All About Motion - Displacement, Velocity and Acceleration

Size: px
Start display at page:

Transcription

1 All About Motion - Displacement, Velocity and Acceleration Program Synopsis minutes Teacher Notes: Ian Walter Dip App Chem; GDipEd Admin; TTTC This program explores vector and scalar quantities and their units, and methods of representing vectors and arithmetic operations with vectors. Distance and displacement are defined, and numerical examples are used. Speed and velocity are investigated and specific numerical examples of their uses are given, including the special case of uniform circular motion. Acceleration is defined in terms of velocity change with time, including negative acceleration and an analysis of centripetal acceleration of a body moving in a circular path with constant speed. Galileo s inclined plane experiment is discussed and numerical observations are used to calculate acceleration on inclined planes. To order or inquire please contact VEA: VEA Inc Website: 10 Mitchell Place Suite 103 White Plains, NY Toll Free: Facsimile:

2 Related Programs Energy Rules The Conservation of Energy and Momentum Methods of Heat Transfer The Advance Physics Series 1. The Synchrotron (The Advance Physics Series) 2. Photonics (The Advance Physics Series) 3. Special Relativity (The Advance Physics Series) 4. Light, Phase and Matter (The Advance Physics Series) 5. Sound and Other Demonstrations (The Advance Physics Series) Introduction This program introduces senior students to the concepts of scalar and vector quantities. Excellent graphics and examples of calculations with arithmetic operations with vectors are provided for students to gain a sound understanding of the terms used in kinematics. Students will be clearly shown the differences between scalar and vector quantities by using familiar everyday examples. Uniform circular motion and motion on an incline are addressed in detail. Program Rationale This program will help senior students reinforce the theory taught in the classroom on kinematics. The graphics in the program are essential for visual learners in their understanding of the concept of vectors and scalars and the mathematical operations used with these quantities. This program aims to provide teachers and students with an up-todate overview of the basics of theory and practice in kinematics. Program Timeline 00:00:00 Introduction: All About Motion 00:01:28 Vectors 00:04:27 Displacement 00:08:22 Velocity 00:11:55 Acceleration 00:15:41 Acceleration on Galileo's inclined planes 00:19:19 Credits 00:20:03 End of program Useful Resources Books and Other Print Resources Daish, CB (1972) Physics of Ball Games. The English Universities. Griffing, DF (1987) The Dynamics of Sport, datalog Schrier, EW and Allman, WF (eds) (1987) Newton at the Bat. The Science in Sports. Macmillan: New York

3 Worksheet Before the DVD 1. Using the internet, or other suitable reference, provide a 100 word report on Scalar and vector quantities. In your report, list and describe as either scalar or vector, six common quantities used in physics. 2. Discuss with the person next to you how an object travelling in a circular path with constant speed is accelerating. 3. In small groups, discuss addition and subtraction of vectors that have the same direction with the same, or opposite sense. Discuss the necessary mathematical operations required when adding and subtracting similar vector quantities that are perpendicular to each other

4 During the DVD 1. What is the one property possessed by all physical quantities? 2. What name is given to physical quantities with magnitude only? 3. What name is given to physical quantities that have both magnitude and direction? 4. How can a vector quantity be represented on a diagram? 5. Vector quantities of the same type can be added. What method is used to subtract vectors of the same type? 6. What is the difference between distance and displacement? 7. What is the difference between speed and velocity? 8. Write a formula to calculate average speed. 9. Write a formula to calculate average velocity. 10. Explain why an object travelling in a circular path with constant speed has a changing velocity. 11. Write a formula to calculate average acceleration

5 12. Vectors of the same type that do not have the same direction or sense can be added and subtracted. Describe a method that can be used for these operations on vectors. 13. Why did Galileo use an inclined plane to investigate the law of falling instead of just dropping an object? 14. In what way does an inclined plane dilute gravity? 15. Why did Galileo use an angle of 8 O for the incline? 16. What factors may influence the rate at which a ball will roll down an incline? 17. Write a formula relating acceleration down an incline, the angle of the incline, and acceleration due to gravity. 18. Why must all physical quantities be precisely defined? - 5 -

6 After the DVD Worksheet 1. Complete the following table by placing each of the listed physical quantities in the correct column: distance displacement speed velocity time force mass acceleration scalar vector 2. Represent a force of 10 N west on a vector diagram using a scale of 2.0 N 1.0 cm. 3. Perform the following vector additions; 2.0 m north m south 10 N east N east 1.0 N south N east 4. Perform the following vector subtractions; 10 m west m west 20 N south - 10 N north 1.0 N west N south 5. A car travels from town A, a distance of 100 km along the road to town B in a time of 2.0 hours. Town B is 80 km north east of town A. a) Calculate the average speed of the car between town A and town B. b) Calculate the average velocity of the car between town A and town B. 6. Use the information in the table below to calculate the acceleration of a ball rolling uniformly from rest down a smooth incline. Distance travelled during time (m) time (s) In the absence of frictional forces and given the acceleration due to gravity is 9.8 m s 2, calculate the angle in degrees of the incline

7 Suggested Student Responses During the Program 1. What is the one property possessed by all physical quantities? The one property possessed by all quantities is magnitude. 2. What name is given to physical quantities with magnitude only? Quantities with magnitude only are called scalar quantities. 3. What name is given to physical quantities that have both magnitude and direction? Vector quantities have both magnitude and direction. 4. How can a vector quantity be represented on a diagram? A vector quantity may be represented on a diagram by drawing the magnitude of the vector to a given scale and indicating the direction with an angle from a reference point, or by positive or negative signs. 5. Vector quantities of the same type can be added. What method is used to subtract vectors of the same type? When vectors of the same type are subtracted from one another, the sense of the vector being subtracted is reversed and the two vectors are added. 6. What is the difference between distance and displacement? Distance is a scalar quantity and requires magnitude only. Displacement is a vector quantity that requires both magnitude and direction. 7. What is the difference between speed and velocity? Speed is a scalar quantity and requires magnitude only. Velocity is a vector quantity that requires both magnitude and direction. 8. Write a formula to calculate average speed. Average speed = distance Time 9. Write a formula to calculate average velocity. Average velocity = displacement (or change in position) time for the change 10. Explain why an object travelling in a circular path with constant speed has a changing velocity. The object is continually changing direction as it moves in a circular path. Since the direction is constantly changing, although the magnitude (speed) is constant, the object has a changing velocity

8 11 Write a formula to calculate average acceleration. Average acceleration = change in velocity time for the change 12 Vectors of the same type that do not have the same direction or sense can be added and subtracted. Describe a method that can be used for these operations on vectors. Vectors of the same type but with different directions can be added and subtracted using vector diagrams of the vectors drawn to scale with their respective directions. The resultant vector may be measured and then compared with the scale to determine its magnitude, and its direction may be found using a protractor to measure angles from a reference point. 13 Why did Galileo use an inclined plane to investigate the law of falling instead of just dropping an object? Galileo used an incline to dilute the action of gravity. Timing devices used at this time were unable to measure short time intervals. 14 In what way does an inclined plane dilute gravity? An object will roll down an inclined plane due to the action of gravity forces. The angle of the incline is related to the acceleration due to gravity. By altering the angle of the incline, accelerations of objects down the plane can be varied between zero and 9.8 m s Why did Galileo use an angle of 8 O for the incline? Galileo used an angle of 8 O so that timing with a water clock would give sufficiently accurate values for a reasonable distance measurement down the incline. 16 What factors may influence the rate at which a ball will roll down an incline? Some factors that would influence the rate at which a ball will roll down an incline are: the angle of the incline, the roughness of the surface of the incline, the size of the ball, (larger more air friction) the material of which the ball is made (light material more air friction). 17 Write a formula relating acceleration down an incline, the angle of the incline, and acceleration due to gravity. a = acceleration down the incline, g = acceleration due to gravity, θ = angle of the incline. a = g sin θ 18 Why must all physical quantities be precisely defined. All physical quantities must be precisely defined so that there will be no confusion regarding these quantities when used in scientific papers and calculations. The definitions of these quantities are determined by international panels and are accepted world wide. The metre, the basic unit of length, can be defined in terms related to the wavelength of a particular electromagnetic radiation

9 After the DVD Suggested student responses Worksheet 1. Complete the following table by placing each of the listed physical quantities in the correct column Distance displacement speed velocity time force mass acceleration scalar distance speed time mass vector displacement velocity force acceleration 2. Represent a force of 10 N west on a vector diagram using a scale of 2.0 N 1.0 cm. 10 N west (arrow points west) 5.0 cm 3. Perform the following vector additions; 2.0 m north m south 10 N east N east 1.0 N south N east = 0 = 15 N east = 1.4 N south east + = 1.0 N south 1.0 N east 4. Perform the following vector subtractions; 10 m west m west 20 N south - 10 N north 1.0 N west N south = 2.0 m west = 20 N south + 10 N south = 30 N south = 1.0 N west N north = 1.0 N west + = 1.4 N north west 1.0 N north - 9 -

10 5. A car travels from town A, a distance of 100 km along the road to town B in a time of 2.0 hours. Town B is 80 km north east of town A. (a) Calculate the average speed of the car between town A and town B. Average speed = distance travelled Time = 100 km 2.0 hr = 50 km h 1 (b) Calculate the average velocity of the car between town A and town B. average velocity = displacement time = 80 km north east 2.0 hr = 40 km hr 1 north east 6. Use the information in the table below to calculate the acceleration of a ball rolling uniformly from rest down a smooth incline. distance travelled during time (m) time (s) The distance travelled during each second after the first increases constantly by 2.0 m. So the average speed constantly changes at 2.0 m s 1 each second. The acceleration (down the incline) = 2.0 m s In the absence of frictional forces and given the acceleration due to gravity is 9.8 m s 2, calculate the angle in degrees of the incline to the nearest whole number. a = g sin θ a sin θ = g 2.0 = 9.8 θ = 12 o

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

Lab 2: Vector Analysis

Lab 2: Vector Analysis Objectives: to practice using graphical and analytical methods to add vectors in two dimensions Equipment: Meter stick Ruler Protractor Force table Ring Pulleys with attachments

A vector is a directed line segment used to represent a vector quantity.

Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

Figure 1.1 Vector A and Vector F

CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

Examples of Scalar and Vector Quantities 1. Candidates should be able to : QUANTITY VECTOR SCALAR

Candidates should be able to : Examples of Scalar and Vector Quantities 1 QUANTITY VECTOR SCALAR Define scalar and vector quantities and give examples. Draw and use a vector triangle to determine the resultant

Difference between a vector and a scalar quantity. N or 90 o. S or 270 o

Vectors Vectors and Scalars Distinguish between vector and scalar quantities, and give examples of each. method. A vector is represented in print by a bold italicized symbol, for example, F. A vector has

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

Worksheet #1 Free Body or Force diagrams

Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

In order to describe motion you need to describe the following properties.

Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.

Physical Science Chapter 2. Forces

Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components

Speed, velocity and acceleration

Chapter Speed, velocity and acceleration Figure.1 What determines the maximum height that a pole-vaulter can reach? 1 In this chapter we look at moving bodies, how their speeds can be measured and how

SPEED, VELOCITY, AND ACCELERATION

reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration

Educational Innovations

Educational Innovations Background Forces and Motion MAR-600 Wall Coaster Motion is caused by forces. Motion can be described. Motion follows rules. There are many forces and principles involved with motion.

circular motion & gravitation physics 111N

circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

3. KINEMATICS IN TWO DIMENSIONS; VECTORS.

3. KINEMATICS IN TWO DIMENSIONS; VECTORS. Key words: Motion in Two Dimensions, Scalars, Vectors, Addition of Vectors by Graphical Methods, Tail to Tip Method, Parallelogram Method, Negative Vector, Vector

Vector has a magnitude and a direction. Scalar has a magnitude

Vector has a magnitude and a direction Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude a brick on a table Vector has a magnitude and a direction Scalar has a magnitude

Gravitational Potential Energy

Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the

Chapter 6. Work and Energy

Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a non-zero speed carries energy

Chapter 6 Work and Energy

Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables.

Vectors Objectives State the definition and give examples of vector and scalar variables. Analyze and describe position and movement in two dimensions using graphs and Cartesian coordinates. Organize and

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

COMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry.

North Carolina Standard Course of Study and Grade Level Competencies, Physics I Revised 2004 139 Physics PHYSICS - Grades 9-12 Strands: The strands are: Nature of Science, Science as Inquiry, Science and

Acceleration due to Gravity

Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.

Chapter 3 Practice Test

Chapter 3 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a physical quantity that has both magnitude and direction?

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

Mechanics 1: Conservation of Energy and Momentum

Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER

1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.

Physics Section 3.2 Free Fall

Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make

Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

The Force Table Introduction: Theory:

1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is

APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

PHYS 101 Lecture 10 - Work and kinetic energy 10-1

PHYS 101 Lecture 10 - Work and kinetic energy 10-1 Lecture 10 - Work and Kinetic Energy What s important: impulse, work, kinetic energy, potential energy Demonstrations: block on plane balloon with propellor

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

Unit 3 Work and Energy Suggested Time: 25 Hours

Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, 2014 1:15 to 4:15 p.m.

P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Friday, June 20, 2014 1:15 to 4:15 p.m., only The possession or use of any communications device

PHYSICAL QUANTITIES AND UNITS

1 PHYSICAL QUANTITIES AND UNITS Introduction Physics is the study of matter, its motion and the interaction between matter. Physics involves analysis of physical quantities, the interaction between them

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

Physical Quantities and Units

Physical Quantities and Units 1 Revision Objectives This chapter will explain the SI system of units used for measuring physical quantities and will distinguish between vector and scalar quantities. You

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

Physics 1A Lecture 10C

Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

Chapter 3B - Vectors. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 3B - Vectors A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Vectors Surveyors use accurate measures of magnitudes and directions to

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.

PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

MOTION DIAGRAMS. Revised 9/05-1 - LC, tlo

MOTION DIAGRAMS When first applying kinematics (motion) principles, there is a tendency to use the wrong kinematics quantity - to inappropriately interchange quantities such as position, velocity, and

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name

Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture 04-1 1. ask a physicist

Welcome back to Physics 211 Today s agenda: Rotations What s on the exam? Relative motion Physics 211 Spring 2014 Lecture 04-1 1 ask a physicist Why are neutrinos faster than light (photons)? I thought

Section 9.1 Vectors in Two Dimensions

Section 9.1 Vectors in Two Dimensions Geometric Description of Vectors A vector in the plane is a line segment with an assigned direction. We sketch a vector as shown in the first Figure below with an

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

PHYSICS 151 Notes for Online Lecture #6

PHYSICS 151 Notes for Online Lecture #6 Vectors - A vector is basically an arrow. The length of the arrow represents the magnitude (value) and the arrow points in the direction. Many different quantities

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

Learning Outcomes. Distinguish between Distance and Displacement when comparing positions. Distinguish between Scalar and Vector Quantities

Dr Pusey Learning Outcomes Distinguish between Distance and Displacement when comparing positions Distinguish between Scalar and Vector Quantities Add and subtract vectors in one and two dimensions What

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

Physics 590 Homework, Week 6 Week 6, Homework 1

Physics 590 Homework, Week 6 Week 6, Homework 1 Prob. 6.1.1 A descent vehicle landing on the moon has a vertical velocity toward the surface of the moon of 35 m/s. At the same time it has a horizontal

Name per due date mail box

Name per due date mail box Rolling Momentum Lab (1 pt for complete header) Today in lab, we will be experimenting with momentum and measuring the actual force of impact due to momentum of several rolling

PHY121 #8 Midterm I 3.06.2013

PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

Pendulum Force and Centripetal Acceleration

Pendulum Force and Centripetal Acceleration 1 Objectives 1. To calibrate and use a force probe and motion detector. 2. To understand centripetal acceleration. 3. To solve force problems involving centripetal

Chapter 10: Linear Kinematics of Human Movement

Chapter 10: Linear Kinematics of Human Movement Basic Biomechanics, 4 th edition Susan J. Hall Presentation Created by TK Koesterer, Ph.D., ATC Humboldt State University Objectives Discuss the interrelationship

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ

Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces

1.3.1 Position, Distance and Displacement

In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an

Class XI Physics Ch. 4: Motion in a Plane NCERT Solutions Page 85 Question 4.1: State, for each of the following physical quantities, if it is a scalar or a vector: Volume, mass, speed, acceleration, density,

University Physics 226N/231N Old Dominion University. Getting Loopy and Friction

University Physics 226N/231N Old Dominion University Getting Loopy and Friction Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2012-odu Friday, September 28 2012 Happy

Physics 30 Worksheet #10 : Magnetism From Electricity

Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

One- and Two-dimensional Motion

PHYS-101 LAB-02 One- and Two-dimensional Motion 1. Objective The objectives of this experiment are: to measure the acceleration of gravity using one-dimensional motion to demonstrate the independence of

B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

MFF 2a: Charged Particle and a Uniform Magnetic Field... 2

MFF 2a: Charged Particle and a Uniform Magnetic Field... 2 MFF2a RT1: Charged Particle and a Uniform Magnetic Field... 3 MFF2a RT2: Charged Particle and a Uniform Magnetic Field... 4 MFF2a RT3: Charged

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.

6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.

Name DATE Per TEST REVIEW. 2. A picture that shows how two variables are related is called a.

Name DATE Per Completion Complete each statement. TEST REVIEW 1. The two most common systems of standardized units for expressing measurements are the system and the system. 2. A picture that shows how

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008

Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling

2 Session Two - Complex Numbers and Vectors

PH2011 Physics 2A Maths Revision - Session 2: Complex Numbers and Vectors 1 2 Session Two - Complex Numbers and Vectors 2.1 What is a Complex Number? The material on complex numbers should be familiar

Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v =

Scalar versus Vector Quantities Scalar Quantities Magnitude (size) 55 mph Speed Average Speed = distance (in meters) time (in seconds) Vector Quantities Magnitude (size) Direction 55 mph, North v = Dx

Vectors and Scalars. AP Physics B

Vectors and Scalars P Physics Scalar SCLR is NY quantity in physics that has MGNITUDE, but NOT a direction associated with it. Magnitude numerical value with units. Scalar Example Speed Distance ge Magnitude

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points)

Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

Force on Moving Charges in a Magnetic Field

[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

8-3 Dot Products and Vector Projections

8-3 Dot Products and Vector Projections Find the dot product of u and v Then determine if u and v are orthogonal 1u =, u and v are not orthogonal 2u = 3u =, u and v are not orthogonal 6u = 11i + 7j; v

The Dot and Cross Products

The Dot and Cross Products Two common operations involving vectors are the dot product and the cross product. Let two vectors =,, and =,, be given. The Dot Product The dot product of and is written and

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu)

6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,