPRESSIONS In this section The properties of the real numbers can be helpful when we are doing computations. In

More information

Radicals and Rational Exponents

Radicals and Rational Exponents mes47759_ch0_65-64 09/7/007 06:8 Page 65 pinnacle 0:MHIA08:mhmes:mesch0: CHAPTER 0 Radicals and Rational Exponents Algebra at Work: Forensics Forensic scientists use mathematics in many ways to help them

More information

Exponents, Radicals, and Scientific Notation

Exponents, Radicals, and Scientific Notation General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x 2 = x 5+2 = x 7 (x m ) n = x mn Example 2: (x 5 ) 2 = x 5 2 = x 10 (x m y n ) p = x mp y np Example

More information

P.2 Exponents and Radicals

P.2 Exponents and Radicals 71_0P0.qxp 1/7/06 9:0 AM Page 1 1 Chapter P Prerequisites P. Exponents and Radicals Integer Exponents Repeated multiplication can be written in exponential form. Repeated Multiplication Exponential Form

More information

9.3 OPERATIONS WITH RADICALS

9.3 OPERATIONS WITH RADICALS 9. Operations with Radicals (9 1) 87 9. OPERATIONS WITH RADICALS In this section Adding and Subtracting Radicals Multiplying Radicals Conjugates In this section we will use the ideas of Section 9.1 in

More information

MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.

MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers. 1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with

More information

FINDING THE LEAST COMMON DENOMINATOR

FINDING THE LEAST COMMON DENOMINATOR 0 (7 18) Chapter 7 Rational Expressions GETTING MORE INVOLVED 7. Discussion. Evaluate each expression. a) One-half of 1 b) One-third of c) One-half of x d) One-half of x 7. Exploration. Let R 6 x x 0 x

More information

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an

More information

Using the Properties in Computation. a) 347 35 65 b) 3 435 c) 6 28 4 28

Using the Properties in Computation. a) 347 35 65 b) 3 435 c) 6 28 4 28 (1-) Chapter 1 Real Numbers and Their Properties In this section 1.8 USING THE PROPERTIES TO SIMPLIFY EXPRESSIONS The properties of the real numbers can be helpful when we are doing computations. In this

More information

Simplifying Square-Root Radicals Containing Perfect Square Factors

Simplifying Square-Root Radicals Containing Perfect Square Factors DETAILED SOLUTIONS AND CONCEPTS - OPERATIONS ON IRRATIONAL NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

More information

27 = 3 Example: 1 = 1

27 = 3 Example: 1 = 1 Radicals: Definition: A number r is a square root of another number a if r = a. is a square root of 9 since = 9 is also a square root of 9, since ) = 9 Notice that each positive number a has two square

More information

Chapter 15 Radical Expressions and Equations Notes

Chapter 15 Radical Expressions and Equations Notes Chapter 15 Radical Expressions and Equations Notes 15.1 Introduction to Radical Expressions The symbol is called the square root and is defined as follows: a = c only if c = a Sample Problem: Simplify

More information

3 d A product of a number and a variable and x. 2c d Add and Subtract Polynomials

3 d A product of a number and a variable and x. 2c d Add and Subtract Polynomials Math 50, Chapter 7 (Page 1 of 21) 7.1.1 Add and Subtract Polynomials Monomials A monomial is a number, a variable, or a product of numbers and variables. Examples of Monomials a. 7 A number b. 3 d A product

More information

1.2 Exponents and Radicals. Copyright Cengage Learning. All rights reserved.

1.2 Exponents and Radicals. Copyright Cengage Learning. All rights reserved. 1.2 Exponents and Radicals Copyright Cengage Learning. All rights reserved. Objectives Integer Exponents Rules for Working with Exponents Scientific Notation Radicals Rational Exponents Rationalizing the

More information

DETAILED SOLUTIONS AND CONCEPTS INTRODUCTION TO IRRATIONAL AND IMAGINARY NUMBERS

DETAILED SOLUTIONS AND CONCEPTS INTRODUCTION TO IRRATIONAL AND IMAGINARY NUMBERS DETAILED SOLUTIONS AND CONCEPTS INTRODUCTION TO IRRATIONAL AND IMAGINARY NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu.

More information

Rational Exponents and Radicals

Rational Exponents and Radicals C H A P T E R 7 Rational Exponents and Radicals Wind chill temperature (F) for 5F air temperature 5 0 15 10 5 0 0.5 10 15 5 10 15 0 5 0 Wind velocity (mph) ust how cold is it in Fargo, North Dakota, in

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Writing a polynomial as a product of polynomials of lower degree is called factoring. Factoring is an important procedure that is often used to simplify fractional expressions and

More information

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

This is a square root. The number under the radical is 9. (An asterisk * means multiply.) Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

More information

Real Numbers are used everyday to describe quantities such as age, weight, height, mpg, etc... Some common subsets of real numbers are:

Real Numbers are used everyday to describe quantities such as age, weight, height, mpg, etc... Some common subsets of real numbers are: P.1 Real Numbers and Their Properties Real Numbers are used everyday to describe quantities such as age, weight, height, mpg, etc... Some common subsets of real numbers are: Natural numbers N = {1, 2,

More information

MAT Make Your Own Study Guide Unit 3. Date Turned In

MAT Make Your Own Study Guide Unit 3. Date Turned In Name 14.1 Roots and Radicals Define perfect square. Date Turned In Example Show an example Show an example of a perfect square. Define square root. Show an example of a square root. What is the difference

More information

Chapter 4 -- Decimals

Chapter 4 -- Decimals Chapter 4 -- Decimals $34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789

More information

Math 2: Algebra 2, Geometry and Statistics Ms. Sheppard-Brick

Math 2: Algebra 2, Geometry and Statistics Ms. Sheppard-Brick Math : Algebra, Geometry and Statistics Ms. Sheppard-Brick 617.596.41 http://lps.lexingtonma.org/page/44 Math Chapter 1 Review Exponents and Radicals Exponent definitions and rules: For the expression,

More information

Exponents, Radicals, and Scientific Notation

Exponents, Radicals, and Scientific Notation General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =

More information

Multiplying and Dividing Radical Expressions

Multiplying and Dividing Radical Expressions Radicals DEAR Multiplying and Dividing Radical Expressions Learning Objective(s) Multiply and simplify radical expressions that contain a single term. Divide and simplify radical expressions that contain

More information

1.1. Basic Concepts. Write sets using set notation. Write sets using set notation. Write sets using set notation. Write sets using set notation.

1.1. Basic Concepts. Write sets using set notation. Write sets using set notation. Write sets using set notation. Write sets using set notation. 1.1 Basic Concepts Write sets using set notation. Objectives A set is a collection of objects called the elements or members of the set. 1 2 3 4 5 6 7 Write sets using set notation. Use number lines. Know

More information

3.2 Equivalent Fractions: Simplifying and Building

3.2 Equivalent Fractions: Simplifying and Building 3.2 Equivalent Fractions: Simplifying and Building Two fractions are said to be equivalent if they have the same value. Naturally, one approach we could use to determine if two fractions are equivalent

More information

Radicals. Stephen Perencevich

Radicals. Stephen Perencevich Radicals Stephen Perencevich Stephen Perencevich Georg Cantor Institute for Mathematical Studies Silver Spring, MD scpusa@gmail.com c 009 All rights reserved. Algebra II: Radicals 0 Introduction Perencevich

More information

The notation above read as the nth root of the mth power of a, is a

The notation above read as the nth root of the mth power of a, is a Let s Reduce Radicals to Bare Bones! (Simplifying Radical Expressions) By Ana Marie R. Nobleza The notation above read as the nth root of the mth power of a, is a radical expression or simply radical.

More information

Radicals - Rational Exponents

Radicals - Rational Exponents 8. Radicals - Rational Exponents Objective: Convert between radical notation and exponential notation and simplify expressions with rational exponents using the properties of exponents. When we simplify

More information

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have 8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents

More information

Sect Exponents: Multiplying and Dividing Common Bases

Sect Exponents: Multiplying and Dividing Common Bases 40 Sect 5.1 - Exponents: Multiplying and Dividing Common Bases Concept #1 Review of Exponential Notation In the exponential expression 4 5, 4 is called the base and 5 is called the exponent. This says

More information

Graphing Radicals STEM 7

Graphing Radicals STEM 7 Graphing Radicals STEM 7 Radical functions have the form: The most frequently used radical is the square root; since it is the most frequently used we assume the number 2 is used and the square root is

More information

Definition of an nth Root

Definition of an nth Root Radicals and Complex Numbers 7 7. Definition of an nth Root 7.2 Rational Exponents 7.3 Simplifying Radical Expressions 7.4 Addition and Subtraction of Radicals 7.5 Multiplication of Radicals 7.6 Rationalization

More information

Factors of 8 are 1 and 8 or 2 and 4. Let s substitute these into our factors and see which produce the middle term, 10x.

Factors of 8 are 1 and 8 or 2 and 4. Let s substitute these into our factors and see which produce the middle term, 10x. Quadratic equations A quadratic equation in x is an equation that can be written in the standard quadratic form ax + bx + c 0, a 0. Several methods can be used to solve quadratic equations. If the quadratic

More information

6.2 FRACTIONAL EXPONENTS AND RADICAL EXPRESSIONS

6.2 FRACTIONAL EXPONENTS AND RADICAL EXPRESSIONS Print this page 6.2 FRACTIONAL EXPONENTS AND RADICAL EXPRESSIONS A radical expression is an expression involving roots. For example, is the positive number whose square is a. Thus, since 3 2 = 9, and since

More information

Math 96--Radicals #1-- Simplify; Combine--page 1

Math 96--Radicals #1-- Simplify; Combine--page 1 Simplify; Combine--page 1 Part A Number Systems a. Whole Numbers = {0, 1, 2, 3,...} b. Integers = whole numbers and their opposites = {..., 3, 2, 1, 0, 1, 2, 3,...} c. Rational Numbers = quotient of integers

More information

More generally, to approximate k, locate k between successive perfect squares. Then k must lie between their square roots. An example follows:

More generally, to approximate k, locate k between successive perfect squares. Then k must lie between their square roots. An example follows: EXERCISE SET 10.1 DUE DATE: STUDENT: INSTRUCTOR: 10.1A Square Roots of Integers The square roots of a number are the values which, when squared, result in that number. If k is a square root of k, then

More information

Summer Mathematics Packet Say Hello to Algebra 2. For Students Entering Algebra 2

Summer Mathematics Packet Say Hello to Algebra 2. For Students Entering Algebra 2 Summer Math Packet Student Name: Say Hello to Algebra 2 For Students Entering Algebra 2 This summer math booklet was developed to provide students in middle school an opportunity to review grade level

More information

Math 002 Unit 5 - Student Notes

Math 002 Unit 5 - Student Notes Sections 7.1 Radicals and Radical Functions Math 002 Unit 5 - Student Notes Objectives: Find square roots, cube roots, nth roots. Find where a is a real number. Look at the graphs of square root and cube

More information

THE QUADRATIC FORMULA

THE QUADRATIC FORMULA 66 (9-1) Chapter 9 Quadratic Equations and Quadratic Functions the members will sell 5000 00x tickets. So the total revenue for the tickets is given by R x (5000 00x). a) What is the revenue if the tickets

More information

Rational Exponents. Given that extension, suppose that. Squaring both sides of the equation yields. a 2 (4 1/2 ) 2 a 2 4 (1/2)(2) a a 2 4 (2)

Rational Exponents. Given that extension, suppose that. Squaring both sides of the equation yields. a 2 (4 1/2 ) 2 a 2 4 (1/2)(2) a a 2 4 (2) SECTION 0. Rational Exponents 0. OBJECTIVES. Define rational exponents. Simplify expressions with rational exponents. Estimate the value of an expression using a scientific calculator. Write expressions

More information

Lesson 9: Radicals and Conjugates

Lesson 9: Radicals and Conjugates Student Outcomes Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or cube root) of their sum. Students convert expressions to simplest radical form.

More information

MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

More information

9.3 Solving Quadratic Equations by the Quadratic Formula

9.3 Solving Quadratic Equations by the Quadratic Formula 9.3 Solving Quadratic Equations by the Quadratic Formula OBJECTIVES 1 Identify the values of a, b, and c in a quadratic equation. Use the quadratic formula to solve quadratic equations. 3 Solve quadratic

More information

Algebra Placement Test Review

Algebra Placement Test Review Algebra Placement Test Review Recognizing the Relative Position between Real Numbers A. Which number is smaller, or 000? To really appreciate which number is smaller one must view both numbers plotted

More information

What you can do - (Goal Completion) Learning

What you can do - (Goal Completion) Learning What you can do - (Goal Completion) Learning ARITHMETIC READINESS Whole Numbers Order of operations: Problem type 1 Order of operations: Problem type 2 Factors Prime factorization Greatest common factor

More information

Simplifying Radical Expressions

Simplifying Radical Expressions Section 9 2A: Simplifying Radical Expressions Rational Numbers A Rational Number is any number that that expressed as a whole number a fraction a decimal that ends a decimal that repeats 3 2 1.2 1.333

More information

Adding Integers. Example 1 Evaluate.

Adding Integers. Example 1 Evaluate. Adding Integers Adding Integers 0 Example 1 Evaluate. Adding Integers Example 2 Evaluate. Adding Integers Example 3 Evaluate. Subtracting Integers Subtracting Integers Subtracting Integers Change the subtraction

More information

Simplifying Radical Expressions

Simplifying Radical Expressions In order to simplifying radical expression, it s important to understand a few essential properties. Product Property of Like Bases a a = a Multiplication of like bases is equal to the base raised to the

More information

Chapter 1.1 Rational and Irrational Numbers

Chapter 1.1 Rational and Irrational Numbers Chapter 1.1 Rational and Irrational Numbers A rational number is a number that can be written as a ratio or the quotient of two integers a and b written a/b where b 0. Integers, fractions and mixed numbers,

More information

Radicals - Multiply and Divide Radicals

Radicals - Multiply and Divide Radicals 8. Radicals - Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals

More information

Lesson 9: Radicals and Conjugates

Lesson 9: Radicals and Conjugates Student Outcomes Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or cube root) of their sum. Students convert expressions to simplest radical form.

More information

eday Lessons Mathematics Grade 8 Student Name:

eday Lessons Mathematics Grade 8 Student Name: eday Lessons Mathematics Grade 8 Student Name: Common Core State Standards- Expressions and Equations Work with radicals and integer exponents. 3. Use numbers expressed in the form of a single digit times

More information

Page 1 of Identify the degree of each term of the polynomial and the degree of the polynomial. The degree of the first term is.

Page 1 of Identify the degree of each term of the polynomial and the degree of the polynomial. The degree of the first term is. 1. Identify the degree of each term of the polynomial and the degree of the polynomial. x The degree of the first term is. The degree of the second term is. The degree of the third term is. The degree

More information

Geometry Summer Math Packet Review and Study Guide

Geometry Summer Math Packet Review and Study Guide V E R I T A S SAINT AGNES ACADEMY SAIN T DOMINIC SCHOOL Geometry Summer Math Packet Review and Study Guide This study guide is designed to aid students working on the Geometry Summer Math Packet. The purpose

More information

Difference of Squares and Perfect Square Trinomials

Difference of Squares and Perfect Square Trinomials 4.4 Difference of Squares and Perfect Square Trinomials 4.4 OBJECTIVES 1. Factor a binomial that is the difference of two squares 2. Factor a perfect square trinomial In Section 3.5, we introduced some

More information

Note that every natural number is an integer. There are integers (negative numbers) that are not natural numbers.

Note that every natural number is an integer. There are integers (negative numbers) that are not natural numbers. Real Numbers: Natural Numbers: N= {1, 2, 3, } Integers: Z= {0, 1, 1, 2, 2, 3, 3, } Note that every natural number is an integer. There are integers (negative numbers) that are not natural numbers. Rational

More information

COGNITIVE TUTOR ALGEBRA

COGNITIVE TUTOR ALGEBRA COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,

More information

60 does not simplify. What s the flaw in

60 does not simplify. What s the flaw in MTH 9 Radical Intervention Section 1 Simplifying Square Roots The square root of a number is not considered simplified if it contains a factor that is the perfect square of an integer (other than 1). For

More information

7.3 Simplified Form for Radicals 7.4 Addition and Subtraction of Radic. Expressions

7.3 Simplified Form for Radicals 7.4 Addition and Subtraction of Radic. Expressions 7.3 Simplified Form for Radicals 7.4 Addition and Subtraction of Radical Expressions Department of Mathematics Grossmont College November 5, 2012 Simplified Form for Radicals Learning Objectives: Write

More information

2.1 Chapter 9 Concept 9.3: Zero, Negative,

2.1 Chapter 9 Concept 9.3: Zero, Negative, 2.. Chapter 9 Concept 9.: Zero, Negative, and Fractional Exponents Lesson) www.ck2.org 2. Chapter 9 Concept 9.: Zero, Negative, and Fractional Exponents Lesson) Simplify expressions with zero exponents.

More information

CHAPTER 8 ROOTS AND RADICALS

CHAPTER 8 ROOTS AND RADICALS Chapter Eight Additional Exercises 09 CHAPTER 8 ROOTS AND RADICALS Section 8.1 Evaluating Roots Objective 1 Find square roots. Find all square roots of the number. 1. 81. 19.. 00... 1 8. 1 9. 9 10. 11

More information

1.1 THE REAL NUMBERS. section. The Integers. The Rational Numbers

1.1 THE REAL NUMBERS. section. The Integers. The Rational Numbers 2 (1 2) Chapter 1 Real Numbers and Their Properties 1.1 THE REAL NUMBERS In this section In arithmetic we use only positive numbers and zero, but in algebra we use negative numbers also. The numbers that

More information

How does the locations of numbers, variables, and operation signs in a mathematical expression affect the value of that expression?

How does the locations of numbers, variables, and operation signs in a mathematical expression affect the value of that expression? How does the locations of numbers, variables, and operation signs in a mathematical expression affect the value of that expression? You can use powers to shorten how you present repeated multiplication.

More information

HFCC Math Lab Intermediate Algebra - 17 DIVIDING RADICALS AND RATIONALIZING THE DENOMINATOR

HFCC Math Lab Intermediate Algebra - 17 DIVIDING RADICALS AND RATIONALIZING THE DENOMINATOR HFCC Math Lab Intermediate Algebra - 17 DIVIDING RADICALS AND RATIONALIZING THE DENOMINATOR Dividing Radicals: To divide radical expression we use Step 1: Simplify each radical Step 2: Apply the Quotient

More information

UNCORRECTED PAGE PROOFS

UNCORRECTED PAGE PROOFS number and algebra TOPIC 6 Real numbers 6. Overview Why learn this? A knowledge of number is crucial if we are to understand the world around us. Over time, you have been building your knowledge of the

More information

This is Radical Expressions and Equations, chapter 8 from the book Beginning Algebra (index.html) (v. 1.0).

This is Radical Expressions and Equations, chapter 8 from the book Beginning Algebra (index.html) (v. 1.0). This is Radical Expressions and Equations, chapter 8 from the book Beginning Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

More information

ARE YOU A RADICAL OR JUST A SQUARE ROOT? EXAMPLES

ARE YOU A RADICAL OR JUST A SQUARE ROOT? EXAMPLES ARE YOU A RADICAL OR JUST A SQUARE ROOT? EXAMPLES 1. Squaring a number means using that number as a factor two times. 8 8(8) 64 (-8) (-8)(-8) 64 Make sure students realize that x means (x ), not (-x).

More information

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

More information

Lesson 9: Radicals and Conjugates

Lesson 9: Radicals and Conjugates Student Outcomes Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or cube root) of their sum. Students convert expressions to simplest radical form.

More information

Simplifying Algebraic Expressions Involving Exponents

Simplifying Algebraic Expressions Involving Exponents 4.4 Simplifying Algebraic Expressions Involving Exponents GOAL Simplify algebraic expressions involving powers and radicals. LEARN ABOUT the Math The ratio of the surface area to the volume of microorganisms

More information

Definition of Subtraction x - y = x + 1-y2. Subtracting Real Numbers

Definition of Subtraction x - y = x + 1-y2. Subtracting Real Numbers Algebra Review Numbers FRACTIONS Addition and Subtraction i To add or subtract fractions with the same denominator, add or subtract the numerators and keep the same denominator ii To add or subtract fractions

More information

A square root function is a function whose rule contains a variable under a square root sign.

A square root function is a function whose rule contains a variable under a square root sign. Chapter 11-1 Square-Root Functions Part 1 A square root function is a function whose rule contains a variable under a square root sign. Example: Graph the square-root function. Use a calculator to approximate

More information

3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS 3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

More information

A. A Square Root: The square root of a number x is a number y such

A. A Square Root: The square root of a number x is a number y such CHAPTER 8 Section 8.1: Introduction to Square Roots and Radical Expressions In this chapter we will learn how to work with radical expressions such as square roots. A good background in this type of algebra

More information

RADICALS & RATIONAL EXPONENTS

RADICALS & RATIONAL EXPONENTS c Gabriel Nagy RADICALS & RATIONAL EXPONENTS Facts about Power Equations Consider the power equation x N #, with N > integer and # any real number. Regarding the solvability of this equation, one has the

More information

1.1 Solving a Linear Equation ax + b = 0

1.1 Solving a Linear Equation ax + b = 0 1.1 Solving a Linear Equation ax + b = 0 To solve an equation ax + b = 0 : (i) move b to the other side (subtract b from both sides) (ii) divide both sides by a Example: Solve x = 0 (i) x- = 0 x = (ii)

More information

Unit 1 Review Part 1 3 combined Handout KEY.notebook. September 26, 2013

Unit 1 Review Part 1 3 combined Handout KEY.notebook. September 26, 2013 Math 10c Unit 1 Factors, Powers and Radicals Key Concepts 1.1 Determine the prime factors of a whole number. 650 3910 1.2 Explain why the numbers 0 and 1 have no prime factors. 0 and 1 have no prime factors

More information

Check boxes of Edited Copy of Sp Topics (was 259 topics in pilot)

Check boxes of Edited Copy of Sp Topics (was 259 topics in pilot) Check boxes of Edited Copy of 10022 Sp 11 258 Topics (was 259 topics in pilot) Beginning Algebra, 3rd Ed. [open all close all] Course Readiness and Additional Topics Appendix Course Readiness Multiplication

More information

The Product Property of Square Roots states: For any real numbers a and b, where a 0 and b 0, ab = a b.

The Product Property of Square Roots states: For any real numbers a and b, where a 0 and b 0, ab = a b. Chapter 9. Simplify Radical Expressions Any term under a radical sign is called a radical or a square root expression. The number or expression under the the radical sign is called the radicand. The radicand

More information

FACTORING OUT COMMON FACTORS

FACTORING OUT COMMON FACTORS 278 (6 2) Chapter 6 Factoring 6.1 FACTORING OUT COMMON FACTORS In this section Prime Factorization of Integers Greatest Common Factor Finding the Greatest Common Factor for Monomials Factoring Out the

More information

5.1 Radical Notation and Rational Exponents

5.1 Radical Notation and Rational Exponents Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

More information

Chapter 1. Real Numbers Operations

Chapter 1. Real Numbers Operations www.ck1.org Chapter 1. Real Numbers Operations Review Answers 1 1. (a) 101 (b) 8 (c) 1 1 (d) 1 7 (e) xy z. (a) 10 (b) 14 (c) 5 66 (d) 1 (e) 7x 10 (f) y x (g) 5 (h) (i) 44 x. At 48 square feet per pint

More information

SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property

SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property 498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1

More information