Name DATE Per TEST REVIEW. 2. A picture that shows how two variables are related is called a.

Size: px
Start display at page:

Download "Name DATE Per TEST REVIEW. 2. A picture that shows how two variables are related is called a."

Transcription

1 Name DATE Per Completion Complete each statement. TEST REVIEW 1. The two most common systems of standardized units for expressing measurements are the system and the system. 2. A picture that shows how two variables are related is called a. 3. On a graph, the independent variable is represented on the -axis. 4. The would be the most practical unit to use for expressing the time it takes to blink. 5. The metric system is easier to use because basic units are related to larger and smaller units by a factor of. 6. The dependent variable is generally plotted on the axis of a graph. 7. Arrows are used to represent vector quantities. The arrow head represents the while the arrow s length represents the. 8. Although we use many units for measuring time, for most of physical science we measure and record time in. 9. A description of how far it is from one point to another (measured in units of length) is called. 10. The variable which is plotted on the x-axis of a graph is called the variable.

2 Matching Match the following terms with the correct definition. There is at least one extra term that will not match any of the definitions. a. English system b. kilometers, meters, centimeters c. miles, yards, inches d. metric system (SI) e. distance f. conversion factor 11. Metric, or SI, units of length 12. Used to establish the metric standard of length, the meter 13. Length between two points 14. Measuring system used by the scientific community 15. English units of length Match the following terms with the correct definition. There is at least one extra term that will not match any of the definitions. a. vector b. magnitude c. resultant d. velocity e. scalar f. equilibrium 16. Physical quantity with both magnitude and direction 17. Physical quantity that can be described by a single value (magnitude) 18. The sum of two or more vectors 19. Size or amount of a quantity

3 Choose the unit of measurement from the list below that would be BEST to use when expressing a measurement in each of the following situations. Unit choices can be used once, more than once, or not at all. a. centimeter b. meter c. millimeter d. kilometer 20. The length of an Olympic-sized swimming pool 21. The width of a human hair 22. The distance from one town to another 23. The distance between a point at the top of a one-meter ramp and a point halfway down the ramp 24. The length of your foot Short Answer 25. Use the graph below to predict the speed of the car when the car is at 60 centimeters: 26. Give two examples of vector quantities and two examples of scalar quantities.

4 An astronaut brings her lucky horseshoe on a mission to the moon. Answer the following questions about this horseshoe. 27. Would the astronaut's lucky horseshoe weigh the same, more, or less on the moon than it did on the Earth? Explain your reasoning. 28. Would the lucky horseshoe's mass on the moon be the same, greater than, or less than the mass of the horseshoe when it is on the Earth? Explain your answer. Problem 29. Calculate the number of millimeters in 2.13 kilometers. 30. How many centimeters tall is a person who is 1.65 meters tall? 31. Convert the following quantity of time to seconds. 3:45: Calculate the number of millimeters in 3.25 meters. 33. Convert the following quantity of time to seconds:

5 34. Using standard notation, express 11,256 seconds in units as hours:minutes:seconds. 35. Make a drawing to illustrate your answer to the following problem: The speed of an airplane relative to the ground depends on the airplane s speed relative to the air (the airspeed) and on the direction of the wind. For example, suppose an airplane moves at an airspeed of 100 km/h. If the air is moving 30 km/h in the same direction, the speed of the plane relative to the ground is 130 km/h. A pilot flying her airplane at a speed of 90 km/h hour directly north encounters a 45 km/h wind blowing from east to west. What is her resultant velocity relative to the ground? 36. A man runs meters in 4.00 minutes. What is the speed of the man expressed in meters per second? 37. A carton weighs 5.00 pounds. If 1.00 newton equals the weight of pounds, what is the weight of the carton in units of newtons? Essay 38. Tell why it is important to include units whenever you describe a measurement. 39. Describe how the components of a vector are most often represented graphically.

6 TEST REVIEW Answer Section COMPLETION 1. ANS: English, metric metric, English English, International International, English SI, English English, SI PTS: 1 DIF: basic REF: section ANS: graph PTS: 1 DIF: basic REF: section ANS: x horizontal PTS: 1 DIF: basic REF: section ANS: second PTS: 1 DIF: basic REF: section ANS: ten 10 PTS: 1 DIF: basic REF: section ANS: y PTS: 1 DIF: basic REF: section ANS: direction, magnitude PTS: 1 DIF: basic REF: section ANS: seconds

7 PTS: 1 DIF: basic REF: chapter 01 section ANS: distance PTS: 1 DIF: basic REF: chapter 01 section ANS: independent MATCHING PTS: 1 DIF: basic REF: chapter 02 section 02.1 STA: TEKS 2C 11. ANS: B PTS: 1 DIF: basic REF: section ANS: D PTS: 1 DIF: basic REF: section ANS: E PTS: 1 DIF: basic REF: section ANS: D PTS: 1 DIF: basic REF: section ANS: C PTS: 1 DIF: basic REF: section ANS: A PTS: 1 DIF: basic REF: section ANS: E PTS: 1 DIF: basic REF: section ANS: C PTS: 1 DIF: basic REF: section ANS: B PTS: 1 DIF: basic REF: section ANS: B PTS: 1 DIF: basic REF: chapter 01 section ANS: C PTS: 1 DIF: basic REF: chapter 01 section ANS: D PTS: 1 DIF: basic REF: chapter 01 section ANS: A PTS: 1 DIF: basic REF: chapter 01 section ANS: A PTS: 1 DIF: basic REF: chapter 01 section 01.1

8 SHORT ANSWER 25. ANS: 240 cm/s PTS: 1 DIF: intermediate REF: section ANS: Answers may vary. Correct answers include: Example vectors: position, velocity, force, and acceleration Example scalars: temperature, speed, mass,and coefficients such as the spring constant or the coefficient of sliding friction PTS: 1 DIF: basic REF: section ANS: The horseshoe would weigh less. Weight is a measure of the pulling force of gravity, and since the gravity exerted by the moon on the horseshoe is less (by 1/6th) than the gravity exerted by the Earth on the horseshoe, the horseshoe would actually weigh less on the moon. PTS: 1 DIF: intermediate REF: chapter 03 section 03.2 STA: TEKS 4B TEKS 3A 28. ANS: The mass of the horseshoe would be the same. Mass is a measure of the amount of matter in an object, and the amount of matter in the horseshoe does not change when it is taken from one place to another. PROBLEM PTS: 1 DIF: intermediate REF: chapter 03 section 03.2 STA: TEKS 4B TEKS 3A 29. ANS: PTS: 1 DIF: intermediate REF: section ANS:

9 PTS: 1 DIF: intermediate REF: section ANS: PTS: 1 DIF: intermediate REF: section ANS: Since there are 1,000 millimeters in every meter, the conversion is made by multiplying the number of meters by the number of millimeters per meter. The meter unit factors out, leaving the answer expressed in millimeters: PTS: 1 DIF: intermediate REF: section ANS: PTS: 1 DIF: intermediate REF: section ANS: First, convert 11,256 seconds to the total hours: Next, subtract the whole hours from the total hours to calculate the fractional hours: Then, convert the fractional hours to total minutes: Next, subtract the whole minutes from the total minutes to calculate the fractional minutes:

10 Lastly, convert the fractional minutes to seconds: 0 When these calculations are written as standard notation, they appear as 3hrs:07min:36s. PTS: 1 DIF: advanced REF: section ANS: The answer is 100 km/h, northwest. The speed of the plane is the resultant of the vector addition of the wind speed and the airspeed of the plane. To receive credit, the student must establish a scale and make a scale drawing representing the 90 km/h vector and the 45 km/h vector at right angles to one another. The drawing must show the resultant connecting the 45 km/h vector to the 90 km/h vector in a northwesterly direction and represent, to scale, about 100 km/h. PTS: 1 DIF: advanced REF: section ANS: 4.00 minutes = 240. seconds speed = 6.25 m/sec PTS: 1 DIF: advanced REF: chapter 01 section 01.3 STA: TEKS 4A 37. ANS: ESSAY weight in newtons = 21.9 newtons PTS: 1 DIF: intermediate REF: chapter 03 section 03.1 STA: TEKS 4B

11 38. ANS: All measurements must include units in order for the measurement to be understood. All measurements are made by comparing one quantity with another. If a measurement is given only as a number it is impossible to tell which quantity is being used for comparison.therefore, the size of the quantity which is being described cannot be determined. PTS: 1 DIF: basic REF: section ANS: To represent the components graphically, draw the vector as an arrow of appropriate length at the specified angle. Draw a vertical and a horizontal arrow from the tail of the vector. Connect these arrows to the head of the original vector with another pair of vertical and horizontal arrows. The heads of all arrows drawn should point away from the tail and toward the head of the original vector. The sides of the rectangle formed represent the size of the components. The heads of the arrows represent the direction. PTS: 1 DIF: advanced REF: section 7.1

Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.

More information

Unit 1: Vectors. a m/s b. 8.5 m/s c. 7.2 m/s d. 4.7 m/s

Unit 1: Vectors. a m/s b. 8.5 m/s c. 7.2 m/s d. 4.7 m/s Multiple Choice Portion 1. A boat which can travel at a speed of 7.9 m/s in still water heads directly across a stream in the direction shown in the diagram above. The water is flowing at 3.2 m/s. What

More information

PHYSICS MIDTERM REVIEW

PHYSICS MIDTERM REVIEW 1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If

More information

F13--HPhys--Q5 Practice

F13--HPhys--Q5 Practice Name: Class: Date: ID: A F13--HPhys--Q5 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A vector is a quantity that has a. time and direction.

More information

2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?

2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed? Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140

More information

COURSE CONTENT. Introduction. Definition of a Force Effect of Forces Measurement of forces. Newton s Laws of Motion

COURSE CONTENT. Introduction. Definition of a Force Effect of Forces Measurement of forces. Newton s Laws of Motion CHAPTER 13 - FORCES COURSE CONTENT Introduction Newton s Laws of Motion Definition of a Force Effect of Forces Measurement of forces Examples of Forces A force is just a push or pull. Examples: an object

More information

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003 Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

More information

Chapter 4. Dynamics: Newton s Laws of Motion

Chapter 4. Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion The Concepts of Force and Mass A force is a push or a pull. Contact forces arise from physical contact. Action-at-a-distance forces do not require contact and

More information

DISPLACEMENT AND FORCE IN TWO DIMENSIONS

DISPLACEMENT AND FORCE IN TWO DIMENSIONS DISPLACEMENT AND FORCE IN TWO DIMENSIONS Vocabulary Review Write the term that correctly completes the statement. Use each term once. coefficient of kinetic friction equilibrant static friction coefficient

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

Chapter 4. Forces and Newton s Laws of Motion

Chapter 4. Forces and Newton s Laws of Motion Chapter 4 Forces and Newton s Laws of Motion 4.1 The Concepts of Force and Mass A force is a push or a pull. Contact forces arise from physical contact. Action-at-a-distance forces do not require contact

More information

Chapter 10: Terminology and Measurement in Biomechanics

Chapter 10: Terminology and Measurement in Biomechanics Chapter 10: Terminology and Measurement in Biomechanics KINESIOLOGY Scientific Basis of Human Motion, 11th edition Hamilton, Weimar & Luttgens Presentation Created by TK Koesterer, Ph.D., ATC Humboldt

More information

Physics Exam 1 Review - Chapter 1,2

Physics Exam 1 Review - Chapter 1,2 Physics 1401 - Exam 1 Review - Chapter 1,2 13. Which of the following is NOT one of the fundamental units in the SI system? A) newton B) meter C) kilogram D) second E) All of the above are fundamental

More information

Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

More information

5.1 Vector and Scalar Quantities. A vector quantity includes both magnitude and direction, but a scalar quantity includes only magnitude.

5.1 Vector and Scalar Quantities. A vector quantity includes both magnitude and direction, but a scalar quantity includes only magnitude. Projectile motion can be described by the horizontal ontal and vertical components of motion. In the previous chapter we studied simple straight-line motion linear motion. Now we extend these ideas to

More information

Newton s Laws of Motion. Chapter 4

Newton s Laws of Motion. Chapter 4 Newton s Laws of Motion Chapter 4 Changes in Motion Section 4.1 Force is simply a push or pull It is an interaction between two or more objects Force is a vector so it has magnitude and direction In the

More information

Appendix G. Units of Measure

Appendix G. Units of Measure Appendix G Units of Measure A. Measurement Magnitudes of measurements are typically given in terms of a specific unit. In surveying, the most commonly used units define quantities of length (or distance),

More information

Motion Lesson 1: Review of Basic Motion

Motion Lesson 1: Review of Basic Motion Motion in one and two dimensions: Lesson 1 Semi-notes Motion Lesson 1: Review of Basic Motion Note. For these semi notes we will use the bold italics convention to represent vectors. Complete the following

More information

b) Find the speed (in km/h) of the airplane relative to the ground.

b) Find the speed (in km/h) of the airplane relative to the ground. I. An airplane is heading due east and is moving at a speed of 370 km/h relative to the air. The wind is blowing 45.0 degrees north of west at a speed of 93.0 km/h. a) Represent the airplane s and wind

More information

Chapter 3 Practice Test

Chapter 3 Practice Test Chapter 3 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a physical quantity that has both magnitude and direction?

More information

Work, Energy and Power Practice Test 1

Work, Energy and Power Practice Test 1 Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

More information

PHYS 1111L LAB 2. The Force Table

PHYS 1111L LAB 2. The Force Table In this laboratory we will investigate the vector nature of forces. Specifically, we need to answer this question: What happens when two or more forces are exerted on the same object? For instance, in

More information

Summary Notes. to avoid confusion it is better to write this formula in words. time

Summary Notes. to avoid confusion it is better to write this formula in words. time National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)

More information

PHYSICS Unit 1A- Kinematics 1

PHYSICS Unit 1A- Kinematics 1 PHYSICS 2204 Unit 1A- Kinematics 1 SI Units Metric Prefixes Factor Prefix Symbol 10 12 tera T 10 9 giga G 10 6 mega M 10 3 kilo k 10 2 hecto h 10 0 Standard unit --- 10-1 deci d 10-2 centi c 10-3 milli

More information

Chapter 3. Technical Measurement and Vectors

Chapter 3. Technical Measurement and Vectors Chapter 3. Technical Measurement and Vectors Unit Conversions 3-1. soccer field is 100 m long and 60 m across. What are the length and width of the field in feet? 100 cm 1 in. 1 ft (100 m) 328 ft 1 m 2.54

More information

Introduction and Mathematical Concepts

Introduction and Mathematical Concepts CHAPTER 1 Introduction and Mathematical Concepts PREVIEW In this chapter you will be introduced to the physical units most frequently encountered in physics. After completion of the chapter you will be

More information

SPEED, VELOCITY, AND ACCELERATION

SPEED, VELOCITY, AND ACCELERATION reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration

More information

8-2 Vectors in the Coordinate Plane

8-2 Vectors in the Coordinate Plane Find the component form and magnitude of with the given initial and terminal points 1 A( 3, 1), B(4, 5) 3 A(10, 2), B(3, 5) First, find the component form First, find the component form Next, find the

More information

General Physics 1. Class Goals

General Physics 1. Class Goals General Physics 1 Class Goals Develop problem solving skills Learn the basic concepts of mechanics and learn how to apply these concepts to solve problems Build on your understanding of how the world works

More information

6. Note that the following question has only three choices.

6. Note that the following question has only three choices. 1. A 5.0-newton force and a 7.0-newton force act concurrently on a point. As the angle between the forces is increased from 0 to 180, the magnitude of the resultant of the two forces changes from 0.0 N

More information

Outline. Gravity and VECTORS. How do we describe a Vector? Additional Vector Information

Outline. Gravity and VECTORS. How do we describe a Vector? Additional Vector Information Gravity and VECTORS Physics 109 Class period 3 4 September 2007 Outline Vectors and their description Adding and Subtracting Vectors What Vectors can represent The Second Experiment Gravity measurement

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

8-1 Introduction to Vectors

8-1 Introduction to Vectors State whether each quantity described is a vector quantity or a scalar quantity. 1. a box being pushed at a force of 125 newtons This quantity has a magnitude of 125 newtons, but no direction is given.

More information

Conceptual Physics Review (Chapters 4, 5, & 6)

Conceptual Physics Review (Chapters 4, 5, & 6) Conceptual Physics Review (Chapters 4, 5, & 6) Solutions Sample Questions and Calculations. If you were in a spaceship and launched a cannonball into frictionless space, how much force would have to be

More information

MATHEMATICAL VECTOR ADDITION

MATHEMATICAL VECTOR ADDITION MATHEMATICAL VECTOR ADDITION Part One: The Basics When combining two vectors that act at a right angle to each other, you are able to use some basic geometry to find the magnitude and direction of the

More information

Unit 4: Science and Materials in Construction and the Built Environment. Chapter 14. Understand how Forces act on Structures

Unit 4: Science and Materials in Construction and the Built Environment. Chapter 14. Understand how Forces act on Structures Chapter 14 Understand how Forces act on Structures 14.1 Introduction The analysis of structures considered here will be based on a number of fundamental concepts which follow from simple Newtonian mechanics;

More information

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

More information

1.3 Displacement in Two Dimensions

1.3 Displacement in Two Dimensions 1.3 Displacement in Two Dimensions So far, you have learned about motion in one dimension. This is adequate for learning basic principles of kinematics, but it is not enough to describe the motions of

More information

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc. Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

Concept Review. Physics 1

Concept Review. Physics 1 Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or

More information

Worksheet to Review Vector and Scalar Properties

Worksheet to Review Vector and Scalar Properties Worksheet to Review Vector and Scalar Properties 1. Differentiate between vectors and scalar quantities 2. Know what is being requested when the question asks for the magnitude of a quantity 3. Define

More information

Physics term 1 reviewsheet

Physics term 1 reviewsheet Name: ate: 1. The length of line shown is closest to one. millimeter. centimeter. meter. kilometer 5. The diagram shown represents a rectangle composed of squares with sides one meter long. What is the

More information

2.3 Acceleration. Acceleration. Chapter 2

2.3 Acceleration. Acceleration. Chapter 2 The speed of things is always changing. Your car speeds up and slows down. If you slow down gradually, it feels very different from slamming on the brakes and stopping fast. In this section we will learn

More information

BROCK UNIVERSITY. PHYS 1P21/1P91 Solutions to Mid-term test 26 October 2013 Instructor: S. D Agostino

BROCK UNIVERSITY. PHYS 1P21/1P91 Solutions to Mid-term test 26 October 2013 Instructor: S. D Agostino BROCK UNIVERSITY PHYS 1P21/1P91 Solutions to Mid-term test 26 October 2013 Instructor: S. D Agostino 1. [10 marks] Clearly indicate whether each statement is TRUE or FALSE. Then provide a clear, brief,

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 5: NEWTON S THIRD LAW OF MOTION This lecture will help you understand: Forces and Interactions Newton s Third Law of Motion Summary of Newton s Laws Vectors Forces

More information

Physical Quantities and Units

Physical Quantities and Units Physical Quantities and Units 1 Revision Objectives This chapter will explain the SI system of units used for measuring physical quantities and will distinguish between vector and scalar quantities. You

More information

Introduction to Vectors

Introduction to Vectors Introduction to Vectors A vector is a physical quantity that has both magnitude and direction. An example is a plane flying NE at 200 km/hr. This vector is written as 200 Km/hr at 45. Another example is

More information

physics 111N forces & Newton s laws of motion

physics 111N forces & Newton s laws of motion physics 111N forces & Newton s laws of motion forces (examples) a push is a force a pull is a force gravity exerts a force between all massive objects (without contact) (the force of attraction from the

More information

Physics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)

Physics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion) Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions

More information

Student Exploration: Gravitational Force

Student Exploration: Gravitational Force 5. Drag STUDENT PACKET # 7 Name: Date: Student Exploration: Gravitational Force Big Idea 13: Forces and Changes in Motion Benchmark: SC.6.P.13.1 Investigate and describe types of forces including contact

More information

1 of 6 9/5/2009 6:13 PM

1 of 6 9/5/2009 6:13 PM 1 of 6 9/5/2009 6:13 PM Chapter 1 Homework Due: 9:00am on Tuesday, September 1, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

A Review of Vector Addition

A Review of Vector Addition Motion and Forces in Two Dimensions Sec. 7.1 Forces in Two Dimensions 1. A Review of Vector Addition. Forces on an Inclined Plane 3. How to find an Equilibrant Vector 4. Projectile Motion Objectives Determine

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

Newton's laws of motion

Newton's laws of motion Newton's laws of motion Forces Forces as vectors Resolving vectors Explaining motion - Aristotle vs Newton Newton s first law Newton s second law Weight Calculating acceleration Newton s third law Moving

More information

Physics Exam Q1 Exam, Part A Samples

Physics Exam Q1 Exam, Part A Samples Physics Exam Q1 Exam, Part A Samples 1. An object starts from rest and accelerates uniformly down an incline. If the object reaches a speed of 40 meters per second in 5 seconds, its average speed is (A)

More information

1206EL - Concepts in Physics. Friday, September 18th

1206EL - Concepts in Physics. Friday, September 18th 1206EL - Concepts in Physics Friday, September 18th Notes There is a WebCT course for students on September 21st More information on library webpage Newton s second law Newton's first law of motion predicts

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Math. Converting Metric Distances. Answers. Name: Determine what number makes each conversion true. 1) 56 millimeters = 5.

Math. Converting Metric Distances. Answers. Name: Determine what number makes each conversion true. 1) 56 millimeters = 5. 1) 56 millimeters = 5.6 centimeters 2) 79 millimeters = 7.9 centimeters 3) 89 millimeters = 8.9 centimeters 4) 28 centimeters = 0.28 meters 5) 11 centimeters = 0.11 meters 6) 34 centimeters = 0.34 meters

More information

VECTORS. Teacher's Guide

VECTORS. Teacher's Guide VECTORS Teacher's Guide This teacher's guide is designed for use with the Vectors series of programs produced by TVOntario, the television service of The Ontario Educational Communications Authority. The

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north

More information

Equilibrium of Concurrent Forces (Force Table)

Equilibrium of Concurrent Forces (Force Table) Equilibrium of Concurrent Forces (Force Table) Objectives: Experimental objective Students will verify the conditions required (zero net force) for a system to be in equilibrium under the influence of

More information

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu)

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu) 6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

More information

Chapter 11 Equilibrium

Chapter 11 Equilibrium 11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

More information

Objectives 4 CHAPTER 1 THE PRIME MOVERS

Objectives 4 CHAPTER 1 THE PRIME MOVERS Objectives Define force, and describe how forces are measured. Describe what happens when forces on an object are balanced and when they are unbalanced. Explain the meaning of Newton s first law of motion.

More information

1.4 Velocity and Acceleration in Two Dimensions

1.4 Velocity and Acceleration in Two Dimensions Figure 1 An object s velocity changes whenever there is a change in the velocity s magnitude (speed) or direction, such as when these cars turn with the track. 1.4 Velocity and Acceleration in Two Dimensions

More information

Newton s Laws Pre-Test

Newton s Laws Pre-Test Newton s Laws Pre-Test 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)

More information

Difference between a vector and a scalar quantity. N or 90 o. S or 270 o

Difference between a vector and a scalar quantity. N or 90 o. S or 270 o Vectors Vectors and Scalars Distinguish between vector and scalar quantities, and give examples of each. method. A vector is represented in print by a bold italicized symbol, for example, F. A vector has

More information

MODULE INTRODUCTION TO CONSTRUCTION MATH. (00102 LESSON 1 of 3) SLIDE PRESENTATION

MODULE INTRODUCTION TO CONSTRUCTION MATH. (00102 LESSON 1 of 3) SLIDE PRESENTATION MODULE 00102-09 INTRODUCTION TO CONSTRUCTION MATH (00102 LESSON 1 of 3) SLIDE PRESENTATION SLIDE 1 Objectives When you have completed this module, you will be able to do the following: 1. Add, subtract,

More information

STEM Fuse GAME:IT Unit 2

STEM Fuse GAME:IT Unit 2 STEM Fuse GAME:IT Unit 2 Key formulas for math & physics calculations used in game development Definition of velocity Velocity is similar to speed but it has direction. Let's recap what a speed is. Speed

More information

Physics 101. Chapter 5: Newton s Third Law

Physics 101. Chapter 5: Newton s Third Law Physics 101 Today Chapter 5: Newton s Third Law First, let s clarify notion of a force: Previously defined force as a push or pull. Better to think of force as an interaction between two objects. You can

More information

General Physics I Can Statements

General Physics I Can Statements General Physics I Can Statements Motion (Kinematics) 1. I can describe motion in terms of position (x), displacement (Δx), distance (d), speed (s), velocity (v), acceleration (a), and time (t). A. I can

More information

Notes: Mechanics. The Nature of Force, Motion & Energy

Notes: Mechanics. The Nature of Force, Motion & Energy Notes: Mechanics The Nature of Force, Motion & Energy I. Force A push or pull. a) A force is needed to change an object s state of motion. b) Net force- The sum (addition) of all the forces acting on an

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion FIZ101E Kazım Yavuz Ekşi My contact details: Name: Kazım Yavuz Ekşi Email: eksi@itu.edu.tr Notice: Only emails from your ITU account are responded. Office hour: Wednesday 10.00-12.00

More information

Dynamics- Why do objects move as they do? What makes an object at rest, begin to move? What makes a body accelerate or decelerate?

Dynamics- Why do objects move as they do? What makes an object at rest, begin to move? What makes a body accelerate or decelerate? Dynamics- Why do objects move as they do? What makes an object at rest, begin to move? What makes a body accelerate or decelerate? What makes an object move in a circle? Force A Force is simply a push

More information

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S Central Concept: Newton s laws of motion and gravitation describe and predict the motion

More information

Newton's Law of Inertia (Newton s first Law of Motion) Every object continues in a state of rest, or of motion in a straight line at constant speed,

Newton's Law of Inertia (Newton s first Law of Motion) Every object continues in a state of rest, or of motion in a straight line at constant speed, Newton's Law of Inertia (Newton s first Law of Motion) Every object continues in a state of rest, or of motion in a straight line at constant speed, unless it is compelled to change that state by forces

More information

Section 4.4 Velocity as a Vector

Section 4.4 Velocity as a Vector Section 4.4 Velocity as a Vector In elementary problems, the speed of a moing object is calculated by diiding the distance traelled by the trael time. In adanced work, speed is defined more efully as the

More information

1. Metric system- developed in Europe (France) in 1700's, offered as an alternative to the British or English system of measurement.

1. Metric system- developed in Europe (France) in 1700's, offered as an alternative to the British or English system of measurement. GS104 Basics Review of Math I. MATHEMATICS REVIEW A. Decimal Fractions, basics and definitions 1. Decimal Fractions - a fraction whose deonominator is 10 or some multiple of 10 such as 100, 1000, 10000,

More information

Examples of Scalar and Vector Quantities 1. Candidates should be able to : QUANTITY VECTOR SCALAR

Examples of Scalar and Vector Quantities 1. Candidates should be able to : QUANTITY VECTOR SCALAR Candidates should be able to : Examples of Scalar and Vector Quantities 1 QUANTITY VECTOR SCALAR Define scalar and vector quantities and give examples. Draw and use a vector triangle to determine the resultant

More information

Name Date Class. The Nature of Force and Motion (pages ) 2. When one object pushes or pulls another object, the first object is

Name Date Class. The Nature of Force and Motion (pages ) 2. When one object pushes or pulls another object, the first object is CHAPTER 4 MOTION AND FORCES SECTION 4 1 The Nature of Force and Motion (pages 116-121) This section explains how balanced and unbalanced forces are related to the motion of an object. It also explains

More information

Module 8 Lesson 4: Applications of Vectors

Module 8 Lesson 4: Applications of Vectors Module 8 Lesson 4: Applications of Vectors So now that you have learned the basic skills necessary to understand and operate with vectors, in this lesson, we will look at how to solve real world problems

More information

Vectors are quantities that have both a direction and a magnitude (size).

Vectors are quantities that have both a direction and a magnitude (size). Scalars & Vectors Vectors are quantities that have both a direction and a magnitude (size). Ex. km, 30 ο north of east Examples of Vectors used in Physics Displacement Velocity Acceleration Force Scalars

More information

Solution: 2. Sketch the graph of 2 given the vectors and shown below.

Solution: 2. Sketch the graph of 2 given the vectors and shown below. 7.4 Vectors, Operations, and the Dot Product Quantities such as area, volume, length, temperature, and speed have magnitude only and can be completely characterized by a single real number with a unit

More information

2. What magnitude of net force is required to give a 135-kg refrigerator an acceleration of magnitude 1.40 m/. [189 N]

2. What magnitude of net force is required to give a 135-kg refrigerator an acceleration of magnitude 1.40 m/. [189 N] PAGE 1 OF 14 E-MAIL: MIAMIMATHTUTOR@GMAIL.COM CONTACT NUMBER: (786)556-4839 PHYSICS I NEWTON S LAWS OF MOTION PRACTICE PROBLEMS 5.1 1. If a net horizontal force of 130 N is applied to a person with mass

More information

Work, Power & Conversions

Work, Power & Conversions Purpose Work, Power & Conversions To introduce the metric system of measurement and review related terminology commonly encountered in exercise physiology Student Learning Objectives After completing this

More information

Physical Science Chapter 2. Forces

Physical Science Chapter 2. Forces Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components

More information

B) 286 m C) 325 m D) 367 m Answer: B

B) 286 m C) 325 m D) 367 m Answer: B Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

W i f(x i ) x. i=1. f(x i ) x = i=1

W i f(x i ) x. i=1. f(x i ) x = i=1 Work Force If an object is moving in a straight line with position function s(t), then the force F on the object at time t is the product of the mass of the object times its acceleration. F = m d2 s dt

More information

Lab 2: Vector Analysis

Lab 2: Vector Analysis Lab 2: Vector Analysis Objectives: to practice using graphical and analytical methods to add vectors in two dimensions Equipment: Meter stick Ruler Protractor Force table Ring Pulleys with attachments

More information

3.1 Force, Mass, and Acceleration

3.1 Force, Mass, and Acceleration Sir Isaac Newton discovered one of the most important relationships in physics: the link between the force on an object, its mass, and its acceleration. In this section, you will learn about force and

More information

Unit 11 Additional Topics in Trigonometry - Classwork

Unit 11 Additional Topics in Trigonometry - Classwork Unit 11 Additional Topics in Trigonometry - Classwork In geometry and physics, concepts such as temperature, mass, time, length, area, and volume can be quantified with a single real number. These are

More information

THE NATURE OF FORCES Forces can be divided into two categories: contact forces and non-contact forces.

THE NATURE OF FORCES Forces can be divided into two categories: contact forces and non-contact forces. SESSION 2: NEWTON S LAWS Key Concepts In this session we Examine different types of forces Review and apply Newton's Laws of motion Use Newton's Law of Universal Gravitation to solve problems X-planation

More information

UNIT 2D. Laws of Motion

UNIT 2D. Laws of Motion Name: Regents Physics Date: Mr. Morgante UNIT 2D Laws of Motion Laws of Motion Science of Describing Motion is Kinematics. Dynamics- the study of forces that act on bodies in motion. First Law of Motion

More information

1 of 7 10/2/2009 1:13 PM

1 of 7 10/2/2009 1:13 PM 1 of 7 10/2/2009 1:13 PM Chapter 6 Homework Due: 9:00am on Monday, September 28, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

Physics 2101, First Exam, Fall 2007

Physics 2101, First Exam, Fall 2007 Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the

More information

FORCES AND MOTION UNIT TEST. Multiple Choice: Draw a Circle Completely around the ONE BEST answer.

FORCES AND MOTION UNIT TEST. Multiple Choice: Draw a Circle Completely around the ONE BEST answer. FORCES AND MOTION UNIT TEST Multiple Choice: Draw a Circle Completely around the ONE BEST answer. 1. A force acting on an object does no work if a. a machine is used to move the object. b. the force is

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left. The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

More information

Section 1.6 Systems of Measurement

Section 1.6 Systems of Measurement Systems of Measurement Measuring Systems of numeration alone do not provide enough information to describe all the physical characteristics of objects. With numerals, we can write down how many fish we

More information