Speed, velocity and acceleration


 Gervase Dixon
 3 years ago
 Views:
Transcription
1 Chapter Speed, velocity and acceleration Figure.1 What determines the maximum height that a polevaulter can reach? 1 In this chapter we look at moving bodies, how their speeds can be measured and how accelerations can be calculated. We also look at what happens when a body falls under the influence of gravity..1 Speed In everyday life we think of speed as how fast something is travelling. However, this is too vague for scientific purposes. Speed is defined as the travelled in unit. It can be calculated from the formula: speed Units The basic unit of is the metre and the basic unit of is the second. The unit of speed is formed by dividing metres by seconds, giving m/s. An alternative unit is the kilometre per hour (km/h) often used when considering long s. _phys_1_.indd 1 6/11/8 1:18:55
2 Speed, velocity and acceleration WORKED EXAMPLES An athlete runs at a steady speed and covers 6 m in 8. s. Calculate her speed. speed 6 8. m/s 7.5 m/s Measurement of speed We can measure the speed of an object by measuring the it takes to travel a set. If the speed varies during the journey, the calculation gives the average speed of the object. To get a better idea of the instantaneous speed we need to measure the travelled in a very short. One way of doing this is to take a multiflash photograph. A light is set up to flash at a steady rate. A camera shutter is held open while the object passes in front of it. Figure. shows a toy car moving down a slope. QUESTIONS.1 A car travels m in 8. s. Calculate its speed.. A cricketer bowls a ball at 45 m/s at a batsman 18. m away from him. Calculate the taken for the ball to reach the batsman. Figure. <ph_> NOW ARTWORK PLEASE SUPPLY BRIEF Successive images of the car are equal s apart, showing that the car is travelling at a constant speed. To find the speed, we measure the between two images and divide by the between each flash. Acceleration So far we have looked at objects travelling at constant speed. However, in real life this is quite unusual. When an object changes its speed it is said to accelerate. If the object slows down this is often described as a deceleration. _phys_1_.indd 13 6/11/8 1:18:58 13
3 Figure.3 shows a multiflash photograph of the toy car rolling down a steeper slope. This its speed increases as it goes down the slope it is accelerating. Figure.3 <ph_3> NOW ARTWORK PLEASE SUPPLY BRIEF Figure.4 Distance changing at a steady state. Figure.5 Increasing s with travelled. Using graphs Distance graphs Graphs are used a lot in science and in other mathematical situations. They are like pictures in a storybook, giving a lot of information in a compact manner. We can draw graphs for the two journeys of the car in Figures. and.3. In Figure. the car travels equal s between each flash, so the total travelled increases at a steady rate. This produces a straight line as shown in Figure.4. The greater the speed, the steeper the slope (or gradient) of the line. In Figure.3 the car travels increasing s in each interval. This leads to the graph shown in Figure.5, which gradually curves upwards. The graph in Figure.6 shows the story of a journey. The car starts at quite a high speed and gradually decelerates before coming to rest at point P. P QUESTIONS.3 Describe the journeys shown in the diagrams below. Figure.6 Story of a car journey. 14 _phys_1_.indd 14 6/11/8 1:18:58
4 Speed, velocity and acceleration Speed graphs Instead of using a graph to look at the travelled over a period of we can look at how the speed changes. Figure.7 appears similar to Figure.4. However closer inspection shows that it is the speed which is increasing at a constant rate, not the. This graph is typical for one in which there is a constant acceleration. In this case the gradient of the graph is equal to the acceleration. The greater the acceleration the larger the gradient. The graph in Figure.8 shows the story of the speed on a journey. This is a straightline graph, with a negative gradient. This shows constant deceleration, somes described as negative acceleration. Using a speed graph to calculate travelled speed Rearrange the equation: speed Look at Figure.9. The object is travelling at a constant speed, v, for t. The travelled v t We can see that it is the area of the rectangle formed. Now look at Fig..1, which shows a journey with constant acceleration from rest. The area under this graph is equal to the area under the triangle that is formed. The travelled 1_ v t 1_ v is the average speed of the object and travelled is given by average speed, so once again the travelled is equal to the area under the graph. The general rule is that the travelled is equal to the area under the speed graph. WORKED EXAMPLES Use the graph in Figure.11 to calculate the travelled by the car in the interval from.5 s to 4.5 s. Time passed (4.5.5) s 4. s Initial speed m/s Final speed 1 m/s In this case, the area under the line forms a triangle and the area of a triangle is found from the formula: area 1_ base height area under the graph the travelled 1_ 4. 1 m 4 m speed Figure.7 Speed changing at steady rate. speed Figure.8 Story of speed on a journey. speed v t Figure.9 Area under graph of constant speed. speed v t Figure.1 Area under graph of constant acceleration (s) Figure.11 Distance travelled by a car. _phys_1_.indd 15 6/11/8 1:18:59 15
5 Figure.1 The lap of the track is 3. m, and the car completes a full lap in 6. s. The average speed of the car is 5. m/s. However its average velocity is zero! Velocity is a vector and the car finishes at the same point as it started, so there has been no net displacement in any direction. S. Velocity Velocity is very similar to speed. When we talk about speed we do not concern ourselves with direction. However, velocity does include direction. So an object travelling at 5 m/s due south has a different velocity from an object travelling at 5 m/s northwest. It is worth observing that the velocity changes if the speed increases, or decreases, or if the direction of motion changes (even if the speed remains constant). There are many quantities in physics which have direction as well as size. Such quantities are called vectors. Quantities, such as mass, which have only size but no direction are called scalars..3 Acceleration We have already introduced acceleration as occurring when an object changes speed. We now explore this idea in more detail. If a body changes its speed rapidly then it is said to have a large acceleration, so clearly it has magnitude (or size). Acceleration can be found from the formula: acceleration Units change in velocity taken The basic unit of speed is metres per second (m/s) and the basic unit of is the second. The unit of acceleration is formed by dividing m/s by seconds. This gives the unit m/s. This can be thought of as the change in velocity (in m/s) every second. You will also notice that the formula uses change of velocity, rather than change of speed. It follows that acceleration can be not only an increase in speed, but also a decrease in speed or even a change in direction of the velocity. Like velocity, acceleration has direction, so it is a vector. WORKED EXAMPLES 1 A racing car on a straight, level test track accelerates from rest to 34 m/s in 6.8 s. Calculate its acceleration. change of velocity Acceleration (final velocity initial velocity) (34 ) m/s m/s It is important that the track is straight and level or it could be argued that there is a change of direction, and therefore an extra acceleration. 16 _phys_1_.indd 16 6/11/8 1:19:
6 Speed, velocity and acceleration A boy on a bicycle is travelling at a speed of 16 m/s. He applies his brakes and comes to rest in.5 s. Calculate his acceleration. You may assume the acceleration is constant. change of velocity Acceleration (final velocity initial velocity) ( 16) m/s m/s Notice that the acceleration is negative, which shows that it is a deceleration. Calculation of acceleration from a velocity graph Look at the graph in Figure.13. We can see that between 1. s and 4. s the speed has increased from 5. m/s to 1.5 m/s. (1.5 5) Acceleration m/s (4 1) m/s.5 m/s Mathematically this is known as the gradient of the graph. Gradient increase in y increase in x (s) Figure.13 Velocity graph. We see that acceleration is equal to the gradient of the speed graph. It does not matter which two points on the graph line are chosen, the answer will be the same. Nevertheless, it is good practice to choose points that are well apart; this will improve the precision of your final answer. QUESTIONS.4 Describe the motion of the object shown in the graph in Figure a) Describe the motion of the object in shown in the graph in Figure.15. b) Calculate the travelled by the object. S c) Calculate the acceleration of the object Figure (s) Figure.15 _phys_1_.indd 17 6/11/8 1:19:1 17
7 Figure.16 shows a multiflash photograph of a steel ball falling. The light flashes every.1 s. We can see that the ball travels further in each interval, so we know that it is accelerating. Figure.17 shows the speed graph of the ball. S (s) Figure.17 Speed graph of falling steel ball. The graph is a straight line, which tells us that the acceleration is constant. We can calculate the value of the acceleration by measuring the gradient. Use the points (.1,.5) and (.45, 3.9). (3.9.5) Gradient m/s (.45.1) s m/s 9.7 m/s The acceleration measured in this experiment is 9.7 m/s. All objects in free fall near the Earth s surface have the same acceleration. The recognised value is 9.8 m/s, although it is quite common for this to be rounded to 1 m/s. The result in the above experiment lies well within the uncertainties in the experimental procedure. This is somes called the acceleration of free fall, or acceleration due to gravity, and is given the symbol g. In Chapter 3 we will look at gravity in more detail. We will also look, in Chapter 3, at what happens if there is significant air resistance.. Figure.16 Falling steel ball. QUESTIONS.6 An aeroplane travels at a constant speed of 96 km/h. Calculate the it will take to travel from London to Johannesburg, a of 9 km. 18 _phys_1_.indd 18 6/11/8 1:19:
8 Speed, velocity and acceleration.7 Describe what happens to speed in the two journeys described in the graphs a) b).8 Describe how the speed changes in the two journeys described in the graphs. a) speed b) speed.9 A motorist is travelling at 15 m/s when he sees a child run into the road. He brakes and the car comes to rest in.75 s. Draw a speed graph to show the deceleration, and use your graph to calculate a) the travelled once the brakes are applied b) the deceleration of the car. S.1 A car accelerates from rest at m/s for 8 seconds. a) Draw a speed graph to show this motion. b) Use your graph to find (i) the final speed of the car (ii) the travelled by the car..11 The graph shows how the speed of an aeroplane changes with. 4 B C 3 1 A (s) a) Describe the motion of the aeroplane. b) Calculate the acceleration of the aeroplane during the period B to C. c) Suggest during which stage of the journey these readings were taken. _phys_1_.indd 19 6/11/8 1:19: 19
9 Summary Now that you have completed this chapter, you should be able to: define speed recall and use the equation speed understand that acceleration is a change of speed draw and interpret  graphs draw and interpret speed graphs calculate travelled from a speed graph recognise that the steeper the gradient of a speed graph the greater the acceleration recognise that acceleration of free fall is the same for all objects S understand that velocity and acceleration are vectors change in velocity recall and use the equation acceleration calculate acceleration from the gradient of a speed graph describe an experiment to measure the acceleration of free fall. _phys_1_.indd 6/11/8 1:19:3
1.3.1 Position, Distance and Displacement
In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an
More informationPhysics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
More informationPhysics Kinematics Model
Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous
More informationGraphing Motion. Every Picture Tells A Story
Graphing Motion Every Picture Tells A Story Read and interpret motion graphs Construct and draw motion graphs Determine speed, velocity and accleration from motion graphs If you make a graph by hand it
More informationTo define concepts such as distance, displacement, speed, velocity, and acceleration.
Chapter 7 Kinematics of a particle Overview In kinematics we are concerned with describing a particle s motion without analysing what causes or changes that motion (forces). In this chapter we look at
More informationIn order to describe motion you need to describe the following properties.
Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1D path speeding up and slowing down In order to describe motion you need to describe the following properties.
More information2After completing this chapter you should be able to
After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time
More informationPhysics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make
More informationScalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v =
Scalar versus Vector Quantities Scalar Quantities Magnitude (size) 55 mph Speed Average Speed = distance (in meters) time (in seconds) Vector Quantities Magnitude (size) Direction 55 mph, North v = Dx
More informationMotion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.
Motion Graphs It is said that a picture is worth a thousand words. The same can be said for a graph. Once you learn to read the graphs of the motion of objects, you can tell at a glance if the object in
More information1 of 7 9/5/2009 6:12 PM
1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
More informationVectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables.
Vectors Objectives State the definition and give examples of vector and scalar variables. Analyze and describe position and movement in two dimensions using graphs and Cartesian coordinates. Organize and
More informationSPEED, VELOCITY, AND ACCELERATION
reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration
More informationSCALAR VS. VECTOR QUANTITIES
SCIENCE 1206 MOTION  Unit 3 Slideshow 2 SPEED CALCULATIONS NAME: TOPICS OUTLINE SCALAR VS. VECTOR SCALAR QUANTITIES DISTANCE TYPES OF SPEED SPEED CALCULATIONS DISTANCETIME GRAPHS SPEEDTIME GRAPHS SCALAR
More informationM1. (a) (i) 4.5 allow 1 mark for correct substitution i.e. 9 2 2
M. (a) (i) 4.5 allow mark for correct substitution i.e. 9 (ii) m/s accept answer given in (a)(i) if not contradicted here (iii) (iv) speed straight line from the origin passing through (s, 9m/s) allow
More informationPhysics 2048 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 20 points)
Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each
More information21 Position, Displacement, and Distance
21 Position, Displacement, and Distance In describing an object s motion, we should first talk about position where is the object? A position is a vector because it has both a magnitude and a direction:
More informationGround Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan
Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while
More information8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight
1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled
More informationFreely Falling Bodies & Uniformly Accelerated Motion
Physics Trinity Valley School Page 1 Lesson 24 Galileo, Freely Falling Bodies & Uniformly Accelerated Motion Galileo argued that a freely falling body is undergoing uniform acceleration. Its speed is increasing
More informationChapter 3 Falling Objects and Projectile Motion
Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave
More informationProblem Set 1 Solutions
Problem Set 1 Solutions Chapter 1: Representing Motion Questions: 6, 10, 1, 15 Exercises & Problems: 7, 10, 14, 17, 24, 4, 8, 44, 5 Q1.6: Give an example of a trip you might take in your car for which
More informationAP Physics C Fall Final Web Review
Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of
More informationAll About Motion  Displacement, Velocity and Acceleration
All About Motion  Displacement, Velocity and Acceleration Program Synopsis 2008 20 minutes Teacher Notes: Ian Walter Dip App Chem; GDipEd Admin; TTTC This program explores vector and scalar quantities
More informationMathematical goals. Starting points. Materials required. Time needed
Level A6 of challenge: C A6 Mathematical goals Starting points Materials required Time needed Interpreting distance time graphs To enable learners to: interpret and construct distance time graphs, including:
More informationSpeed (a scalar quantity) is the distance travelled every second.
SCALAR and VECTOR QUANTITIES The following are some of the quantities you will meet in the Intermediate Physics course: DISTANCE, DISPLACEMENT, SPEED, VELOCITY, TIME, FORCE. Quantities can be divided into
More informationMotion. Complete Table 1. Record all data to three decimal places (e.g., 4.000 or 6.325 or 0.000). Do not include units in your answer.
Labs for College Physics: Mechanics Worksheet Experiment 21 Motion As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet. Use the exact
More information5. Unable to determine. 6. 4 m correct. 7. None of these. 8. 1 m. 9. 1 m. 10. 2 m. 1. 1 m/s. 2. None of these. 3. Unable to determine. 4.
Version PREVIEW B One D Kine REVIEW burke (1111) 1 This printout should have 34 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. Jogging
More informationTennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an Fgrade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
More informationMotion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes:
Motion Graphs 1 Name Motion Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes graphs help make motion easier to picture, and therefore understand. Remember: Motion
More informationExam 1 Review Questions PHY 2425  Exam 1
Exam 1 Review Questions PHY 2425  Exam 1 Exam 1H Rev Ques.doc  1  Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that
More informationFreely Falling Objects
Freely Falling Objects Physics 1425 Lecture 3 Michael Fowler, UVa. Today s Topics In the previous lecture, we analyzed onedimensional motion, defining displacement, velocity, and acceleration and finding
More information1. Large ships are often helped into port by using two tug boats one either side of the ship. April 5, 1989 (Anchorage Daily News / Erik Hill)
1. Velocity and displacement vectors and scalars Vector and scalar quantities: force, speed, velocity, distance, displacement, acceleration, mass, time and energy. Calculation of the resultant of two vector
More informationDespite its enormous mass (425 to 900 kg), the Cape buffalo is capable of running at a top speed of about 55 km/h (34 mi/h).
Revised Pages PART ONE Mechanics CHAPTER Motion Along a Line 2 Despite its enormous mass (425 to 9 kg), the Cape buffalo is capable of running at a top speed of about 55 km/h (34 mi/h). Since the top speed
More informationWork Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.
PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance
More informationNewton s Laws Quiz Review
Newton s Laws Quiz Review Name Hour To be properly prepared for this quiz you should be able to do the following: 1) state each of Newton s three laws of motion 2) pick out examples of the three laws from
More informationMechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
More informationChapter 4: Newton s Laws: Explaining Motion
Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state
More informationPhysics 1010: The Physics of Everyday Life. TODAY Velocity, Acceleration 1D motion under constant acceleration Newton s Laws
Physics 11: The Physics of Everyday Life TODAY, Acceleration 1D motion under constant acceleration Newton s Laws 1 VOLUNTEERS WANTED! PHET, The PHysics Educational Technology project, is looking for students
More informationMOTION DIAGRAMS. Revised 9/051  LC, tlo
MOTION DIAGRAMS When first applying kinematics (motion) principles, there is a tendency to use the wrong kinematics quantity  to inappropriately interchange quantities such as position, velocity, and
More informationAcceleration Introduction: Objectives: Methods:
Acceleration Introduction: Acceleration is defined as the rate of change of velocity with respect to time, thus the concepts of velocity also apply to acceleration. In the velocitytime graph, acceleration
More informationForces. When an object is pushed or pulled, we say that a force is exerted on it.
Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change
More informationPhysics Intermediate 2
Physics Intermediate 2 Physics: Intermediate 2 1 MECHANICS AND HEAT The knowledge and understanding for this unit is given below. Kinematics 1. Describe how to measure an average speed. 2. Carry out calculations
More information2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :
Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocitytime graph. Select and use the equations of motion for constant acceleration in
More informationProblem 12.33. s s o v o t 1 2 a t2. Ball B: s o 0, v o 19 m s, a 9.81 m s 2. Apply eqn. 125: When the balls pass each other: s A s B. t 2.
ENPH 131 Assignment # Solutions Tutorial Problem (Rocket Height) A rocket, initially at rest on the ground, accelerates straight upward with a constant acceleration of 3. m s. The rocket accelerates for
More informationAP PHYSICS C Mechanics  SUMMER ASSIGNMENT FOR 20162017
AP PHYSICS C Mechanics  SUMMER ASSIGNMENT FOR 20162017 Dear Student: The AP physics course you have signed up for is designed to prepare you for a superior performance on the AP test. To complete material
More informationEXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives
EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives to verify how the distance of a freelyfalling body varies with time to investigate whether the velocity
More informationENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION
ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION This tutorial covers prerequisite material and should be skipped if you are
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed
More information1. Mass, Force and Gravity
STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the
More information3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea.
BA01 ENGINEERING MATHEMATICS 01 CHAPTER 3 APPLICATION OF DIFFERENTIATION 3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH Introduction to Applications of Differentiation In Isaac Newton's
More information2 ONE DIMENSIONAL MOTION
2 ONE DIMENSIONAL MOTION Chapter 2 OneDimensional Motion Objectives After studying this chapter you should be able to derive and use formulae involving constant acceleration; be able to understand the
More informationWhen the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
More informationChapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
More informationDetermining the Acceleration Due to Gravity
Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different
More informationCh 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43
Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state
More informationForce and motion. Science teaching unit
Science teaching unit Disclaimer The Department for Children, Schools and Families wishes to make it clear that the Department and its agents accept no responsibility for the actual content of any materials
More informationSupplemental Questions
Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?
More informationCalculating average acceleration from velocity change and time
Calculating average acceleration from velocity change and time Acceleration is a measure of how rapidly the velocity is changing. Since we define average acceleration, a av or a av, as the change in velocity
More informationDetermination of g using a spring
INTRODUCTION UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS Level 1 Laboratory: Introduction Experiment Determination of g using a spring This experiment is designed to get you confident in using the quantitative
More informationAP Physics 1 and 2 Lab Investigations
AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationPhysics 11 Assignment KEY Dynamics Chapters 4 & 5
Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problemsolving questions, draw appropriate free body diagrams and use the aforementioned problemsolving method.. Define the following
More informationFree Fall: Observing and Analyzing the Free Fall Motion of a Bouncing PingPong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing PingPong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure
More informationInertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton
Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton Position is a Vector Compare A A ball is 12 meters North of the Sun God to A A ball is 10 meters from here A vector has both a direction
More informationA Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for
More informationFREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5
Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities
More informationWeight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)
Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in
More informationPhysics Midterm Review Packet January 2010
Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:1510:15 Room:
More informationSQA CfE Higher Physics Unit 1: Our Dynamic Universe
SCHOLAR Study Guide SQA CfE Higher Physics Unit 1: Our Dynamic Universe Authored by: Ian Holton Previously authored by: Douglas Gavin John McCabe Andrew Tookey Campbell White Reviewed by: Grant McAllister
More informationDownloaded from www.studiestoday.com
Class XI Physics Ch. 4: Motion in a Plane NCERT Solutions Page 85 Question 4.1: State, for each of the following physical quantities, if it is a scalar or a vector: Volume, mass, speed, acceleration, density,
More informationChapter 7: Momentum and Impulse
Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting
More informationINTRODUCTION TO MATHEMATICAL MODELLING
306 MATHEMATICS APPENDIX 2 INTRODUCTION TO MATHEMATICAL MODELLING A2.1 Introduction Right from your earlier classes, you have been solving problems related to the realworld around you. For example, you
More informationcircular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
More informationExperiment 2 Free Fall and Projectile Motion
Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation PreLab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8
More informationAnswer the questions in this problem using words from the following list:
Chapter Solutions Kinematic Vocabulary One of the difficulties in studying mechanics is that many common words are used with highly specific technical meanings, among them velocity, acceleratio n, position,
More informationFigure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
More informationWorksheet #1 Free Body or Force diagrams
Worksheet #1 Free Body or Force diagrams Drawing FreeBody Diagrams Freebody diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.
More informationAcceleration of Gravity Lab Basic Version
Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration
More informationPHYS 117 Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
PHYS 117 Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels
More informationAt the skate park on the ramp
At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises
More informationIn addition to looking for applications that can be profitably examined algebraically,
The mathematics of stopping your car Eric Wood National Institute of Education, Singapore In addition to looking for applications that can be profitably examined algebraically, numerically
More informationWeb review  Ch 3 motion in two dimensions practice test
Name: Class: _ Date: _ Web review  Ch 3 motion in two dimensions practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which type of quantity
More informationResearch question: How does the velocity of the balloon depend on how much air is pumped into the balloon?
Katie Chang 3A For this balloon rocket experiment, we learned how to plan a controlled experiment that also deepened our understanding of the concepts of acceleration and force on an object. My partner
More informationENTRANCE EXAMINATION FOR THE BACHELOR OF ENGINEERING DEGREE PROGRAMMES
ENTRANCE EXAMINATION FOR THE BACHELOR OF ENGINEERING DEGREE PROGRAMMES INSTRUCTIONS The Entrance Examination consists of three parts: Problem Solving (Part 1), Questions on Motivation (Part ), English
More informationState Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
More informationTEACHER ANSWER KEY November 12, 2003. Phys  Vectors 11132003
Phys  Vectors 11132003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude
More informationLab 2: Vector Analysis
Lab 2: Vector Analysis Objectives: to practice using graphical and analytical methods to add vectors in two dimensions Equipment: Meter stick Ruler Protractor Force table Ring Pulleys with attachments
More informationChapter 6. Work and Energy
Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a nonzero speed carries energy
More informationSpeed A B C. Time. Chapter 3: Falling Objects and Projectile Motion
Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.
More informationWork, Energy and Power Practice Test 1
Name: ate: 1. How much work is required to lift a 2kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill
More informationACCELERATION DUE TO GRAVITY
EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities
More informationphysics 111N work & energy
physics 111N work & energy conservation of energy entirely gravitational potential energy kinetic energy turning into gravitational potential energy gravitational potential energy turning into kinetic
More informationPractice final for Basic Physics spring 2005 answers on the last page Name: Date:
Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible
More informationChapter 4 One Dimensional Kinematics
Chapter 4 One Dimensional Kinematics 41 Introduction 1 4 Position, Time Interval, Displacement 41 Position 4 Time Interval 43 Displacement 43 Velocity 3 431 Average Velocity 3 433 Instantaneous Velocity
More informationWork, Energy and Power
Work, Energy and Power In this section of the Transport unit, we will look at the energy changes that take place when a force acts upon an object. Energy can t be created or destroyed, it can only be changed
More informationGravitational Potential Energy
Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the
More informationWorksheet 1. What You Need to Know About Motion Along the xaxis (Part 1)
Worksheet 1. What You Need to Know About Motion Along the xaxis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight. These are: If x(t) represents the
More informationContents. Stage 7. Stage 8. Stage 9. Contents. Key: Enquiry / Extension / Review BOLD PAGE NO. = in this booklet
Contents Contents Stage 7 1 1.1 Introduction to forces 8 1.2 Balanced forces 10 1.3 Friction 12 1.4 Gravity 14 1.5 Enquiry: Questions, evidence and explanations 16 1.6 Air resistance 18 1.7 Enquiry: Planning
More information