A New Method To Simulate Bipolar Transistors Combining Analytical Solution And Currend-Based MC Method

Size: px
Start display at page:

Download "A New Method To Simulate Bipolar Transistors Combining Analytical Solution And Currend-Based MC Method"

Transcription

1 A New Method To Simulate Bipolar Trasistors Combiig Aalytical Solutio Ad Curred-Based MC Method Semesterwor Vicet Peiert ETH Zurich, Switzerlad performed at ITET uder supervisio of Dr. Simo Christia Brugger, ETHZ Prof. Adreas Sche, ETHZ

2 Cotets 1 Tass 3 2 Itroductio Curret-based MC method Valid regios of the semi-aalytical solutio Momets Of The Iverse Scatterig Operator MISOs) Geeralizatio from space homogeeuos to ihomogeeuos case 8 4 Derivatio of f for the space ihomogeeous Boltzma equatio i secod order 10 5 Derivatio of secod order mobility ad diffusio tesors 15 6 Implemetatio to C Code validatio Eistei s relatio Symmetries Compariso with Mote Carlo simulatios Coclusio 37 Refereces 37 2

3 1 Tass S. C. Brugger ETH Zurich) developed a ew Mote Carlo method to solve the Boltzma equatio withi semicoductors [1], [2]. This method uses the trasportcoefficiets mobility µ ad diffusio D. But whe the semicoductor device becomes to big ad the dopigs become to high these Mote Carlo Method as well as ay other Mote Carlo Method) gets to time cosumig for applicatio. I particular bipolar trasistors ca ot be simulated till today. Additioally S. C. Brugger developed a very detailed wor about Momets of the Iverse Scatterig Operator of the Boltzma equatio MISOs). His ew iterative method to derive ay momet of a ISO Iverse Scatterig Operator) opes the possibility to solve the Boltzma equatio without the ivertatio of huge matrices. To specify, the solutio ca be developed ito a Taylor series i electric field E ad i gradiet of quasi Fermi potetial ψ. Because the mobility ad the diffusio ca be writte as momets of the ISO themselves a ew method to dervive µ ad D ca be extracted. But whe a exteral field is applied, the resultig Taylor series for µ ad D i E ad ψ does ot coverge at ay positio i the semicodictor but just i those regios where the system is still ear the equilibrium. These regios are those where dopigs of the semicoductor are very high so that the electros ad holes iteract frequetly withi the system. However these are exact the same regios, where Mote Carlo simulatios are computatioal expesive. At the locatios where dopigs are low so the scatterig rate is low) the Taylor series does ot coverge but the Mote Carlo simulatios are fast eought for applicatio. Mai idea is to use the aalytical solutio where the series coverges ad to use the Mote Carlo method otherwise. Thus this could be the first method to simulate bipolar trasistors. My tas was to deduct the aalytical expressios for µ ad D for the space ihomogeeous case up to the secod order ad to implemet them to C++. Therefor I first had to geeralize the aalytical method from the space homogeeous case to the space ihomogeeous case. At the ed a compariso with pure Mote Carlo simulatios i bul silico should varify the implemetatio ad visualize the covergece domai. 3

4 2 Itroductio 2.1 Curret-based MC method I [2] a ew oe-particle Mote Carlo method is proposed which taes i to accout geeratio-recombiatio processes ad quatum correctios. The basic idea is to couple the Boltzma trasport equatio ot oly with the Poisso equatio as proposed i [4]) but also with the cotiuity equatio. Drift diffusio equatio: Cotiuity equatio: Liear Poisso equatio: qµ E + q T r D ) = J 2.1) qpµ p E + q T r pd p ) = J p 2.2) r J + J p ) = qg R) 2.3) ǫ φ) = qp + N D N A ) 2.4) Figure 1: This figure shows the ew Curret based Mote Carlo Method. I regios where the system is ear the equilibrium, trasportparameters ca be calculated semi-aalytically. That is mai topic of this semesterwor 4

5 This set of equatios is self-cosistet because of the additioal Drift diffusio equatios. Mobility tesor µ, µ p ad the diffusio tesor D, D p : electros, p: holes) are usually extracted from Mote Carlo simulatio. But istead of Mote Carlo simulatio the goal is to apply a semi-aalytical solutio derived i sectio 5 for regios of low electric field ad high dopigs. 2.2 Valid regios of the semi-aalytical solutio The error of a Taylor expasio ca be derived by R = x x 0 +1)! f+1) x). e ca i geeral compare the first order with the secod order ad defie a criterio, where the semi-aalytical solutio is valid. The explicit forms of D ad µ up to secod order read: D = D eq + EM D 1 F + FM D 2 F 2.5) µ = µ eq + EM µ 1 F + FM µ 2 F 2.6) where D ad µ are 3 3 tesors ad M µ,d i are 3 3 matrixes of 3 3 tesors. It is worth to poit out that i commo simulators, the M1 X matrixes are assumed to be zero i every compoet which is disproved i this semesterwor). Additioally prior affords were made to calculate or estimate these matrixes but it could ot be doe [4]). e expect the coefficiets of pure gradiet quasi Fermi potetial F M2 X) to be 10 2 times smaller the those of the mixed terms M1 X ). I high doped regios F icreases ad E decreases, so that the validatio criterio will be fulfilled. A secod poit is, that the coefficiets strogly deped o the total scatterig rate which itself depeds o the dopig. If the dopig icreases, the coefficiets decrease. The latter behaviour is visualized i subsectio 7.3. Collectively we ote, that the approximatio must be valid i high doped regios. This is e.g. give i a bipolar trasitor: 5

6 Figure 2: The figure shows the dopig cocetratio withi a moder bipolar trasistor. The aalytical solutio should be valid from the order of

7 2.3 Momets Of The Iverse Scatterig Operator MISOs) The basic idea behid all affords of the semesterwor is the possibility to ivert the scatterig operator of the Boltzma equatio S: where f is the electro/hole desity ad Sf is defied as t f + v r f q E f = Sf 2.7) Sf := b 0 V b0 f 0,b 0 )w 0,b 0,b) f,b)w,b 0,b 0 ))d ) ith the ivertatio asatz we yield: S 1 t f + S 1 v r f S 1 q E f = f eq f eq 2.9) ad as we ca see, this is a equatio i f. Usually a relaxatio time asatz is made to free f from the scatterig operator. But the relaxatio asatz is just heuristic ad ot exact as the iversio asatz 2.9. This asatz was first published by S. C. Brugger i 2006 [3]) e ote that apparetly S 1 S 1 because we see a additioal term eq f eq i equatio 2.9. This reflects the fact, that S has a eigevector with eigevalue 0: The equilibrium distributio f eq. Oe ca extract the property of the ISO: < S 1 g S f >=< g f > < g f eq > 2.10) S. C. Brugger developed a geeral method to iteratively derive ay momet of the ISO [1] chapter 2.3). The momet of a fuctio g is defied as: Sg r, 1 ) := g r, ) S 1 r,, ) d ) Bz If the scatterig operator is oly bad-valley- ad eergy-depedet as i most Mote Carlo simulators) the g momet of the ISO ca be expressed as [1] chapter 2.4): Sg 1 0,b 0 ) = g 0,b 0 ) + ǧǫ 0,b 0 ) + Š 1 g ǫ 0,b 0 ) 2.12) ǧǫ 0,b 0 ) := V b0 g 0,b 0 )δǫ 0,b 0 ) ǫ 0 )d 3 0 Zǫ 0,b 0 ) 2.13) The implemetatio of the umerical method to derive ay MISO is fully doe by S. C. Brugger. That maes it possible to solve the Boltzma equatio semi-aalytically respectively to develope the solutio i a Taylor series as we will see i chapter 5. 7

8 3 Geeralizatio from space homogeeuos to ihomogeeuos case The static ihomogeous Boltzma equatio reads t f + v }{{} r f q E f = Sf 3.1) =0 Our goal is to develop f r, ) i a potetial series of r φ r) ad r ψ r) such that the ihomogeeous, static Boltzma equatio is fulfilled. I [1] Appedix B a method is described to develop f r, ) iteratively for the homogeeous case. I the space ihomogeeuos case the strategy stays the same. First we seperate f r, ) ito two fuctio r) ad h r, ) where r) is the desity of electos ad h r, ) i,j is a term i the order of O r φ) i, r ψ) j) : f r, ) = r) h r, ) = r) i,j=0 h r, ) i,j 3.2) e express the desity of electros by r) = e βqφ r) ψ r)), β = 1 B T 3.3) where φ r) is the electric potetial, ψ r) is the quasi-fermi potetial ad q is the electro charge. Now isertig 3.2 ito 3.1 gives: v r r) i,j=0 h r, ) i,j q E r) i,j=0 h r, ) i,j = S Now we apply the product rule for r ad divide by r) o both sides. v r r) r) = r log r)) i,j=0 h r, ) + r i,j i,j=0 h r, ) i,j 0 q E I the followig we eglect the term r i,j=0 r, h ) operator s depedece o f to express it as a series: i,j i,j=0 r, ) r) i,j=0 h r, ) i,j h r, )i,j = S r, ) i,j=0 3.4) h r, ) i,j 3.5). e isert 3.3 ad exploit the scatterig 8

9 vqβ r φ r) ψ r)) i,j=0 h r, ) q E i,j i,j=0 h r, )i,j = i,j=0 S r, )i,j i,j=0 h r, ) i,j The goal is to obtai a iterative method to derive h i,j by writig dow equatio 3.6 for the order O r φ) i, r ψ) j) ad write all terms i h i,j o the lefthad side ad the terms i h i 1,j or h i,j 1 o the righthad side: S r, )eq h r, )i,j + S r, )i,j h r, ) = vqβ rφh r, ) + q eq i 1,j rφ h r, ) vqβ rψh r, ) i 1,j i, 3.7) e used r φ = E, h r, ) r, ) ad S r, )eq = S r, ) 3.6). Applyig the geeral = h 0,0 eq 0,0 method show i [1] Appedix B to ivert the scatterig operator ad covertig Eq. 3.7, results i a recursive expressio for i,j > 0: h r, ) = h eq r,ǫ) Sg 1 i,j i,j r, ) ) + α i,j 3.8) with g i,j r, ) = 1 [ r φ vqβh i 1,j r, h ) + q eq h i 1,j r, )) vqβ r ψh i,j 1 r, )], 3.9) S 1 g i,j is the g i,j MISO: ad Sg 1 i,j r, ) := g i,j r, )S 1 r,, ) d ) Bz α i,j := Bz h eq r, ) Sg 1 i,j r, ) d 3 r, ). 3.11) d 3 Bz h eq 9

10 4 Derivatio of f for the space ihomogeeous Boltzma equatio i secod order e wat to calculate h up to the secod order, which meas: h r, ) = h eq r,ǫ) + h 0,1 r, ) + h 1,1 r, ) + h 0,2 r, ) I our case we oly eed to calculate h 0,1, h 1,1 ad h 0,2 because h 1,0 r, ) = 0, h 2,0 r, ) = 0. h 1,2 ad h 2,1 have odd parity i ad therefore vaish, whe we derive the momets of the mobility µ i,j or of the diffusio costat D i,j. The reaso is, that µ i,j ad D i,j have odd parity too ad the product of two odd fuctios gives a fuctio with eve parity. The term h 2,2 is the first to be eglegted. By iductio we see, that all terms h,0 = 0: ) ǫ is the eergy of a electro at the mometum. g 1,0 r, ) = 1 h eq rφ vqβh 4.1) h eq r, ) = cost e βǫ ) 4.2) r, ) + q eq h r, ) eq vqβ rψ h 1, 1 r, ) = 0 = vqβh r, ) eq g,0 r, ) = 1 r φ vqβh r, h ) + q eq 1,0 h r, ) ) vqβ r ψ h, 1 1,0 =0 h 1,0 = 0 r, ) = 0 =0 h,0 = 0 4.3) Our goal is, to express h 0,1, h 1,1 ad h 0,2 i terms of parameters, which we be calculated with a computer. Therefore the coversio 2.12 is applied: Sg 1 0,b 0 ) = g 0,b 0 ) + ǧǫ 0,b 0 ) + Š 1 g ǫ 0,b 0 ) ǧǫ 0,b 0 ) := V b0 g 0,b 0 )δǫ 0,b 0 ) ǫ 0 )d 3 0 Zǫ 0,b 0 ) Zǫ 0,b 0 ) is the desity of states, b 0 is the bad-idex. 10

11 h 0,1 : g 0,1 r, ) = 1 h eq r φ vqβ h 1,1 =0 r, ) Sg 1 0,1 r, ) = g 0,1 r, )S 1 r,, ) Bz + q h 1,1 =0 r, ) ) vqβ r ψh eq r, d 3 = qβ r ψ Sg 1 0,1 r, ) = qβ r ψs 1 v = qβ r ψ [ h r, ) = h eq r,ǫ) qβ r ψ 0,1 g 0,1 r, ) = vqβ r ψ vs 1 r,, ) d 3 Bz [ v,b) ˇ vǫ,b) Š 1 v,b) ˇ vǫ,b) Š 1 v ǫ,b) ] v ǫ,b) ) ] + 4.4) h 1,1 : g 1,1 r, ) = rφ vqβh 0,1 r, h ) + rφ q eq h eq h 0,1 r, ) rφ vqβ r ψ h 1,0 h eq a b [ a = 1 v r φ vqβh eq r,ǫ) qβ r ψ,b) ˇ vǫ,b) h eq = r φ vq 2 β 2 [ r ψ Š 1 v ǫ,b) v,b) ˇ vǫ,b) Š 1 v ǫ,b) r, ) =0 ) + ] ) + qβ = ] 4.5) 4.6) +β q2 [ b = 1 r φβ q2 h eq v h eq r,ǫ) r ψ,b) ˇ vǫ,b) = 1 r φβ q2 h eq h eq = β vh eq Š 1 v ǫ,b) r, ) v r ψ,b) ˇ vǫ,b) Š 1 v ǫ,b) ) + qβ ) + qβ = a r φ) j r ψ) i [ j,i=0 m 1 { }} { ) j v i,b) ǫ ˇv i ǫ,b) v j,b) 11 )] ) v i,b) ˇv i ǫ,b) tot 2 ǫ,b) ǫ v j,b) = + ǫ v i ǫ,b) v j,b) ] 4.7)

12 = βq 2 r φ) j r ψ) i [ j,i=0 m 1 c ǫ ˇv i ǫ,b)v j,b) d g 1,1 = a + b = v i,b) ˇv i ǫ,b) tot 2 ǫ,b) ǫ v j,b) e ǫ Šv 1 i ǫ,b) v j,b) ] f 4.8) = βq 2 j,i=0 r φ) j r ψ) i [ c 0,b 0 ) + cˇ ǫ 0,b 0 ) + Š 1 c ǫ 0,b 0 ) Sc 1 Sg 1 1,1 0,b 0 ) = g 1,1 0,b 0 ) + ǧ 1,1 ǫ 0,b 0 ) + Š 1 g 1,1 ǫ 0,b 0 ) = + d 0,b 0 ) d ˇ ǫ 0,b 0 ) Š 1 d ǫ 0,b 0 ) + S 1 d + e 0,b 0 ) eˇ ǫ 0,b 0 ) Š 1 e ǫ 0,b 0 ) + f 0,b 0 ) ˇf ǫ 0,b 0 ) tot ǫ 0,b 0 ) Š 1 f ǫ 0,b 0 ) ] Se 1 S 1 f 4.9) c = c 0,b 0 ) + cˇ ǫ 0,b 0 ) S 1 + Š 1 c ǫ 0,b 0 ) = m 1 + ˇm 1 tot 2 ǫ,b) + Š 1 ˇm 1 ǫ 0,b 0 ) 4.10) d = d 0,b 0 ) d ˇ ǫ 0,b 0 ) S 1 ǫ ˇv i ǫ,b) v j ),b) ˇv j ǫ,b) Š 1 d ǫ 0,b 0 ) = tot 2 ǫ 0,b 0 ) Š 1 ǫ ˇv iˇv j ǫ 0,b 0 ) 4.11) = v i,b)v j,b) ˇv i ǫ,b)v j,b) ǫ ˇ e = e 0,b 0 ) eˇ ǫ 0,b 0 ) S 1 v i v j )ǫ,b) ˇv i ǫ,b)ˇv j ǫ,b) tot 2 ǫ,b) ǫ Š 1 e ǫ 0,b 0 ) = Š ˇ v i v j)ǫ,b) ˇv i ǫ,b)ˇv j ǫ,b) ǫ ǫ 0,b 0 ) 4.12) 12

13 S 1 f = f 0,b 0 ) ˇf ǫ 0,b 0 ) ǫ Šv 1 i ǫ,b) v j ),b) ˇv j ǫ,b) Š 1 f ǫ 0,b 0 ) = Š 1 ǫ v i ǫ,b) ˇv j ǫ,b) ǫ 0,b 0 ) 4.13) h r, ) = h eq r,ǫ) Sg 1 1,1 1,1 r, ) ) + α 1,1 = = h eq r,ǫ) βq 2 r φ) j r ψ) i [ m 1 + ˇm 1 j,i=0 + Š 1 ǫ ˇm 1 0,b 0 ) + } {{ tot } + ǫ ˇv i ǫ,b) v j,b) ˇv j ǫ,b) ) S 1 c tot 2 ǫ 0,b 0 ) Š 1 ǫ ˇv iˇv j ǫ 0,b 0 ) + } {{ tot } S 1 d v i,b)v j,b) ˇv i ǫ,b)v j,b) v tot + 2 ǫ,b) ǫ ˇ i v j )ǫ,b) ˇv i ǫ,b)ˇv j ǫ,b) tot 2 ǫ,b) ǫ Š v ˇ ǫ i v j)ǫ,b) ˇv i ǫ,b)ˇv j ǫ,b) 0,b 0 ) + tot 2 ǫ } {{ ǫ,b) } S 1 e ǫ Šv 1 i ǫ,b) v j,b) ˇv j ǫ,b) ) + Š 1 ǫ ǫ Šv 1 i ǫ,b) ˇv j ǫ,b) 0,b 0 ) ] + α 1,1 ) S 1 f 4.14) 13

14 h 0,2 : g 0,2 r, ) = 1 r φ vqβ h 1,2 r, h ) + q eq h 1,2 r, ) vqβ r ψh 0,1 r, =0 =0 = q 2 β 2 r ψ) i r ψ) j i,j=1 g 0,2 r, ) = r ψ vq 2 β [ 2 r ψ [ = q 2 β 2 r ψ) i v i r ψ) j i,j=1 v i,b)v j,b) + v i,b) ˇv j ǫ,b) x v,b) ˇ vǫ,b) Š 1 v ǫ,b) v j,b) ˇv j ǫ,b) Š 1 v j ǫ,b) + v i,b)š 1 v j ǫ,b) y Sg 1 0,2 0,b 0 ) = g 0,2 0,b 0 ) + ǧ 1,1 ǫ 0,b 0 ) + Š 1 g 0,2 ǫ 0,b 0 ) = = q 2 β 2 r ψ) i r ψ) j [ x 0,b 0 ) + ˇx ǫ 0,b 0 ) + i,j=1 tot ǫ 0,b 0 ) Š 1 x ǫ 0,b 0 ) + Sx 1 + y 0,b 0 ) + ˇy ǫ 0,b 0 ) + Š 1 y ǫ 0,b 0 ) + z 0,b 0 ) ž ǫ 0,b 0 ) tot ǫ 0,b 0 ) Sy 1 ) ) Š 1 z ǫ 0,b 0 ) Sz 1 + βq + βq ) ] ] v i,b) βq r ψ) j = = z 4.15) ] 4.16) = v i,b)v j,b) v i,b) ˇv j ǫ,b) v ǫ,b) ˇ i v j )ǫ,b) ˇv i ǫ,b) ˇv j ǫ,b) ǫ,b) Sx 1 = x 0,b 0 ) + ˇx ǫ 0,b 0 ) + Š 1 x ǫ 0,b 0 ) = Š 1ˇ v i v j)ǫ,b) ˇv i ǫ,b) vˇ j ǫ,b) ǫ 0,b 0 ) 4.17) Sy 1 = y 0,b 0 ) + ˇy ǫ 0,b 0 ) + Š 1 y ǫ 0,b 0 ) = Š 1 v j ǫ,b) v i,b) + ˇv i,b) + Š 1 v i ǫ 0,b 0 ),b)š 1 v j ǫ,b) 4.18) Sz 1 = z 0,b 0 ) ž ǫ 0,b 0 ) = βq r ψ) j Š 1 z ǫ 0,b 0 ) = βq r ψ) j S 1 v i = +v i,b) ˇv i ǫ 0,b 0 ) Š 1 ˇv i ǫ 0,b 0 ) tot ) 4.19) 14

15 + Š 1 + v i,b)v j,b) v i,b) ˇv j ǫ,b) v ǫ,b) ˇ i v j )ǫ,b) ˇv i ǫ,b) ˇv j ǫ,b) ǫ,b) h 0,2 = h eq r,ǫ) Sg 1 0,2 r, ) ) + α 0,2 = = h eq r,ǫ) q 2 β 2 r ψ) i r ψ) j [ i,j=1 Š 1ˇ v i v j)ǫ,b) ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) + } {{ } Sx 1 v j ǫ,b) v i,b) + ˇv i,b) + Š 1 v i ǫ 0,b 0 ) +,b)š 1 v j ǫ,b) βq r ψ) j Sy 1 5 Derivatio of secod order mobility ad diffusio tesors v i,b) ˇv i ǫ 0,b 0 ) Š 1 ˇv i ǫ 0,b 0 ) Sz ) Our goal is to derive the mobility tesor µ m ad the diffusio tesor D m. By defiitio of [1] chapter 3.3 these trasport parameters read: µ m = q ) m Sv 1 r),b)f,b)d 3 = q ) m Sv 1,b)h,b)d 3 5.1) Bz D m = 1 Sv 1 r),b)v m,b)f,b)d 3 = Sv 1,b)v m,b)h,b)d 3 5.2) Bz Bz e first rewrite the term for µ by combiig 4.2, 4.4, 4.14 ad 4.16: Bz ) ]+ +α 0,2 ) 15

16 + Š 1 µ m = q = q Bz Bz m 1 m ) m Sv 1,b) [h eq r,ǫ) + h 1,1 r, ) + h 0,2 r, )] d 3 = ǫvˇ ǫ,b)v m,b) v,b) vˇ ǫ,b) tot 2 ǫ,b) ǫ v m,b) ǫ v ǫ,b) v m,b) ) h eq r,ǫ) [ 1 + βq 2 r φ) j r ψ) i [ m 1 + ˇm 1 j,i=0 + Š 1 ǫ ˇm 1 0,b 0 ) + } {{ tot } + ǫ ˇv i ǫ,b) v j,b) ˇv j ǫ,b) ) S 1 c tot 2 ǫ 0,b 0 ) Š 1 ǫ ˇv iˇv j ǫ 0,b 0 ) + } {{ tot } S 1 d v i,b)v j,b) ˇv i ǫ,b)v j,b) v tot + 2 ǫ,b) ǫ ˇ i v j )ǫ,b) ˇv i ǫ,b)ˇv j ǫ,b) tot 2 ǫ,b) ǫ Š v ˇ ǫ i v j)ǫ,b) ˇv i ǫ,b)ˇv j ǫ,b) 0,b 0 ) + tot 2 ǫ } {{ ǫ,b) } ǫ Šv 1 i ǫ,b) v j ),b) ˇv j ǫ,b) S 1 e + Š 1 ǫ ǫ Šv 1 i ǫ,b) ˇv j ǫ,b) 0,b 0 ) ] + α 1,1 ) + q 2 β 2 r ψ) i r ψ) j [ i,j=1 S 1 f v i,b)v j,b) v i,b) ˇv j ǫ,b) v ǫ,b) ˇ i v j )ǫ,b) ˇv i ǫ,b) ˇv j ǫ,b) ǫ,b) Š 1ˇ v i v j)ǫ,b) ˇv i ǫ,b) ˇ ǫ 0,b 0 ) + v j ǫ,b) v j ǫ,b) v i,b) + ˇv i,b) + Š 1 v i ǫ 0,b 0 ) +,b)š 1 v j ǫ,b) βq r ψ) j Sy 1 S 1 x +v i,b) ˇv i ǫ 0,b 0 ) Š 1 ˇv i ǫ 0,b 0 ) Sz 1 Now we assort the terms which deped explicitly o. The resultig terms are to itegrate over iso eergy surfaces see sectio 6). ) ]+ +α 0,2 ) ]d 3 5.3) 16

17 µ m = q m 1 m,b) h eq r,ǫ) Bz v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) + ǫš 1 v i ǫ,b)v j,b) v i,b)v j,b) + v i,b)v j,b) 3 +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ 1 + βq 2 r φ) j r ψ) i [ j,i=0 + ǫ ˇv i ǫ,b)v j,b) tot 2 ǫ 0,b 0 ) ǫ ˇv iǫ,b)v j,b) tot 3 ǫ,b) ǫ ǫš 1 v i ǫ,b)ˇv j ǫ,b) v i,b) ˇv j ǫ,b) +βq 2 v,b)v m,b) h eq r,ǫ) ǫ tot 2 ǫ,b) + m 1 + ˇ v i v j )ǫ,b) 3 v m,b) ǫ v ǫ,b)h eq r,ǫ)[ tot ˇm 1 ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot ǫ 0,b 0 ) + Š 1 ǫ ˇm ǫ,b) 1 0,b 0 )+ Š 1 ǫ ˇv iˇv j ǫ 0,b 0 )+ ǫ + ˇv iǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ Š v ˇ ǫ i v 0,b 0 ) + Š ˇviǫ,b)ˇvjǫ,b) ǫ 0,b 0 )+ j)ǫ,b) tot 2 ǫ,b) ǫtot tot 2 ǫ Š 1 ǫ v i ǫ,b) ˇv j ǫ,b) ǫ 0,b 0 ) ] + α 1,1 ) + q 2 β 2 v i ˇv j )ǫ,b) tot 2 ǫ,b) + ˇv iǫ,b) ˇv j ǫ,b) tot 2 ǫ,b) Š 1 Š 1ˇ v i v j)ǫ,b) r ψ) i r ψ) j [ i,j=1 ǫ 0,b 0 ) + Š 1 ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) v i v j ǫ,b),b) + ˇv i Š 1 v j ǫ,b),b) + Š 1 v i ǫ 0,b 0 )+,b)š 1 v j ǫ,b) βq rψ) + j v i,b) j,i=0 βq rψ) j ˇv i ǫ 0,b 0 ) µ m = q Bz m 1 m,b) h eq r,ǫ) r φ) j r ψ) i [ m 1 m,b) heq r,ǫ) ǫ,b) m 1 tot 2 ǫ,b) +m 1 m,b) h eq r,ǫ) ˇm 1 +m 1 m,b) h eq r,ǫ) ǫ,b)š 1 ǫ ˇm 1 0,b 0 ) tot +m 1 m,b) h eq r,ǫ) ǫ ˇv i ǫ,b)v j,b) tot 2 ǫ 0,b 0 ) 17 βq r ψ) j ˇv i ǫ 0,b 0 ) ] + +α 0,2 ) ] d 3 5.4)

18 m 1 m,b) h eq r,ǫ) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot 2 ǫ 0,b 0 ) m 1 m,b) h eq r,ǫ) ǫ,b)š 1 ǫ ˇv iˇv j ǫ 0,b 0 ) tot +m 1 m,b) h eq r,ǫ) m 1 m,b) h eq r,ǫ) m 1 m,b) h eq r,ǫ) +m 1 m,b) h eq r,ǫ) m 1 m,b) h eq r,ǫ) Š v i,b)v j,b) tot 3 ǫ,b) ǫ ˇv i ǫ,b)v j,b) tot 3 ǫ,b) ǫ v i ˇv j )ǫ,b) tot 3 ǫ,b) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ v ˇ i v j)ǫ,b) ǫtot ǫ 0,b 0 ) +m 1 m,b) h eq r,ǫ) Š ˇv i ǫ,b)ˇv j ǫ,b) ǫ ǫ 0,b 0 ) +m 1 m,b) h eq r,ǫ) ǫ Šv 1 i ǫ,b)v j,b) m 1 m,b) h eq r,ǫ) ǫ Šv 1 i ǫ,b)ˇv j ǫ,b) m 1 m,b) h eq r,ǫ) ǫ,b)š 1 ǫ tot ǫ Šv 1 i ǫ,b) ˇv j ǫ,b) 0,b 0 ) ] +q 2 β 2 r ψ) i r ψ) j [ + m 1 m,b) h eq r,ǫ) i,j=1 +m 1 m,b) h eq r,ǫ) α 1,1 v i,b)v j,b) m 1 m,b) h eq r,ǫ) v i,b) ˇv j ǫ,b) tot 2 ǫ,b) m 1 m,b) h eq r,ǫ) v i ˇv j )ǫ,b) tot 2 ǫ,b) +m 1 m,b) h eq r,ǫ) m 1 m,b) h eq r,ǫ) Š 1ˇ ˇv i ǫ,b) ˇv j ǫ,b) v i v j)ǫ,b) +m 1 m,b) h eq r,ǫ) Š 1 ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) ǫ 0,b 0 ) 18

19 m 1 m,b) h eq r,ǫ) ǫ,b)š 1 v i v j ǫ,b),b) tot +m 1 m,b) h eq r,ǫ) ǫ,b)š 1 ˇv i v j ǫ,b),b) tot +m 1 m,b) h eq r,ǫ) ǫ,b)š 1 v i ǫ 0,b 0 ),b)š 1 v j ǫ,b) +m 1 m,b) h eq r,ǫ) βq rψ) j v i,b) m 1 m,b) h eq r,ǫ) βq rψ) j ˇv i ǫ 0,b 0 ) m 1 m,b) h eq r,ǫ) ˇv βq r ψ) i ǫ 0,b 0 ) ] j +m 1 m,b) h eq r,ǫ) α 0,2 ] 5.5) +βq 2 v m,b) h eq r,ǫ) ǫ ˇv ǫ,b) r φ) j r ψ) i [ +v m,b) heq r,ǫ) ǫ ˇ tot 2 ǫ,b) j,i=0 v ǫ,b) ǫ,b) v m,b) h eq r,ǫ) ǫ ˇv ǫ,b) v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ˇm 1 m 1 ˇm 1 ǫ 0,b 0 ) v m,b) h eq r,ǫ) ǫ ˇv ǫ,b) ǫ ˇv i ǫ,b)v j,b) tot 2 ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot 2 ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ǫ ˇv iˇv j ǫ 0,b 0 ) v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) v i,b)v j,b) tot 3 ǫ,b) ǫ +v m,b) h eq r,ǫ) ǫ ˇv ǫ,b) ˇv i ǫ,b)v j,b) tot 3 ǫ,b) ǫ +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) v i ˇv j )ǫ,b) tot 3 ǫ,b) ǫ v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ˇv i ǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ 19

20 +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) Š ˇ ǫ v i v 0,b 0 ) j)ǫ,b) tot 2 ǫ,b) ǫtot v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) Š ˇv i ǫ,b)ˇv j ǫ,b) ǫ 0,b 0 ) tot 2 ǫ v m,b) h eq r,ǫ) ǫ ˇv ǫ,b) ǫ Šv 1 i ǫ,b)v j,b) +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ǫ Šv 1 i ǫ,b)ˇv j ǫ,b) +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ǫ ǫ Šv 1 i ǫ,b) ˇv j ǫ,b) 0,b 0 ) ] v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) α 1,1 +q 2 β 2 r ψ) i r ψ) j [ v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) i,j=1 v i,b)v j,b) +v m,b) h eq r,ǫ) ǫ ˇv ǫ,b) v i,b) ˇv j ǫ,b) tot 2 ǫ,b) +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) v i ˇv j )ǫ,b) tot 2 ǫ,b) v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ˇv i ǫ,b) ˇv j ǫ,b) tot 2 ǫ,b) +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ǫ 0,b 0 ) v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ˇ v i v j)ǫ,b) ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) v i v j ǫ,b),b) ˇv i v j ǫ,b),b) v m,b) h eq r,ǫ) ǫ ˇv ǫ,b) v i ǫ 0,b 0 ),b)š 1 v j ǫ,b) v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) βq rψ) j v i,b) +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) βq rψ) j ˇv i ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ˇv βq r ψ) i ǫ 0,b 0 ) ] j 20

21 v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) α 0,2 ] 5.6) +βq 2 r φ) j r ψ) i [ j,i=0 v,b)v m,b) h eq r,ǫ) ǫ v,b)v m,b) heq r,ǫ) ǫtot tot 2 ǫ,b) m 1 tot 2 ǫ,b) v,b)v m,b) h eq r,ǫ) ǫ v,b)v m,b) h eq r,ǫ) ǫ v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ 1 ˇm tot 2 ǫ,b) ˇm 1 ǫ 0,b 0 ) ǫ ˇv i ǫ,b)v j,b) tot 2 ǫ 0,b 0 ) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot 2 ǫ 0,b 0 ) ǫ ˇv iˇv j ǫ 0,b 0 ) v i,b)v j,b) tot 3 ǫ,b) ǫ ˇv i ǫ,b)v j,b) tot 3 ǫ,b) ǫ v i ˇv j )ǫ,b) tot 3 ǫ,b) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ Š ˇ v i v j)ǫ,b) ǫtot ǫ 0,b 0 ) v,b)v m,b) h eq r,ǫ) ǫ tot 2 ǫ,b) Š ˇv i ǫ,b)ˇv j ǫ,b) ǫ 0,b 0 ) tot 2 ǫ v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ 21 ǫ Š 1 v i ǫ,b)v j,b) ǫ Š 1 v i ǫ,b)ˇv j ǫ,b) ǫ v i ǫ,b) ˇv j ǫ,b) ǫ 0,b 0 ) ] v,b)v m,b) h eq r,ǫ) ǫ tot 2 ǫ,b) α 1,1

22 +q 2 β 2 r ψ) i r ψ) j [ v,b)v m,b) h eq r,ǫ) ǫ tot 2 ǫ,b) i,j=1 +v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ v,b)v m,b) h eq r,ǫ) ǫ v i,b)v j,b) v i,b) ˇv j ǫ,b) tot 2 ǫ,b) v i ˇv j )ǫ,b) tot 2 ǫ,b) ˇv i ǫ,b) ˇv j ǫ,b) tot 2 ǫ,b) ˇ v i v j)ǫ,b) ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) ǫ 0,b 0 ) +v,b)v m,b) h eq r,ǫ) ǫ tot 2 ǫ,b) Šv 1 v i j ǫ,b),b) v,b)v m,b) h eq r,ǫ) ǫ tot 2 ǫ,b) Šv 1 ˇv i j ǫ,b),b) v,b)v m,b) h eq r,ǫ) ǫ tot 2 ǫ,b) v i ǫ 0,b 0 ),b)š 1 v j ǫ,b) v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ βq rψ) j v i,b) βq rψ) j ˇv i ǫ 0,b 0 ) +v,b)v m,b) h eq r,ǫ) ǫ tot 2 ǫ,b) ˇv βq r ψ) i ǫ 0,b 0 ) ] j v,b)v m,b) h eq r,ǫ) ǫ α 0,2 ] 5.7) +βq 2 r φ) j r ψ) i [ j,i=0 +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v m,b) heq r,ǫ)ˇvǫ,b) ǫtot tot 2 ǫ,b) m 1 tot 2 ǫ,b) +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ 22 1 ˇm tot 2 ǫ,b) ˇm 1 ǫ 0,b 0 ) ǫ ˇv i ǫ,b)v j,b) tot ǫ 0,b 0 )

23 v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot ǫ 0,b 0 ) ǫ ˇv iˇv j ǫ 0,b 0 ) v i,b)v j,b) tot 3 ǫ,b) ǫ ˇv i ǫ,b)v j,b) tot 3 ǫ,b) ǫ v i ˇv j )ǫ,b) tot 3 ǫ,b) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) Š ˇ ǫ v i v 0,b 0 ) j)ǫ,b) tot 2 ǫ,b) ǫtot +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) Š ˇv i ǫ,b)ˇv j ǫ,b) ǫ 0,b 0 ) tot 2 ǫ +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ ǫ Š 1 v i ǫ,b)v j,b) ǫ Š 1 v i ǫ,b)ˇv j ǫ,b) ǫ v i ǫ,b) ˇv j ǫ,b) ǫ 0,b 0 ) ] +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) α 1,1 +q 2 β 2 r ψ) i r ψ) j [ + v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) i,j=1 v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v i,b)v j,b) v i,b) ˇv j ǫ,b) tot 2 ǫ,b) v i ˇv j )ǫ,b) tot 2 ǫ,b) ˇv i ǫ,b) ˇv j ǫ,b) tot 2 ǫ,b) ˇ v i v j)ǫ,b) ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) ǫ 0,b 0 ) 23

24 v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) Šv 1 v i j ǫ,b),b) +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) Šv 1 ˇv i j ǫ,b),b) +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) v i ǫ 0,b,b)Šv 1 0 ) j ǫ,b) +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ βq rψ) j v i,b) βq rψ) j ˇv i ǫ 0,b 0 ) v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) ˇv βq r ψ) i ǫ 0,b 0 ) ] j +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ α 0,2 ] 5.8) +βq 2 r φ) j r ψ) i [ j,i=0 v m,b) ǫ v ǫ,b)h eq r,ǫ) +v m,b) heq r,ǫ)ˇvǫ,b) ǫtot tot 2 ǫ,b) m 1 tot 2 ǫ,b) v m,b) ǫ Šv 1 ˇm 1 ǫ,b)h eq r,ǫ) tot 2 ǫ,b) v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) Š 1 ǫ ˇm 1 0,b 0 ) v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) ǫ ˇv i ǫ,b)v j,b) tot 2 ǫ 0,b 0 ) +v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot 2 ǫ 0,b 0 ) +v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) Š 1 ǫ ˇv iˇv j ǫ 0,b 0 ) v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) v i,b)v j,b) tot 3 ǫ,b) ǫ +v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) ˇv iǫ,b)v j,b) tot 3 ǫ,b) ǫ +v m,b) ǫ Šv 1 v i ˇv j )ǫ,b) ǫ,b)h eq r,ǫ) tot 3 ǫ,b) ǫ v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) ˇv iǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ +v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) Š v ˇ ǫ i v 0,b 0 ) j)ǫ,b) tot 2 ǫ,b) ǫtot 24

25 v m,b) ǫ v ǫ,b)h eq r,ǫ)š ˇv i ǫ,b)ˇv j ǫ,b) ǫ ǫ 0,b 0 ) v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) ǫš 1 v i ǫ,b)v j,b) +v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) ǫš 1 v i ǫ,b)ˇv j ǫ,b) +v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) Š 1 ǫ ǫ Šv 1 i ǫ,b) ˇv j ǫ,b) 0,b 0 ) ] v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ)α 1,1 +q 2 β 2 r ψ) i r ψ) j [ v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) v i,b)v j,b) tot 2 ǫ,b) i,j=1 +v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) v i,b) ˇv j ǫ,b) tot 2 ǫ,b) +v m,b) ǫ Šv 1 v i ˇv j )ǫ,b) ǫ,b)h eq r,ǫ) tot 2 ǫ,b) v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) ˇv iǫ,b) ˇv j ǫ,b) tot 2 ǫ,b) +v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) Š 1ˇ ǫ 0,b 0 ) v i v j)ǫ,b) v m,b) ǫ v ǫ,b)h eq r,ǫ) Š 1 ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) +v m,b) ǫ Šv 1 v i ǫ,b)h eq r,ǫ) Š 1 v j ǫ,b),b) v m,b) ǫ Šv 1 ˇv i ǫ,b)h eq r,ǫ) Š 1 v j ǫ,b),b) v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) Š 1 v i ǫ 0,b 0 ),b)š 1 v j ǫ,b) v m,b) ǫ v ǫ,b)h eq r,ǫ) +v m,b) ǫ v ǫ,b)h eq r,ǫ) βq rψ) j v i,b) βq rψ) j ˇv i ǫ 0,b 0 ) +v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) ˇv βq r ψ) i ǫ 0,b 0 ) ] j v m,b) ǫ v ǫ,b)h eq r,ǫ) α 0,2 ]d 3 5.9) 25

26 = Bz + ǫš 1 v i ǫ,b)v j,b) v i,b)v j,b) D m = Sv 1,b)v m,b) h eq r,ǫ) + h 1,1 r, ) + h 0,2 r, )) d 3 = Bz v m,b)v 0,b 0 ) h eq r,ǫ) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) v m h eq ǫ,b)š 1 v ǫ 0,b 0 )[ + v i,b)v j,b) βq 2 r φ) j r ψ) i [ j,i=0 + ǫ ˇv i ǫ,b)v j,b) tot 2 ǫ 0,b 0 ) ǫ ˇv iǫ,b)v j,b) tot 3 ǫ,b) ǫ ǫš 1 v i ǫ,b)ˇv j ǫ,b) v i,b) ˇv j ǫ,b) +βq 2 m 1 + ˇ v i v j )ǫ,b) 3 tot ˇm 1 ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot ǫ 0,b 0 ) + Š 1 ǫ ˇm ǫ,b) 1 0,b 0 )+ Š 1 ǫ ˇv iˇv j ǫ 0,b 0 )+ ǫ + ˇv iǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ Š v ˇ ǫ i v 0,b 0 ) + Š ˇviǫ,b)ˇvjǫ,b) ǫ 0,b 0 )+ j)ǫ,b) tot 2 ǫ,b) ǫtot tot 2 ǫ Š 1 ǫ v i ǫ,b) ˇv j ǫ,b) ǫ 0,b 0 ) ] + α 1,1 ) + q 2 β 2 v i ˇv j )ǫ,b) tot 2 ǫ,b) + ˇv iǫ,b) ˇv j ǫ,b) tot 2 ǫ,b) Š 1 j,i=0 Š 1ˇ v i v j)ǫ,b) r ψ) i r ψ) j [ i,j=1 ǫ 0,b 0 ) + Š 1 ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) v i v j ǫ,b),b) + ˇv i Š 1 v j ǫ,b),b) + Š 1 v i ǫ 0,b 0 )+,b)š 1 v j ǫ,b) + βq rψ) j v i,b) βq rψ) j ˇv i ǫ 0,b 0 ) D m = Bz v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) r φ) j r ψ) i [ v mǫ,b)v ǫ,b 0 ) heq r,ǫ) ǫ 0,b 0 ) m 1 tot 2 ǫ,b) +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) βq r ψ) j ˇv i ǫ 0,b 0 ) ] + ˇm 1 +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) )Š 1 ǫ ǫ 0,b ˇm 1 0,b 0 ) 0 +α 0,2 ) ] 5.10) d 3 26

27 +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) ǫ ˇv i ǫ,b)v j,b) tot 2 ǫ 0,b 0 ) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot ǫ 0,b 0 ) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) Š 1 ǫ ˇv iˇv j ǫ 0,b 0 ) +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) v i,b)v j,b) tot 3 ǫ,b) ǫ v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) ˇv i ǫ,b)v j,b) tot 3 ǫ,b) ǫ v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) v i ˇv j )ǫ,b) tot 3 ǫ,b) ǫ +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) ˇv i ǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) Š v ˇ ǫ i v 0,b 0 ) j)ǫ,b) tot 2 ǫ,b) ǫtot +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) Š ˇv i ǫ,b)ˇv j ǫ,b) ǫ ǫ 0,b 0 ) +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) ǫ Šv 1 i ǫ,b)v j,b) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) ǫ Šv 1 i ǫ,b)ˇv j ǫ,b) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) )Š 1 ǫ 0,b ǫ 0 ǫ Šv 1 i ǫ,b) ˇv j ǫ,b) 0,b 0 ) ] +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) α 1,1 +q 2 β 2 r ψ) i r ψ) j [ + v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) i,j=1 v i,b)v j,b) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) v i,b) ˇv j ǫ,b) tot 2 ǫ,b) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) v i ˇv j )ǫ,b) tot 2 ǫ,b) +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) Š 1ˇ ˇv i ǫ,b) ˇv j ǫ,b) v i v j)ǫ,b) ǫ 0,b 0 ) 27

28 +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) Š 1 ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) )Š 1 v i v ǫ 0,b j ǫ,b),b) 0 +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) )Š 1 ˇv i v ǫ 0,b j ǫ,b),b) 0 +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) )Š 1 ǫ 0,b 0 v i ǫ 0,b,b)Šv 1 0 ) j ǫ,b) +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) βq rψ) j v i,b) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) βq rψ) j ˇv i ǫ 0,b 0 ) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) ˇv βq r ψ) i ǫ 0,b 0 ) ] j +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) α 0,2 ] 5.11) +βq 2 j,i=0 v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) r φ) j r ψ) i [ +v m,b) heq r,ǫ)ˇv ǫ 0,b 0 ) ǫ 0,b 0 ) m 1 tot 2 ǫ,b) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ˇm 1 ˇm 1 ǫ 0,b 0 ) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ǫ ˇv i ǫ,b)v j,b) tot 2 ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot ǫ 0,b 0 ) ǫ ˇv iˇv j ǫ 0,b 0 ) v i,b)v j,b) tot 3 ǫ,b) ǫ ˇv i ǫ,b)v j,b) tot 3 ǫ,b) ǫ v i ˇv j )ǫ,b) tot 3 ǫ,b) ǫ 28

29 v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ˇv i ǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ Š ˇ v i v j)ǫ,b) ǫtot ǫ 0,b 0 ) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) Š ˇv i ǫ,b)ˇv j ǫ,b) ǫ 0,b 0 ) tot 2 ǫ v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ǫ Šv 1 i ǫ,b)v j,b) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ǫ Šv 1 i ǫ,b)ˇv j ǫ,b) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ǫ v i ǫ,b) ˇv j ǫ,b) ǫ 0,b 0 ) ] v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) α 1,1 +q 2 β 2 r ψ) i r ψ) j [ v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) i,j=1 v i,b)v j,b) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) v i,b) ˇv j ǫ,b) tot 2 ǫ,b) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) v i ˇv j )ǫ,b) tot 2 ǫ,b) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ˇ ˇv i ǫ,b) ˇv j ǫ,b) v i v j)ǫ,b) ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) v i v j ǫ,b),b) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ˇv i v j ǫ,b),b) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) v i ǫ 0,b 0 ),b)š 1 v j ǫ,b) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) βq rψ) j v i,b) βq rψ) j ˇv i ǫ 0,b 0 ) 29

30 +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ˇv βq r ψ) i ǫ 0,b 0 ) ] j v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) α 0,2 ] 5.12) +βq 2 j,i=0 v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) r φ) j r ψ) i [ +v mh eq ǫ,b)š 1 v ǫ 0,b 0 )m 1 tot 2 ǫ,b) v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) ˇm 1 v m h eq ǫ,b)š 1 v ǫ 0,b 0 )Š 1 ǫ ˇm 1 0,b 0 ) v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) ǫ ˇv i ǫ,b)v j,b) tot 2 ǫ 0,b 0 ) +v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot 2 ǫ 0,b 0 ) +v m h eq ǫ,b)š 1 v ǫ 0,b 0 )Š 1 ǫ ˇv iˇv j ǫ 0,b 0 ) v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) v i,b)v j,b) tot 3 ǫ,b) ǫ +v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) ˇv iǫ,b)v j,b) tot 3 ǫ,b) ǫ v i ˇv j )ǫ,b) +v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) tot 3 ǫ,b) ǫ v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) ˇv iǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ +v m h eq ǫ,b)š 1 v ǫ 0,b 0 )Š v ˇ ǫ i v 0,b 0 ) j)ǫ,b) tot 2 ǫ,b) ǫtot v m h eq ǫ,b)š 1 v ǫ 0,b 0 )Š ˇv i ǫ,b)ˇv j ǫ,b) ǫ ǫ 0,b 0 ) v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) ǫš 1 v i ǫ,b)v j,b) +v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) ǫš 1 v i ǫ,b)ˇv j ǫ,b) +v m h eq ǫ,b)š 1 v ǫ 0,b 0 )Š 1 ǫ ǫ Šv 1 i ǫ,b) ˇv j ǫ,b) 0,b 0 ) ] v m h eq ǫ,b)š 1 v ǫ 0,b 0 )α 1,1 +q 2 β 2 r ψ) i r ψ) j [ v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) v i,b)v j,b) tot 2 ǫ,b) i,j=1 30

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

Modified Line Search Method for Global Optimization

Modified Line Search Method for Global Optimization Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

More information

Semiconductor Devices

Semiconductor Devices emicoductor evices Prof. Zbigiew Lisik epartmet of emicoductor ad Optoelectroics evices room: 116 e-mail: zbigiew.lisik@p.lodz.pl Uipolar devices IFE T&C JFET Trasistor Uipolar evices - Trasistors asic

More information

How To Solve The Phemean Problem Of Polar And Polar Coordiates

How To Solve The Phemean Problem Of Polar And Polar Coordiates ISSN 1 746-733, Eglad, UK World Joural of Modellig ad Simulatio Vol. 8 (1) No. 3, pp. 163-171 Alterate treatmets of jacobia sigularities i polar coordiates withi fiite-differece schemes Alexys Bruo-Alfoso

More information

Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps

Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps Swaps: Costat maturity swaps (CMS) ad costat maturity reasury (CM) swaps A Costat Maturity Swap (CMS) swap is a swap where oe of the legs pays (respectively receives) a swap rate of a fixed maturity, while

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

Lecture 7: Stationary Perturbation Theory

Lecture 7: Stationary Perturbation Theory Lecture 7: Statioary Perturbatio Theory I most practical applicatios the time idepedet Schrödiger equatio Hψ = Eψ (1) caot be solved exactly ad oe has to resort to some scheme of fidig approximate solutios,

More information

Probabilistic Engineering Mechanics. Do Rosenblatt and Nataf isoprobabilistic transformations really differ?

Probabilistic Engineering Mechanics. Do Rosenblatt and Nataf isoprobabilistic transformations really differ? Probabilistic Egieerig Mechaics 4 (009) 577 584 Cotets lists available at ScieceDirect Probabilistic Egieerig Mechaics joural homepage: wwwelseviercom/locate/probegmech Do Roseblatt ad Nataf isoprobabilistic

More information

THE HEIGHT OF q-binary SEARCH TREES

THE HEIGHT OF q-binary SEARCH TREES THE HEIGHT OF q-binary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 6-12 pages of text (ca be loger with appedix) 6-12 figures (please

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

How to use what you OWN to reduce what you OWE

How to use what you OWN to reduce what you OWE How to use what you OWN to reduce what you OWE Maulife Oe A Overview Most Caadias maage their fiaces by doig two thigs: 1. Depositig their icome ad other short-term assets ito chequig ad savigs accouts.

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Solving Logarithms and Exponential Equations

Solving Logarithms and Exponential Equations Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

More information

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee

More information

LECTURE 13: Cross-validation

LECTURE 13: Cross-validation LECTURE 3: Cross-validatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Three-way data partitioi Itroductio to Patter Aalysis Ricardo Gutierrez-Osua Texas A&M

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive

More information

Systems Design Project: Indoor Location of Wireless Devices

Systems Design Project: Indoor Location of Wireless Devices Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 698-5295 Email: bcm1@cec.wustl.edu Supervised

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Finding the circle that best fits a set of points

Finding the circle that best fits a set of points Fidig the circle that best fits a set of poits L. MAISONOBE October 5 th 007 Cotets 1 Itroductio Solvig the problem.1 Priciples............................... Iitializatio.............................

More information

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

Drift-Diffusion Model: Introduction

Drift-Diffusion Model: Introduction Drift-Diffusio Model: Itroductio Preared by: Dragica Vasileska Associate Professor Arizoa State Uiversity The oular drift-diffusio curret equatios ca be easily derived from the oltzma trasort equatio by

More information

NEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff,

NEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff, NEW HIGH PERFORMNCE COMPUTTIONL METHODS FOR MORTGGES ND NNUITIES Yuri Shestopaloff, Geerally, mortgage ad auity equatios do ot have aalytical solutios for ukow iterest rate, which has to be foud usig umerical

More information

5 Boolean Decision Trees (February 11)

5 Boolean Decision Trees (February 11) 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

A Recursive Formula for Moments of a Binomial Distribution

A Recursive Formula for Moments of a Binomial Distribution A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,

More information

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows: Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

More information

Doped semiconductors: donor impurities

Doped semiconductors: donor impurities Doed semicoductors: door imurities A silico lattice with a sigle imurity atom (Phoshorus, P) added. As comared to Si, the Phoshorus has oe extra valece electro which, after all bods are made, has very

More information

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation HP 1C Statistics - average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

5: Introduction to Estimation

5: Introduction to Estimation 5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

More information

Building Blocks Problem Related to Harmonic Series

Building Blocks Problem Related to Harmonic Series TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite

More information

Analyzing Longitudinal Data from Complex Surveys Using SUDAAN

Analyzing Longitudinal Data from Complex Surveys Using SUDAAN Aalyzig Logitudial Data from Complex Surveys Usig SUDAAN Darryl Creel Statistics ad Epidemiology, RTI Iteratioal, 312 Trotter Farm Drive, Rockville, MD, 20850 Abstract SUDAAN: Software for the Statistical

More information

Solving the Navier-Stokes! Equations in Primitive Variables!

Solving the Navier-Stokes! Equations in Primitive Variables! ttp://www.d.edu/~gtryggva/cfd-course/ Outlie Solvig te Navier-Stokes Equatios i Primitive Variables Te projectio metod review Metods for te Navier-Stokes Equatios Moi ad Kim Bell, et al Colocated grids

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

The Fundamental Forces of Nature

The Fundamental Forces of Nature Gravity The Fudametal Forces of Nature There exist oly four fudametal forces Electromagetism Strog force Weak force Gravity Gravity 2 The Hierarchy Problem Gravity is far weaker tha ay of the forces! Why?!?

More information

A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design

A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA 16804-0030 haupt@ieee.org Abstract:

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Elementary Theory of Russian Roulette

Elementary Theory of Russian Roulette Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

Heat (or Diffusion) equation in 1D*

Heat (or Diffusion) equation in 1D* Heat (or Diffusio) equatio i D* Derivatio of the D heat equatio Separatio of variables (refresher) Worked eamples *Kreysig, 8 th Ed, Sectios.4b Physical assumptios We cosider temperature i a log thi wire

More information

FM4 CREDIT AND BORROWING

FM4 CREDIT AND BORROWING FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

AP Calculus BC 2003 Scoring Guidelines Form B

AP Calculus BC 2003 Scoring Guidelines Form B AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet

More information

Research Article Sign Data Derivative Recovery

Research Article Sign Data Derivative Recovery Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov

More information

DAME - Microsoft Excel add-in for solving multicriteria decision problems with scenarios Radomir Perzina 1, Jaroslav Ramik 2

DAME - Microsoft Excel add-in for solving multicriteria decision problems with scenarios Radomir Perzina 1, Jaroslav Ramik 2 Itroductio DAME - Microsoft Excel add-i for solvig multicriteria decisio problems with scearios Radomir Perzia, Jaroslav Ramik 2 Abstract. The mai goal of every ecoomic aget is to make a good decisio,

More information

INVESTMENT PERFORMANCE COUNCIL (IPC)

INVESTMENT PERFORMANCE COUNCIL (IPC) INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks

More information

INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

Engineering Data Management

Engineering Data Management BaaERP 5.0c Maufacturig Egieerig Data Maagemet Module Procedure UP128A US Documetiformatio Documet Documet code : UP128A US Documet group : User Documetatio Documet title : Egieerig Data Maagemet Applicatio/Package

More information

THE ABRACADABRA PROBLEM

THE ABRACADABRA PROBLEM THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected

More information

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required. S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

More information

arxiv:1506.03481v1 [stat.me] 10 Jun 2015

arxiv:1506.03481v1 [stat.me] 10 Jun 2015 BEHAVIOUR OF ABC FOR BIG DATA By Wetao Li ad Paul Fearhead Lacaster Uiversity arxiv:1506.03481v1 [stat.me] 10 Ju 2015 May statistical applicatios ivolve models that it is difficult to evaluate the likelihood,

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

Lesson 15 ANOVA (analysis of variance)

Lesson 15 ANOVA (analysis of variance) Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

More information

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL. Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

More information

Ekkehart Schlicht: Economic Surplus and Derived Demand

Ekkehart Schlicht: Economic Surplus and Derived Demand Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 2006-17 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät Ludwig-Maximilias-Uiversität Müche Olie at http://epub.ub.ui-mueche.de/940/

More information

Time Value of Money, NPV and IRR equation solving with the TI-86

Time Value of Money, NPV and IRR equation solving with the TI-86 Time Value of Moey NPV ad IRR Equatio Solvig with the TI-86 (may work with TI-85) (similar process works with TI-83, TI-83 Plus ad may work with TI-82) Time Value of Moey, NPV ad IRR equatio solvig with

More information

How To Solve The Homewor Problem Beautifully

How To Solve The Homewor Problem Beautifully Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

More information

ECE606: Solid State Devices Lecture 16 p-n diode AC Response

ECE606: Solid State Devices Lecture 16 p-n diode AC Response ECE66: Solid State Devices Lecture 16 - diode C esose Gerhard Klimeck gekco@urdue.edu Klimeck ECE66 Fall 1 otes adoted from lam Toic Ma Equilibrium DC Small sigal Large Sigal Circuits Diode Schottky Diode

More information

2-3 The Remainder and Factor Theorems

2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig

More information

Subject CT5 Contingencies Core Technical Syllabus

Subject CT5 Contingencies Core Technical Syllabus Subject CT5 Cotigecies Core Techical Syllabus for the 2015 exams 1 Jue 2014 Aim The aim of the Cotigecies subject is to provide a groudig i the mathematical techiques which ca be used to model ad value

More information

INVESTMENT PERFORMANCE COUNCIL (IPC) Guidance Statement on Calculation Methodology

INVESTMENT PERFORMANCE COUNCIL (IPC) Guidance Statement on Calculation Methodology Adoptio Date: 4 March 2004 Effective Date: 1 Jue 2004 Retroactive Applicatio: No Public Commet Period: Aug Nov 2002 INVESTMENT PERFORMANCE COUNCIL (IPC) Preface Guidace Statemet o Calculatio Methodology

More information

Intelligent Sensor Placement for Hot Server Detection in Data Centers - Supplementary File

Intelligent Sensor Placement for Hot Server Detection in Data Centers - Supplementary File Itelliget Sesor Placemet for Hot Server Detectio i Data Ceters - Supplemetary File Xiaodog Wag, Xiaorui Wag, Guoliag Xig, Jizhu Che, Cheg-Xia Li ad Yixi Che The Ohio State Uiversity, USA Michiga State

More information

Decomposition of Gini and the generalized entropy inequality measures. Abstract

Decomposition of Gini and the generalized entropy inequality measures. Abstract Decompositio of Gii ad the geeralized etropy iequality measures Stéphae Mussard LAMETA Uiversity of Motpellier I Fraçoise Seyte LAMETA Uiversity of Motpellier I Michel Terraza LAMETA Uiversity of Motpellier

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006 Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

Escola Federal de Engenharia de Itajubá

Escola Federal de Engenharia de Itajubá Escola Federal de Egeharia de Itajubá Departameto de Egeharia Mecâica Pós-Graduação em Egeharia Mecâica MPF04 ANÁLISE DE SINAIS E AQUISÇÃO DE DADOS SINAIS E SISTEMAS Trabalho 02 (MATLAB) Prof. Dr. José

More information

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature. Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.

More information