NUMBERS COMMON TO TWO POLYGONAL SEQUENCES

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "NUMBERS COMMON TO TWO POLYGONAL SEQUENCES"

Transcription

1 NUMBERS COMMON TO TWO POLYGONAL SEQUENCES DIANNE SMITH LUCAS Chia Lake, Califoria a iteger, The polygoal sequece (or sequeces of polygoal umbers) of order r (where r is r > 3) may be defied recursively by (1) (r,i) = 2(r, i - 1) - (r, i - 2) + r - 2 with (r,0) = 0, (r,l) = 1. It is possible to obtai a direct formula for (r,i) from (1). A particularly simple way of doig this is via the Gregory iterpolatio formula. (For a iterestig discussio of this formula ad its derivatio, see [ 3].) The result is (2) (r,i) = i + (r - 2)i(i - l ) / 2 = [(r - 2)i 2 - (r - 4)i]/2. It is comfortig to ote that the ft square umbers the polygoal umbers of order 4 actually are the squares of the itegers. Usig either (1) or (2), we cam take a look at the first few, say, triagular umbers (r = 3) 0, 1, 3, 6, 10, 15, 21, 28, 36, 45,. Oe observatio we ca make is that three of these umbers are also squares amely 0, 1, ad 36. We ca pose the followig questio: Are there ay more of these "triagular-square" umbers? Are there ideed ifiitely may of them? What ca be said about the umbers commo to ay pair of polygoal sequeces? We shall begi by aswerig the last of these questios, ad the retur to the other two. Suppose that s is a iteger commo to the polygoal sequeces of orders r A ad r 2 (say r A < r 2 ). The there exist itegers p ad q such that s = [(rj - 2)p 2 - ( r i - 4)p]/2 = [ (r 2-2)q 2 - (r 2-4)q]/2, so that (3) ( r i - 2)p 2 - (r t - 4)p = (r 2-2)q 2 - (r 2-4)q, This paper is based o work doe whe the author was a udergraduate research participat at Washigto State Uiversity uder NSF Grat GE

2 Feb NUMBERS COMMON TO TWO POLYGONAL SEQUENCES 79 ad i fact, sice both sides of the equatio (3) are always eve, every pair of o-egative itegers p, q which satisfy (3) determie such a iteger s. As a quadratic i p, this has itegral solutios, so sice all coefficiets are itegers the discrimiat ( r i _ 4) 2 + 4(r 4-2)(r 2-2)q 2-4(rj - 2)(r 2-4)q must be a perfect square, say x 2, so that x 2 = 4(r A - 2)(r 2-2)q 2-4(r t - 2)(r 2-4)q + (r t - 4) 2. As a quadratic i q, this also has itegral solutios, ad the discrimiat ad hece 1/16 of the discrimiat must agai be a perfect squre, say y 2, so that (4) y 2 - ( r i - 2)(r 2-2)x 2 = (r t - 2) 2 (r 2-4) 2 - ( - 2)(r 2-2)(rj - 4) 2, where p ad q are give by ( 5 ) P = (ri - 4) + x 2(r 4-2) q = (r x - 2)(r 2-4) + y 2(r t - 2)(r 2-2) Although it ca be show, by solvig (5) for x ad y ad substitutig ito (4), that every s o- lutio of (4) gives a solutio of (3), it should be oted that some of the iteger solutios of (4) may ot give iteger values for p ad q. Nevertheless, (4) ad (5) give us all possible cadidates for iteger solutios of (3). Now (4) is i the form of PelPs equatio, y 2 - dx 2 = N, which has a fiite umber of itegral solutios i x ad y if d is a perfect square while N does ot vaish. For the the left side ca be factored ito (y - ax)(y + ax), where a is a iteger; ad N has oly fiitely may itegral divisors. So we already have a partial aswer to our questio. If (r A - 2)(r 2-2) is a perfect square ad the quatity o the right side of (4) is o- zero, we have oly fiitely may cadidates for itegers commo to the two sequeces of orders r 1 ad r 2. O the other had, if (r t - 2)(r 2-2) is a perfect square ad the right side of (4) is zero, the (4) reduces to a liear equatio i x ad y: y = ±N/Tr"i - 2)(r 2-2)"x Sice the coefficiet of x is a iteger, this has ifiitely may itegral solutios. A aalysis of the right side of (4) reveals that, with T-± / r 2, this quatity vaishes oly whe oe of r A ad r 2 is 3 ad the other is 6. I that case, (4) becomes y 2-4x 2 = 0, or y = ±2x; ad equatios (5), with y replaced by ±2x, become p = (x - l)/2; q =? (1 ± x)/4.

3 80 NUMBERS COMMON TO TWO POLYGONAL SEQUENCES [Feb. At this poit it is ot too hard to see that for ifiitely may itegers x, the above equatios yield o-egative itegral values for both p ad q. Therefore, there a r e i - fiitely may hexagoal-triagular umbers. I this case, however, we have take the log way aroud; for it ca be show directly, usig (3), that ideed every hexagoal umber is also a triagular umber. It remais for us to ivestigate what happes whe (r 1-2)(r 2-2) is ot a perfect square (ad here the right side of (4) is ecessarily o-zero). If this is the case, the there are ifiitely may positive itegral solutios to (4) if there is oe such solutio [ 2, p. 146 ], But i fact we ca always exhibit at least oe solutio amely x t = r l 9 y t = r ^ r j - 2) correspodig to p = q = 1. We still have the job, however, of showig that ifiitely may of these solutios of (4) give us iteger solutios of (3). Cosider the related equatio (6) u 2 - (r i - 2)(r 2-2)v 2 = 1. With (r t - 2)(r 2-2) ot a perfect square, this has ifiitely may itegral solutios, geerated by u + v N/(r x - 2)(r 2-2) = (uj + v t sli^ - 2)(r 2-2)), where u l9 v A is the smallest positive solutio [2, p. 142]. We obtai u l9 v 4 by ispectio. I particular, u 2, v 2, give by u 2 + v 2 N/(r x - 2)(r 2-2) = (u x + v t *J(r t - 2)(r 2-2) ) 2, is a solutio of (6), ad by expadig the right side ad comparig coefficiets, we get (7) u 2 = u + (ri - 2)(r 2-2)vJ v 2 = 2u 1 v 1 Now ifiitely may (but ot ecessarily all) of the positive solutios of (4) are give by (8) y x + l N / ( r 1-2 ) ( r 2-2 ) = (u, + v. ^(r t - 2)(r 2-2) )(y + x^ {r t - 2)(r 2-2)) where u., v. is ay positive solutio of (6) [2, p. 146], say u 2, v 2. Agai comparig coefficiets, we get (9) V l = U 2\ + ( r l " 2 ) ( r 2 " 2 ) v 2 X ' x i = v 0 y + u 0 x, +1 2 J 2 ' with the side coditios x 4 = r 4, y A = r 2 (r A - 2).

4 1973] NUMBERS COMMON TO TWO POLYGONAL SEQUENCES 81 Cosider the first of equatios (9). This ca, by addig a suitable quatity to each side, be chaged to y +l + ( r i " 2 ) ( r 2 " 4 ) + ( r i " 2 ) ( r 2-4 H% - 1) = u 2 (y + (r 1-2)(r 2-4)) + (r x - 2)(r 2-2)v 2 x, ad usig (6) ad (7) 9 we get y + < r i +l " 2)(3?2 " 4 ) = U 2 ( y + ( r i " 2 ) ( r 2 " 4 ) ) + 2(l>1 " 2 ) ( r 2 " 2 ) u l v i x (10) - 20 (/_ r 1-20>2/ ) 2 ( r 2-2 ow ) ( r 2-4,w.2 ) v 2 Recallig that y 1 = r 2 (r x - 2), clearly y t = -(rj - 2)(r 2-4) (mod 2(rj - 2)(r 2-2)) ; ad lettig = k i (10), we see that if y k = -(r A - 2)(r 2-4) (mod 2(r t - 2)(r 2-2)) for some iteger k, the each term o the right of (10) is divisible by 20^ - 2)(r 2-2). Hece the left side of (10) is divisible by this same quatity, ad y k+l s ~ ( r i " 2 ) ( r 2 " 4 ) ( m o d 2 ( r i " 2 ) ( r 2 ~ 2 ) ) e By mathematical iductio, ad with referece to the secod of equatios (5), all of the y f s give by (9) produce positive itegral values for q. Similarly, the secod of equatios (9) ca be trasformed ito X -1 + ( r i " 4 ) + (U2 " 1 ) ( r i " 4 ) + V 2 ( r i " 2 ) ( r 2 " 4 ) = V 2 ( y + ( r i " 2 ) ( r 2 " 4 ) ) ad agai usig (6) ad (7), we get + u 2 (x + (r t - 4)), ( 1 1 ) x +l + (l>1 " 4 ) = v 2 ^ + ( r i " 2 > (r 2 " 4» + u 2< x + r i - 4 )) - 2v 2 (ri - 2)(r 2-2)(r t - 4) - 2u 1 v 1 (r 1-2)(r 2-4) Sice y = -(r* - 2)(r 2-4) (mod 2{v t - 2)(r 2-2)) for all, certaily

5 82 NUMBERS COMMON TO TWO POLYGONAL SEQUENCES [Feb. y = -(rj - 2)(r 2-4) (mod 2(v t - 2)). We have that x t = - ( r i - 4) (mod 2(ri - 2)), sice xj = v 1 ; ad it ca be see from (11) that if x k s -fri - 4) (mod 2(r A - 2)) for some iteger k, the x k+l 5 " ( r i " 4 ) ( m o d 2 ( r * " 2 ) ) * That i s, 2(r A - 2) divides x + (r 1-4) for every positive iteger. To summarize, for (r t - 2)(r 2-2) ot a perfect square, we have exhibited (i (9)) ifiitely may but ot ecessarily all of the solutios to the Pell-type equatio (4); ad all of these give positive itegral solutios p,q of (3). These, i tur, give itegers s which are commo to the two polygoal sequeces of orders r A ad r 2. I view of the above, we ca ow state the followig theorem: Theorem. Give two distict itegers r t ad r 2, with 3 < rj < r 2, each defiig the order of a polygoal sequece, there are ifiitely may itegers commo to both s e - queces if ad oly if oe of the followig is true: i. ri = 3 ad r 2 = 6 S or ii. (r A - 2)(r 2-2) is ot a perfect squre. I practice, give particular itegers r t ad r 2, we ca get all of the solutios of (4) by usig at most fiitely may equatios of the form (8), with a differet x 1} y t for each oe. Some of these equatios ca be elimiated or modified to leave out those solutios which give o-iteger values for either p or q. We may the obtai equatios geeratig all pairs p,q for which (r^p) = (r 2,q); ad, if desired, fiitely may equatios geeratig the umbers s commo to the two sequeces. The procedure for fidig all solutios of (4) is arduous ad depeds erratically o the actual values of rj ad r 2. For the geeral machiery, see G. Chrystal [ l, pp ]. Now we ca easily aswer our questios about triagular squares. Lettig r x = 3 ad r 2 = 4, (r t - 2)(r 2-2) becomes 2, which is ot a perfect square. There are, the, ifiitely may triagular squares. A s a matter of fact, this result has bee kow for some time. To exhibit these umbers, we ote that sice the coefficiet of q i (3) becomes 0, we ca get a formula like (4) by applyig the quadratic formula oly oce. The result is or x 2-8q 2 = 1

6 1973] NUMBERS COMMON TO TWO POLYGONAL SEQUENCES 83 (12) x 2-2y 2 = 1, where p = (x - l ) / 2 ad q = y/2. Coveietly eough, (12) is already i the form of (6); ad sice x t = 3, y t = 2 is the smallest positive solutio, all o-egative solutios of (12) are give by (13) x + y N/2 = (3 + 2<s/2) ( = 0, 1,. 2, ). Certaily the "ext" solutio is give by x ^ + y ^ ^ 2 " = (x + y N/"2)(3 + 2 N / I ), +1 ^+l v J / v J ' ad by comparig coefficiets we get x f- = 3x + 4y, +1 xi v = 2x + 3v J +1 ^ J with (from (13)) x 0 = 1, y 0 = 0 9 It follows by iductio from (14) that all values of y are eve o-egative itegers, ad all x f s are odd positive itegers. Therefore, for ay solutio p,q of (3) i oegative itegers ad with r t = 3, r 2 = 4 there exists a ( = 0, 1, 2,... ) such that (15) P = P = (x - l ) / 2 q = q = y /2 where x, y are give by (14)* Furthermore, p, q give by (15) forms a o-egative itegral solutio for ay, sice the x f s are always odd ad all of the y f s are eve, All triagular square umbers, the, are give by (16) S = fc + p ) / 2 = <. Solvig (14) with x 0 = 1, y 0 = 0, we get x = [(3 + 2<\/2) + (3-2 \ / 2 ) ] / 2 y = [(3 + 2N/2) - (3-2N/2) ]/2Nj2, ad combiig these with (15) ad (16), we obtai ( N/2) + (17-12\/2) - 2 S " ~ 32"

7 84 NUMBERS COMMON TO TWO POLYGONAL SEQUENCES Feb where s is the triagular-square umber. th Likewise, we ca compute a formula for the triagular-petagoal umber. The result is - (2 - N / 3 ) ( N / 3 ) H + (2 + N / 3 ) ( A/3) 11-4 S ~. This agrees with a result recetly published by W. Sierpiski [ 4 ]. I am thakful to Dr. D. W. Bushaw, whose suggestios ad ecouragemet made the writig of this paper possible. REFERENCES 1. G. Chrystal, Algebra: A Elemetary Text-Book, Vol. 2, Adam ad Charles Black, Lodo, William J. LeVeque, Topics i Number Theory, Vol. 1, Addiso-Wesley, Readig, Mass., C. T. Log, "O the Gregory Iterpolatio Formula," Amer. Math. Mothly, 66 (1959), pp W. Sierpiski, "Sur les Nombres Petagoaux," Bull. Soc. Royale Scieces Liege, (1964), pp [Cotiued from page 71. ] is give by m M" 1 = E ^ D k k=0 m* (VII) 2 TT ^ = l/tae 01 * + B e 2 t > k=0 We ow ote that for Case 2, where A + B = 0, Eq. (VIE) does ot exist for t = 0, ad hece there is o iverse operator M". Thus, a sufficiet coditio for M~ (see CD) to exist is that A + B ^ 0, i. e., Case 1. For A + B ^ 0, oe readily fids that (VIII) (A + B)m* = (c 2 - CiTH, \ ( ^ 2 \ - A ^ ) where H, (x A) is the Euleria polyomial cited i (*). May more idetities ca be quoted. Ideed, for m, = 0, 1,, oe has [Cotiued o page 11&* ]

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

More information

SUMS OF n-th POWERS OF ROOTS OF A GIVEN QUADRATIC EQUATION. N.A. Draim, Ventura, Calif., and Marjorie Bicknell Wilcox High School, Santa Clara, Calif.

SUMS OF n-th POWERS OF ROOTS OF A GIVEN QUADRATIC EQUATION. N.A. Draim, Ventura, Calif., and Marjorie Bicknell Wilcox High School, Santa Clara, Calif. SUMS OF -th OWERS OF ROOTS OF A GIVEN QUADRATIC EQUATION N.A. Draim, Vetura, Calif., ad Marjorie Bickell Wilcox High School, Sata Clara, Calif. The quadratic equatio whose roots a r e the sum or differece

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

ORDERS OF GROWTH KEITH CONRAD

ORDERS OF GROWTH KEITH CONRAD ORDERS OF GROWTH KEITH CONRAD Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really wat to uderstad their behavior It also helps you better grasp topics i calculus

More information

Factors of sums of powers of binomial coefficients

Factors of sums of powers of binomial coefficients ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the

More information

Math Discrete Math Combinatorics MULTIPLICATION PRINCIPLE:

Math Discrete Math Combinatorics MULTIPLICATION PRINCIPLE: Math 355 - Discrete Math 4.1-4.4 Combiatorics Notes MULTIPLICATION PRINCIPLE: If there m ways to do somethig ad ways to do aother thig the there are m ways to do both. I the laguage of set theory: Let

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

The Field of Complex Numbers

The Field of Complex Numbers The Field of Complex Numbers S. F. Ellermeyer The costructio of the system of complex umbers begis by appedig to the system of real umbers a umber which we call i with the property that i = 1. (Note that

More information

x(x 1)(x 2)... (x k + 1) = [x] k n+m 1

x(x 1)(x 2)... (x k + 1) = [x] k n+m 1 1 Coutig mappigs For every real x ad positive iteger k, let [x] k deote the fallig factorial ad x(x 1)(x 2)... (x k + 1) ( ) x = [x] k k k!, ( ) k = 1. 0 I the sequel, X = {x 1,..., x m }, Y = {y 1,...,

More information

Chapter Gaussian Elimination

Chapter Gaussian Elimination Chapter 04.06 Gaussia Elimiatio After readig this chapter, you should be able to:. solve a set of simultaeous liear equatios usig Naïve Gauss elimiatio,. lear the pitfalls of the Naïve Gauss elimiatio

More information

Math 475, Problem Set #6: Solutions

Math 475, Problem Set #6: Solutions Math 475, Problem Set #6: Solutios A (a) For each poit (a, b) with a, b o-egative itegers satisfyig ab 8, cout the paths from (0,0) to (a, b) where the legal steps from (i, j) are to (i 2, j), (i, j 2),

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required. S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

More information

8.5 Alternating infinite series

8.5 Alternating infinite series 65 8.5 Alteratig ifiite series I the previous two sectios we cosidered oly series with positive terms. I this sectio we cosider series with both positive ad egative terms which alterate: positive, egative,

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

8.3 POLAR FORM AND DEMOIVRE S THEOREM

8.3 POLAR FORM AND DEMOIVRE S THEOREM SECTION 8. POLAR FORM AND DEMOIVRE S THEOREM 48 8. POLAR FORM AND DEMOIVRE S THEOREM Figure 8.6 (a, b) b r a 0 θ Complex Number: a + bi Rectagular Form: (a, b) Polar Form: (r, θ) At this poit you ca add,

More information

ARITHMETIC AND GEOMETRIC PROGRESSIONS

ARITHMETIC AND GEOMETRIC PROGRESSIONS Arithmetic Ad Geometric Progressios Sequeces Ad ARITHMETIC AND GEOMETRIC PROGRESSIONS Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives

More information

Section IV.5: Recurrence Relations from Algorithms

Section IV.5: Recurrence Relations from Algorithms Sectio IV.5: Recurrece Relatios from Algorithms Give a recursive algorithm with iput size, we wish to fid a Θ (best big O) estimate for its ru time T() either by obtaiig a explicit formula for T() or by

More information

8.1 Arithmetic Sequences

8.1 Arithmetic Sequences MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first

More information

Lecture Notes CMSC 251

Lecture Notes CMSC 251 We have this messy summatio to solve though First observe that the value remais costat throughout the sum, ad so we ca pull it out frot Also ote that we ca write 3 i / i ad (3/) i T () = log 3 (log ) 1

More information

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on. Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Fourier Series and the Wave Equation Part 2

Fourier Series and the Wave Equation Part 2 Fourier Series ad the Wave Equatio Part There are two big ideas i our work this week. The first is the use of liearity to break complicated problems ito simple pieces. The secod is the use of the symmetries

More information

The second difference is the sequence of differences of the first difference sequence, 2

The second difference is the sequence of differences of the first difference sequence, 2 Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

The Euler Totient, the Möbius and the Divisor Functions

The Euler Totient, the Möbius and the Divisor Functions The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship

More information

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

Permutations, the Parity Theorem, and Determinants

Permutations, the Parity Theorem, and Determinants 1 Permutatios, the Parity Theorem, ad Determiats Joh A. Guber Departmet of Electrical ad Computer Egieerig Uiversity of Wiscosi Madiso Cotets 1 What is a Permutatio 1 2 Cycles 2 2.1 Traspositios 4 3 Orbits

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Sequences II. Chapter 3. 3.1 Convergent Sequences

Sequences II. Chapter 3. 3.1 Convergent Sequences Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,

More information

Module 4: Mathematical Induction

Module 4: Mathematical Induction Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

More information

π d i (b i z) (n 1)π )... sin(θ + )

π d i (b i z) (n 1)π )... sin(θ + ) SOME TRIGONOMETRIC IDENTITIES RELATED TO EXACT COVERS Joh Beebee Uiversity of Alaska, Achorage Jauary 18, 1990 Sherma K Stei proves that if si π = k si π b where i the b i are itegers, the are positive

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51

Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51 Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

Chapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity

More information

Divide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015

Divide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015 CS125 Lecture 4 Fall 2015 Divide ad Coquer We have see oe geeral paradigm for fidig algorithms: the greedy approach. We ow cosider aother geeral paradigm, kow as divide ad coquer. We have already see a

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

Alternatives To Pearson s and Spearman s Correlation Coefficients

Alternatives To Pearson s and Spearman s Correlation Coefficients Alteratives To Pearso s ad Spearma s Correlatio Coefficiets Floreti Smaradache Chair of Math & Scieces Departmet Uiversity of New Mexico Gallup, NM 8730, USA Abstract. This article presets several alteratives

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients 652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

More information

MATH /2003. Assignment 4. Due January 8, 2003 Late penalty: 5% for each school day.

MATH /2003. Assignment 4. Due January 8, 2003 Late penalty: 5% for each school day. MATH 260 2002/2003 Assigmet 4 Due Jauary 8, 2003 Late pealty: 5% for each school day. 1. 4.6 #10. A croissat shop has plai croissats, cherry croissats, chocolate croissats, almod croissats, apple croissats

More information

Lesson 12. Sequences and Series

Lesson 12. Sequences and Series Retur to List of Lessos Lesso. Sequeces ad Series A ifiite sequece { a, a, a,... a,...} ca be thought of as a list of umbers writte i defiite order ad certai patter. It is usually deoted by { a } =, or

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

represented by 4! different arrangements of boxes, divide by 4! to get ways

represented by 4! different arrangements of boxes, divide by 4! to get ways Problem Set #6 solutios A juggler colors idetical jugglig balls red, white, ad blue (a I how may ways ca this be doe if each color is used at least oce? Let us preemptively color oe ball i each color,

More information

A Recursive Formula for Moments of a Binomial Distribution

A Recursive Formula for Moments of a Binomial Distribution A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,

More information

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu> (March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1

More information

THE UNLIKELY UNION OF PARTITIONS AND DIVISORS

THE UNLIKELY UNION OF PARTITIONS AND DIVISORS THE UNLIKELY UNION OF PARTITIONS AND DIVISORS Abdulkadir Hasse, Thomas J. Osler, Mathematics Departmet ad Tirupathi R. Chadrupatla, Mechaical Egieerig Rowa Uiversity Glassboro, NJ 828 I the multiplicative

More information

One-step equations. Vocabulary

One-step equations. Vocabulary Review solvig oe-step equatios with itegers, fractios, ad decimals. Oe-step equatios Vocabulary equatio solve solutio iverse operatio isolate the variable Additio Property of Equality Subtractio Property

More information

Building Blocks Problem Related to Harmonic Series

Building Blocks Problem Related to Harmonic Series TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite

More information

MESSAGE TO TEACHERS: NOTE TO EDUCATORS:

MESSAGE TO TEACHERS: NOTE TO EDUCATORS: MESSAGE TO TEACHERS: NOTE TO EDUCATORS: Attached herewith, please fid suggested lesso plas for term 1 of MATHEMATICS Grade 12. Please ote that these lesso plas are to be used oly as a guide ad teachers

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

Review for College Algebra Final Exam

Review for College Algebra Final Exam Review for College Algebra Fial Exam (Please remember that half of the fial exam will cover chapters 1-4. This review sheet covers oly the ew material, from chapters 5 ad 7.) 5.1 Systems of equatios i

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

1 The Binomial Theorem: Another Approach

1 The Binomial Theorem: Another Approach The Biomial Theorem: Aother Approach Pascal s Triagle I class (ad i our text we saw that, for iteger, the biomial theorem ca be stated (a + b = c a + c a b + c a b + + c ab + c b, where the coefficiets

More information

MATH 361 Homework 9. Royden Royden Royden

MATH 361 Homework 9. Royden Royden Royden MATH 61 Homework 9 Royde..9 First, we show that for ay subset E of the real umbers, E c + y = E + y) c traslatig the complemet is equivalet to the complemet of the traslated set). Without loss of geerality,

More information

f(x + T ) = f(x), for all x. The period of the function f(t) is the interval between two successive repetitions.

f(x + T ) = f(x), for all x. The period of the function f(t) is the interval between two successive repetitions. Fourier Series. Itroductio Whe the Frech mathematicia Joseph Fourier (768-83) was tryig to study the flow of heat i a metal plate, he had the idea of expressig the heat source as a ifiite series of sie

More information

Divide and Conquer, Solving Recurrences, Integer Multiplication Scribe: Juliana Cook (2015), V. Williams Date: April 6, 2016

Divide and Conquer, Solving Recurrences, Integer Multiplication Scribe: Juliana Cook (2015), V. Williams Date: April 6, 2016 CS 6, Lecture 3 Divide ad Coquer, Solvig Recurreces, Iteger Multiplicatio Scribe: Juliaa Cook (05, V Williams Date: April 6, 06 Itroductio Today we will cotiue to talk about divide ad coquer, ad go ito

More information

Solving Divide-and-Conquer Recurrences

Solving Divide-and-Conquer Recurrences Solvig Divide-ad-Coquer Recurreces Victor Adamchik A divide-ad-coquer algorithm cosists of three steps: dividig a problem ito smaller subproblems solvig (recursively) each subproblem the combiig solutios

More information

if A S, then X \ A S, and if (A n ) n is a sequence of sets in S, then n A n S,

if A S, then X \ A S, and if (A n ) n is a sequence of sets in S, then n A n S, Lecture 5: Borel Sets Topologically, the Borel sets i a topological space are the σ-algebra geerated by the ope sets. Oe ca build up the Borel sets from the ope sets by iteratig the operatios of complemetatio

More information

2-3 The Remainder and Factor Theorems

2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

SUMS OF GENERALIZED HARMONIC SERIES. Michael E. Ho man Department of Mathematics, U. S. Naval Academy, Annapolis, Maryland

SUMS OF GENERALIZED HARMONIC SERIES. Michael E. Ho man Department of Mathematics, U. S. Naval Academy, Annapolis, Maryland #A46 INTEGERS 4 (204) SUMS OF GENERALIZED HARMONIC SERIES Michael E. Ho ma Departmet of Mathematics, U. S. Naval Academy, Aapolis, Marylad meh@usa.edu Courtey Moe Departmet of Mathematics, U. S. Naval

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say

More information

+ 1= x + 1. These 4 elements form a field.

+ 1= x + 1. These 4 elements form a field. Itroductio to fiite fields II Fiite field of p elemets F Because we are iterested i doig computer thigs it would be useful for us to costruct fields havig elemets. Let s costruct a field of elemets; we

More information

13 Fast Fourier Transform (FFT)

13 Fast Fourier Transform (FFT) 13 Fast Fourier Trasform FFT) The fast Fourier trasform FFT) is a algorithm for the efficiet implemetatio of the discrete Fourier trasform. We begi our discussio oce more with the cotiuous Fourier trasform.

More information

A Study for the (μ,s) n Relation for Tent Map

A Study for the (μ,s) n Relation for Tent Map Applied Mathematical Scieces, Vol. 8, 04, o. 60, 3009-305 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ams.04.4437 A Study for the (μ,s) Relatio for Tet Map Saba Noori Majeed Departmet of Mathematics

More information

Recursion and Recurrences

Recursion and Recurrences Chapter 5 Recursio ad Recurreces 5.1 Growth Rates of Solutios to Recurreces Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer. Cosider, for example,

More information

1. a n = 2. a n = 3. a n = 4. a n = 5. a n = 6. a n =

1. a n = 2. a n = 3. a n = 4. a n = 5. a n = 6. a n = Versio PREVIEW Homework Berg (5860 This prit-out should have 9 questios. Multiple-choice questios may cotiue o the ext colum or page fid all choices before aswerig. CalCb0b 00 0.0 poits Rewrite the fiite

More information

MATH 140A - HW 5 SOLUTIONS

MATH 140A - HW 5 SOLUTIONS MATH 40A - HW 5 SOLUTIONS Problem WR Ch 3 #8. If a coverges, ad if {b } is mootoic ad bouded, rove that a b coverges. Solutio. Theorem 3.4 states that if a the artial sums of a form a bouded sequece; b

More information

Lecture 4: Cheeger s Inequality

Lecture 4: Cheeger s Inequality Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

More information

NPTEL STRUCTURAL RELIABILITY

NPTEL STRUCTURAL RELIABILITY NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics

More information

Section 9.2 Series and Convergence

Section 9.2 Series and Convergence Sectio 9. Series ad Covergece Goals of Chapter 9 Approximate Pi Prove ifiite series are aother importat applicatio of limits, derivatives, approximatio, slope, ad cocavity of fuctios. Fid challegig atiderivatives

More information

Arithmetic Sequences and Partial Sums. Arithmetic Sequences. Definition of Arithmetic Sequence. Example 1. 7, 11, 15, 19,..., 4n 3,...

Arithmetic Sequences and Partial Sums. Arithmetic Sequences. Definition of Arithmetic Sequence. Example 1. 7, 11, 15, 19,..., 4n 3,... 3330_090.qxd 1/5/05 11:9 AM Page 653 Sectio 9. Arithmetic Sequeces ad Partial Sums 653 9. Arithmetic Sequeces ad Partial Sums What you should lear Recogize,write, ad fid the th terms of arithmetic sequeces.

More information

THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE

THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE JAVIER CILLERUELO Abstract. We obtai, for ay irreducible quadratic olyomial f(x = ax 2 + bx + c, the asymtotic estimate log l.c.m. {f(1,..., f(} log. Whe

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

A CHARACTERIZATION OF MINIMAL ZERO-SEQUENCES OF INDEX ONE IN FINITE CYCLIC GROUPS

A CHARACTERIZATION OF MINIMAL ZERO-SEQUENCES OF INDEX ONE IN FINITE CYCLIC GROUPS INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(1) (2005), #A27 A CHARACTERIZATION OF MINIMAL ZERO-SEQUENCES OF INDEX ONE IN FINITE CYCLIC GROUPS Scott T. Chapma 1 Triity Uiversity, Departmet

More information

Approximating the Sum of a Convergent Series

Approximating the Sum of a Convergent Series Approximatig the Sum of a Coverget Series Larry Riddle Ages Scott College Decatur, GA 30030 lriddle@agesscott.edu The BC Calculus Course Descriptio metios how techology ca be used to explore covergece

More information

4.3. The Integral and Comparison Tests

4.3. The Integral and Comparison Tests 4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

DEFINITION OF INVERSE MATRIX

DEFINITION OF INVERSE MATRIX Lecture. Iverse matrix. To be read to the music of Back To You by Brya dams DEFINITION OF INVERSE TRIX Defiitio. Let is a square matrix. Some matrix B if it exists) is said to be iverse to if B B I where

More information

Algebra Work Sheets. Contents

Algebra Work Sheets. Contents The work sheets are grouped accordig to math skill. Each skill is the arraged i a sequece of work sheets that build from simple to complex. Choose the work sheets that best fit the studet s eed ad will

More information

Review of Fourier Series and Its Applications in Mechanical Engineering Analysis

Review of Fourier Series and Its Applications in Mechanical Engineering Analysis ME 3 Applied Egieerig Aalysis Chapter 6 Review of Fourier Series ad Its Applicatios i Mechaical Egieerig Aalysis Tai-Ra Hsu, Professor Departmet of Mechaical ad Aerospace Egieerig Sa Jose State Uiversity

More information

5.3. Generalized Permutations and Combinations

5.3. Generalized Permutations and Combinations 53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible

More information

0,1 is an accumulation

0,1 is an accumulation Sectio 5.4 1 Accumulatio Poits Sectio 5.4 Bolzao-Weierstrass ad Heie-Borel Theorems Purpose of Sectio: To itroduce the cocept of a accumulatio poit of a set, ad state ad prove two major theorems of real

More information

B1. Fourier Analysis of Discrete Time Signals

B1. Fourier Analysis of Discrete Time Signals B. Fourier Aalysis of Discrete Time Sigals Objectives Itroduce discrete time periodic sigals Defie the Discrete Fourier Series (DFS) expasio of periodic sigals Defie the Discrete Fourier Trasform (DFT)

More information

Riemann Sums y = f (x)

Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information

Math Background: Review & Beyond. Design & Analysis of Algorithms COMP 482 / ELEC 420. Solving for Closed Forms. Obtaining Recurrences

Math Background: Review & Beyond. Design & Analysis of Algorithms COMP 482 / ELEC 420. Solving for Closed Forms. Obtaining Recurrences Math Backgroud: Review & Beyod. Asymptotic otatio Desig & Aalysis of Algorithms COMP 48 / ELEC 40 Joh Greier. Math used i asymptotics 3. Recurreces 4. Probabilistic aalysis To do: [CLRS] 4 # T() = O()

More information

Handout: How to calculate time complexity? CSE 101 Winter 2014

Handout: How to calculate time complexity? CSE 101 Winter 2014 Hadout: How to calculate time complexity? CSE 101 Witer 014 Recipe (a) Kow algorithm If you are usig a modied versio of a kow algorithm, you ca piggyback your aalysis o the complexity of the origial algorithm

More information

Gregory Carey, 1998 Linear Transformations & Composites - 1. Linear Transformations and Linear Composites

Gregory Carey, 1998 Linear Transformations & Composites - 1. Linear Transformations and Linear Composites Gregory Carey, 1998 Liear Trasformatios & Composites - 1 Liear Trasformatios ad Liear Composites I Liear Trasformatios of Variables Meas ad Stadard Deviatios of Liear Trasformatios A liear trasformatio

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information