Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v =


 Christiana Chase
 1 years ago
 Views:
Transcription
1 Scalar versus Vector Quantities Scalar Quantities Magnitude (size) 55 mph Speed Average Speed = distance (in meters) time (in seconds) Vector Quantities Magnitude (size) Direction 55 mph, North v = Dx Dt Speed: Example Two During a 3.00 second time interval, a runner s position changes from x 1 = 50.0 m to x 2 =30.5 m. What was her average speed? (Ans: m/s) A car is driven at an average speed of km/hr for two hours, then driven at an average speed of 50.0 km/hr for the next hour. What was the average speed for the threehour trip? (Ans: 83.3 km/hr) Remember that average speed is calculated using: v=x/t Since the speed changed, we have to address each part of the trip separately. 1. To find the distance for the first two hours, we use: x=vt x= 100km/hr X 2 hr = 200 km 3. To find the average velocity, we will divide the total distance by the time: v=x/t = 250 km /3 hr = 83.3 km/hr 2. To find the distance for the last hour, we use the same process: x= 50km/hr X 1 hr = 50 km 1
2 Average vs. Instantaneous Speed Average Speed The speed averaged for an entire trip Instantaneous Speed This is the speed at an infinitely short interval (a speedometer reading taken at any instant) Constant velocity Changing velocity Acceleration Acceleration A change in velocity Can be a change in speed (speeding up or slowing down) Acceleration (m/s 2 ) a = Dv = v final v initial Dt time Speeding up or slowing down Can be a change in direction (turning a bicycle) Acceleration can be negative (slowing down, decelerating) Superman is flying through space and slows down from 24,000 m/s to 20,000 m/s in 5 seconds. What is his acceleration? What is unusual about this number? A car starts from a complete stop at a stoplight and accelerates at 5 m/s 2 for 10 seconds. What is its final velocity? (Ans = 50 m/s) 2
3 Kinematic Equations A car moving at 30 m/s decelerates at 3.0 m/s 2. How long will it take for it to come to a complete stop? v = v o + at x = x o + v o t + ½ at 2 (ANS: t = 10 seconds) Timeindependent a = v 2  v o 2 2x v ave = v + v o 2 An airplane takes off at 27.8 m/s and can accelerate at 2.00 m/s 2. How long must the runway be if the plane is to take off safely? How long does it take a car to cross a 30.0 m intersection if it accelerates at 2.00 m/s 2? (Ans: 193 m) (Ans: 5.48 s) A pitcher throws a baseball at 44 m/s. What is the acceleration if the ball travels through 3.5 m from the start of the pitch to the release? You wish to design an airbag that can protect a driver from a headon collision at 100 km/h. Assume the car crumples on impact a distance of 1.00 m. a) What is the driver s acceleration? b) How fast does the airbag need to act? (Ans: 280 m/s 2 ) 3
4 A driver is moving at 28 m/s. It takes him 0.50 seconds to react and slam on the brakes. At that time, the brakes provide an acceleration of 6.0 m/s 2. Calculate the total stopping distance. Graphing Given the following xt graph a. Sketch a vt graph b. Sketch an at graph (Ans: 79 m) Graphing Given the following xt graph a. Sketch a vt graph b. Sketch an at graph (assume a 0.25 s turnaround) 4
5 Graphing Given the following vt graph: a. Sketch an xt graph b. Sketch a vt graph 5
6 Given the following Velocity versus Time graph: a. Sketch an Acceleration versus Time graph b. Draw a Displacement versus Time graph. a. Given the following xt graph, draw a vt graph. b. Describe the car s motion 6
7 The following graph is for the motion of an elevator a. When does the elevator have the least speed? b. When is it moving the fastest? c. Sketch a vt graph Link to Calculus Displacement Slope Area (Derivative) (Integrate) Velocity Slope Area (Derivative) (Integrate) Acceleration If given the velocity function x= position x = x o + v o t + ½ at 2 Dx = dx = v v = v o + at Dt dt Dv = dv = a a = v final v initial Dt dt t dx = v(t) dt dx = vdt xo x dx = 0t vdt x x o = 0t vdt If given the acceleration function dv = a(t) dt dv = adt The function for the position of a particle is s = 2t 2 m. a. Determine the function for the velocity. b. Calculate the velocity at 4 seconds c. Determine the function for acceleration. vo v dv = 0t adt v v o = 0t adt 7
8 A particle starts with an initial velocity of 10 m/s. a. Calculate the velocity at 8 s b. Calculate the velocity at 10 s The speed of an automobile (m/s) is given by the following equation: v = 4 + 2t 3 a. Find the equation for position. b. Calculate how far has the car travelled between t=0 and t = 2s. (16 m) c. Find the equation for acceleration. d. Calculate the acceleration at 2s. (24 m/s 2 ) Calculus: Ex 2 Find the position and velocity equations of an object that has an acceleration of a(t) = 2t 4, an initial velocity of +4 m/s and starts at x=0. v v o = 0t adt v v o = 0t (2t4)dt v v o = t 2 4t v 4 = t 2 4t v = t 2 4t + 4 x x o = 0t vdt x x o = 0t (t 2 4t + 4)dt x x o = 1/3t 3 2t 2 + 4t Calculus: Ex 2 Determine the equations for the velocity and acceleration of a particle whose position is given by: x = t 3 v = dx/dt = 4.50t 2 a = dv/dt = 9t Calculate the average velocity between t = 2s and t =3s v = Dx/Dt x 2 = t 3 = m x 3 = t 3 = m v = (50.25 m 21.75m) = 28.5 m/s (3s 2s) 8
9 Calculate the instantaneous velocity and acceleration at 2s. v = 4.50t 2 = 18 m/s a = 9t = 18 m/s 2 A box is being pulled a student and its position varies by: x=0.5t 3 + 2t. What is the speed of the box at t = 0 s and at t = 2s? v = dx/dt v = 1.5t v(0) = 2 m/s V(2) = 8 m/s You are given the following vt graph. A. Calculate the distance travelled in the first three seconds. B. Calculate the function for the line C. Determine the formula for the position through integration. Given the following v=t graph: a. Where is the turning point b. Calculate the formula for velocity c. Calculate the distance travelled from 0 to 6s d. Determine the formula for position e. Determine the formula for acceleration Falling Objects Aristotle (Greece, ~400 B.C.) Heavier object fall faster than lighter ones Galileo (1600 s, Renaissance) All objects fall at the same rate (near the surface of the Earth, in a vacuum) Aristotle versus Galileo. In the steel cage. 9
10 Distance (m) Graph Galileo s Numbers Determine the formula for distance fallen from: y = y o + v o t + 1/2at 2 Distance vs. Time Time (s) A rock is dropped into a well and hits the water in 2.45 seconds. a. How deep is the well? (29.4 m) b. Calculate the impact velocity (24 m/s) A ball is thrown off a cliff with a initial velocity of 3.00 m/s. a. Calculate its position and speed after 1.00 s. (7.90 m, 12.8 m/s ) b. Calculate its position and speed after 2.00 s. (25.6 m, 22.6 m/s) 10
11 You throw a ball into the air with an initial velocity of 15.0 m/s. a. Calculate the maximum height of the ball. (11.5 m) b. Calculate the total time the ball was in the air. (3.06 s) c. Calculate the velocity when it returns to your hand. d. What time will the ball pass a point 8.00 M above the person s hand? (0.69 s and 2.37 s) You throw a ball into the air with an initial velocity of 27.5 m/s. a. Calculate the maximum height of the ball. (38.6 m) b. Calculate the total time the ball was in the air. (5.6 s) c. Calculate the velocity when it returns to your hand (27.5 m/s). d. What time will the ball pass a point 10.0 M above the person s hand? (0.39 s and 5.22 s) Inclined Plane a s = + gsinq q a g q a. A car travels down a hill with a 8.00 o slope. Calculate the acceleration. b. Calculate the velocity at the bottom of a m hill. A skier travels down a 100m long slope. At the bottom, her speed is 20 m/s. Calculate the angle of the slope. (a = 2 m/s 2, q = 12 o ) 11
12 Acceleration (m/s2) Displacement (m) Velocity (m/s) Velocity vs. Time Given the following Velocity versus Time graph: a. Sketch an Acceleration versus Time graph (slope) b. Draw a Displacement versus Time graph. (area) Time (s) Displacement vs. Time Acceleration vs. Time Time (s) Time (s) x = t 2 Chapter One 23.a) 9.12 X 106 s b) 3420 m c) 440 m/s d) 22 m/s 24. a) 0.20 m b) 20 m/s c) 27 m/s d) 9.0 X 103 m a) 3600 s b) 8.64 X 10 4 s c) 3.16 X 10 7 s d) 9,75 m/s 2 26.a) 7.0 m b) 1.0 X 10 5 m c) 30 m/s d) 0.16 m 27.a) 12 in b) 50 mph c) 3 miles d) 1/4 in 2.a) 200 yd/min, +333 yd/min b) +120 yd/min 4. a) 48 mph b) 50 mph 6. Turning point at t = 3s 8. Zero acceleration 0 to 2s, linear increase 24s 10. a) 6 m b) 4 m/s c) 2 m/s a) 8.75 m/s 2 b) g 14. t P = 15.1 s t H = a) 1.67 m b) 2 m/s c) 4 m/s m/s, 20 m/s, 75 m/s m/s, 5 m/s, 20 m/s, 30 m/s, 30 m/s 12
13 16. Graph with slope 9.8, crosses xaxis at 2 s 18. a) v = 24 m/s b) 4.5 s 20. x = 134 m 46. a) 100 m b) 2 m/s 2 c) 11 s 52. a) 12.5 m b) 45 s 13
Physics Kinematics Model
Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous
More information8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight
1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled
More informationChapter 2: Describing Motion
Chapter 2: Describing Motion 1. An auto, starting from rest, undergoes constant acceleration and covers a distance of 1000 meters. The final speed of the auto is 80 meters/sec. How long does it take the
More informationExam 1 Review Questions PHY 2425  Exam 1
Exam 1 Review Questions PHY 2425  Exam 1 Exam 1H Rev Ques.doc  1  Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that
More informationPhysics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
More informationSpeed, velocity and acceleration
Chapter Speed, velocity and acceleration Figure.1 What determines the maximum height that a polevaulter can reach? 1 In this chapter we look at moving bodies, how their speeds can be measured and how
More information1. How long does it take the sound of thunder to go 1,600 meters (~1 mile) traveling at an average speed of 330 meters / sec? (4.
LHWHS Physics Unit One  Motion (Kinematics) HW #2...Sept 9 NAME ANSWERS 1. How long does it take the sound of thunder to go 1,600 meters (~1 mile) traveling at an average speed of 330 meters / sec? (4.85
More information2After completing this chapter you should be able to
After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time
More informationTo define concepts such as distance, displacement, speed, velocity, and acceleration.
Chapter 7 Kinematics of a particle Overview In kinematics we are concerned with describing a particle s motion without analysing what causes or changes that motion (forces). In this chapter we look at
More informationPhysics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make
More informationIn order to describe motion you need to describe the following properties.
Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1D path speeding up and slowing down In order to describe motion you need to describe the following properties.
More information2.4 Motion and Integrals
2 KINEMATICS 2.4 Motion and Integrals Name: 2.4 Motion and Integrals In the previous activity, you have seen that you can find instantaneous velocity by taking the time derivative of the position, and
More informationSPEED, VELOCITY, AND ACCELERATION
reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration
More informationGround Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan
Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while
More informationGraphing Motion. Every Picture Tells A Story
Graphing Motion Every Picture Tells A Story Read and interpret motion graphs Construct and draw motion graphs Determine speed, velocity and accleration from motion graphs If you make a graph by hand it
More information2) When you look at the speedometer in a moving car, you can see the car's.
Practice Kinematics Questions Answers are at the end Choose the best answer to each question and write the appropriate letter in the space provided. 1) One possible unit of speed is. A) light years per
More information1.3.1 Position, Distance and Displacement
In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an
More informationProjectile motion simulator. http://www.walterfendt.de/ph11e/projectile.htm
More Chapter 3 Projectile motion simulator http://www.walterfendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x
More informationSpeed A B C. Time. Chapter 3: Falling Objects and Projectile Motion
Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.
More information1 of 7 9/5/2009 6:12 PM
1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
More informationSupplemental Questions
Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?
More information21 Position, Displacement, and Distance
21 Position, Displacement, and Distance In describing an object s motion, we should first talk about position where is the object? A position is a vector because it has both a magnitude and a direction:
More informationChapter 3 Practice Test
Chapter 3 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a physical quantity that has both magnitude and direction?
More information5.1 Vector and Scalar Quantities. A vector quantity includes both magnitude and direction, but a scalar quantity includes only magnitude.
Projectile motion can be described by the horizontal ontal and vertical components of motion. In the previous chapter we studied simple straightline motion linear motion. Now we extend these ideas to
More informationLesson 8: Velocity. Displacement & Time
Lesson 8: Velocity Two branches in physics examine the motion of objects: Kinematics: describes the motion of objects, without looking at the cause of the motion (kinematics is the first unit of Physics
More informationAP Physics B Practice Workbook Book 1 Mechanics, Fluid Mechanics and Thermodynamics
AP Physics B Practice Workbook Book 1 Mechanics, Fluid Mechanics and Thermodynamics. The following( is applicable to this entire document copies for student distribution for exam preparation explicitly
More informationWeb review  Ch 3 motion in two dimensions practice test
Name: Class: _ Date: _ Web review  Ch 3 motion in two dimensions practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which type of quantity
More informationhttp://www.webassign.net/v4cgikchowdary@evergreen/assignments/prev... 1 of 10 7/29/2014 7:28 AM 2 of 10 7/29/2014 7:28 AM
HW1 due 6 pm Day 3 (Wed. Jul. 30) 2. Question Details OSColPhys1 2.P.042.Tutorial.WA. [2707433] Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (a) The graph below plots the position versus time
More informationPhysics 2101, First Exam, Fall 2007
Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the
More informationAP Physics C Fall Final Web Review
Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of
More informationMOTION DIAGRAMS. Revised 9/051  LC, tlo
MOTION DIAGRAMS When first applying kinematics (motion) principles, there is a tendency to use the wrong kinematics quantity  to inappropriately interchange quantities such as position, velocity, and
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationCHAPTER. Motion in One Dimension
CHAPTER 2 1* What is the approximate average velocity of the race cars during the Indianapolis 500? Since the cars go around a closed circuit and return nearly to the starting point, the displacement is
More informationUnit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs
Name Physics Honors Pd Date Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs Sketch velocity vs. time graphs corresponding to the following descriptions of the motion of an
More information= f x 1 + h. 3. Geometrically, the average rate of change is the slope of the secant line connecting the pts (x 1 )).
Math 1205 Calculus/Sec. 3.3 The Derivative as a Rates of Change I. Review A. Average Rate of Change 1. The average rate of change of y=f(x) wrt x over the interval [x 1, x 2 ]is!y!x ( )  f( x 1 ) = y
More informationWelcome back to Physics 211. Physics 211 Spring 2014 Lecture 041 1. ask a physicist
Welcome back to Physics 211 Today s agenda: Rotations What s on the exam? Relative motion Physics 211 Spring 2014 Lecture 041 1 ask a physicist Why are neutrinos faster than light (photons)? I thought
More information( ) ( ) ( ) ( ) ( ) ( )
Problem (Q1): Evaluate each of the following to three significant figures and express each answer in SI units: (a) (0.631 Mm)/(8.60 kg) 2 (b) (35 mm) 2 *(48 kg) 3 (a) 0.631 Mm / 8.60 kg 2 6 0.631 10 m
More informationReview Assessment: Lec 02 Quiz
COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points
More informationMotion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.
Motion Graphs It is said that a picture is worth a thousand words. The same can be said for a graph. Once you learn to read the graphs of the motion of objects, you can tell at a glance if the object in
More informationMidterm Exam 1 October 2, 2012
Midterm Exam 1 October 2, 2012 Name: Instructions 1. This examination is closed book and closed notes. All your belongings except a pen or pencil and a calculator should be put away and your bookbag should
More information2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.
2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.
More informationChapter 10: Linear Kinematics of Human Movement
Chapter 10: Linear Kinematics of Human Movement Basic Biomechanics, 4 th edition Susan J. Hall Presentation Created by TK Koesterer, Ph.D., ATC Humboldt State University Objectives Discuss the interrelationship
More informationPhysics Section 3.2 Free Fall
Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics
More information2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :
Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocitytime graph. Select and use the equations of motion for constant acceleration in
More informationCHAPTER We find the average speed from average speed = d/t = (230 km)/(3.25 h) =
CHAPTER 1. We find the average speed from average speed = d/t = (30 km)/(3.5 h) = 70.8 km/h.. We find the time from average speed = d/t; 5 km/h = (15 km)/t, which gives t = 0.60 h (36 min). 3. We find
More informationIX Physics Motion and Rest
Page1 IX Physics Motion and Rest CBSE chapterwise MCQ Multiple Choice Questions, Test Paper, Sample paper on CCE pattern for class 9 science Motion. Distance and displacement, velocity; uniform and nonuniform
More informationPhysics 2048 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 20 points)
Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each
More informationReview Chapters 2, 3, 4, 5
Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freelyfalling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string
More informationProblem Set 1 Solutions
Problem Set 1 Solutions Chapter 1: Representing Motion Questions: 6, 10, 1, 15 Exercises & Problems: 7, 10, 14, 17, 24, 4, 8, 44, 5 Q1.6: Give an example of a trip you might take in your car for which
More informationAP Physics C. Oscillations/SHM Review Packet
AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete
More informationPhysics Midterm Review Packet January 2010
Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:1510:15 Room:
More informationB) 286 m C) 325 m D) 367 m Answer: B
Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of
More informationProjectile Motion 1:Horizontally Launched Projectiles
A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two
More informationTennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an Fgrade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
More information2 ONE DIMENSIONAL MOTION
2 ONE DIMENSIONAL MOTION Chapter 2 OneDimensional Motion Objectives After studying this chapter you should be able to derive and use formulae involving constant acceleration; be able to understand the
More informationChapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.
More information3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea.
BA01 ENGINEERING MATHEMATICS 01 CHAPTER 3 APPLICATION OF DIFFERENTIATION 3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH Introduction to Applications of Differentiation In Isaac Newton's
More informationPHYSICS Matters for GCE O Level. Unit 2: Kinematics
PHYSICS Matters for GCE O Level Unit 2: Kinematics 2.1 Distance, Time and Speed In this section, you ll be able to: state what speed is calculate average speed plot and interpret a distancetime graph
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed
More information5. Unable to determine. 6. 4 m correct. 7. None of these. 8. 1 m. 9. 1 m. 10. 2 m. 1. 1 m/s. 2. None of these. 3. Unable to determine. 4.
Version PREVIEW B One D Kine REVIEW burke (1111) 1 This printout should have 34 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. Jogging
More informationExperiment 2 Free Fall and Projectile Motion
Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation PreLab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8
More informationDespite its enormous mass (425 to 900 kg), the Cape buffalo is capable of running at a top speed of about 55 km/h (34 mi/h).
Revised Pages PART ONE Mechanics CHAPTER Motion Along a Line 2 Despite its enormous mass (425 to 9 kg), the Cape buffalo is capable of running at a top speed of about 55 km/h (34 mi/h). Since the top speed
More information1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.
Base your answers to questions 1 through 5 on the diagram below which represents a 3.0kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the
More informationF13HPhysQ5 Practice
Name: Class: Date: ID: A F13HPhysQ5 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A vector is a quantity that has a. time and direction.
More informationChapter 4 One Dimensional Kinematics
Chapter 4 One Dimensional Kinematics 41 Introduction 1 4 Position, Time Interval, Displacement 41 Position 4 Time Interval 43 Displacement 43 Velocity 3 431 Average Velocity 3 433 Instantaneous Velocity
More informationHW Set II page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set II page 1 of 9 450 When a large star becomes a supernova, its core may be compressed so tightly that it becomes a neutron star, with a radius of about 20 km (about the size of the San Francisco
More informationreview/assessment questions
Student Activity Sheet 6 Page 1 Name physics, technology and engineering in automobile racing review/assessment questions 1. Draw a freebody diagram for a block being pushed across the floor. 2. Use all
More informationChapter 3 Practice Problems, Review, and Assessment SOLUTION: 2. Use the vt graph of the toy train in Figure 9 to answer these questions.
Section 1 Acceleration: Practice Problems 1. The velocitytime graph in Figure 8 describes Steven s motion as he walks along the midway at the state fair. Sketch the corresponding motion diagram. Include
More informationMOTION IN A STRAIGHT LINE
CHAPTER THREE MOTION IN A STRAIGHT LINE 3. Introduction 3. Position, path length and displacement 3.3 Average velocity and average speed 3.4 Instantaneous velocity and speed 3.5 Acceleration 3.6 Kinematic
More informationInertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton
Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton Position is a Vector Compare A A ball is 12 meters North of the Sun God to A A ball is 10 meters from here A vector has both a direction
More informationQ1. (a) State the difference between vector and scalar quantities (1)
Q1. (a) State the difference between vector and scalar quantities....... (1) (b) State one example of a vector quantity (other than force) and one example of a scalar quantity. vector quantity... scalar
More informationHSC Mathematics  Extension 1. Workshop E4
HSC Mathematics  Extension 1 Workshop E4 Presented by Richard D. Kenderdine BSc, GradDipAppSc(IndMaths), SurvCert, MAppStat, GStat School of Mathematics and Applied Statistics University of Wollongong
More informationUnits DEMO spring scales masses
Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring
More informationPhysics 1010: The Physics of Everyday Life. TODAY Velocity, Acceleration 1D motion under constant acceleration Newton s Laws
Physics 11: The Physics of Everyday Life TODAY, Acceleration 1D motion under constant acceleration Newton s Laws 1 VOLUNTEERS WANTED! PHET, The PHysics Educational Technology project, is looking for students
More informationFORCES AND MOTION UNIT TEST. Multiple Choice: Draw a Circle Completely around the ONE BEST answer.
FORCES AND MOTION UNIT TEST Multiple Choice: Draw a Circle Completely around the ONE BEST answer. 1. A force acting on an object does no work if a. a machine is used to move the object. b. the force is
More informationWorksheet 1. What You Need to Know About Motion Along the xaxis (Part 1)
Worksheet 1. What You Need to Know About Motion Along the xaxis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight. These are: If x(t) represents the
More informationPhysics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckleup? A) the first law
More informationChapter 3 Falling Objects and Projectile Motion
Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationWork, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!
Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases
More informationP211 Midterm 2 Spring 2004 Form D
1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m
More informationACCELERATION DUE TO GRAVITY
EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities
More informationLecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
More informationHomework 4. problems: 5.61, 5.67, 6.63, 13.21
Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find
More informationForce & Motion. Force & Mass. Friction
1 2 3 4 Next Force & Motion The motion of an object can be changed by an unbalanced force. The way that the movement changes depends on the strength of the force pushing or pulling and the mass of the
More informationFocused Learning Lesson Science Grades 912 PSHE2
Focused Learning Lesson Science Grades 912 PSHE2 Overview: This lesson is designed to review the basic relationships of speed, velocity, and acceleration. During the lesson, students will review the
More informationModule 8 Lesson 4: Applications of Vectors
Module 8 Lesson 4: Applications of Vectors So now that you have learned the basic skills necessary to understand and operate with vectors, in this lesson, we will look at how to solve real world problems
More informationF N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26
Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250N force is directed horizontally as shown to push a 29kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,
More informationMotion. Complete Table 1. Record all data to three decimal places (e.g., 4.000 or 6.325 or 0.000). Do not include units in your answer.
Labs for College Physics: Mechanics Worksheet Experiment 21 Motion As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet. Use the exact
More informationLateral Acceleration. Chris Garner
Chris Garner Forward Acceleration Forward acceleration is easy to quantify and understand. Forward acceleration is simply the rate of change in speed. In car terms, the quicker the car accelerates, the
More informationWWW.MIAMIBESTMATHTUTOR.COM EMAIL: MIAMIMATHTUTOR@GMAIL.COM CONTACT NUMBER: (786)5564839 PHYSICS I
WWW.MIAMIBESTMATHTUTOR.COM PAGE 1 OF 10 WWW.MIAMIBESTMATHTUTOR.COM EMAIL: MIAMIMATHTUTOR@GMAIL.COM CONTACT NUMBER: (786)5564839 PHYSICS I PROJECTILE MOTION 4.1 1. A physics book slides off a horizontal
More informationVectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables.
Vectors Objectives State the definition and give examples of vector and scalar variables. Analyze and describe position and movement in two dimensions using graphs and Cartesian coordinates. Organize and
More informationCh 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43
Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state
More informationKINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES
KINEMTICS OF PRTICLES RELTIVE MOTION WITH RESPECT TO TRNSLTING XES In the previous articles, we have described particle motion using coordinates with respect to fixed reference axes. The displacements,
More informationA vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
More informationLesson 2.15: Physical Science Speed, Velocity & Acceleration
Weekly Focus: Reading for Comprehension Weekly Skill: Numeracy Skills in Science Lesson Summary: This week students will continue reading for comprehension with reading passages on speed, velocity, and
More informationWork, Energy and Power Practice Test 1
Name: ate: 1. How much work is required to lift a 2kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill
More information3 Accelerated Motion. Practice Problems. 3.1 Acceleration pages 57 64
CHAPTER 3 Accelerated Motion Practice Problems 3.1 Acceleration pages 57 64 page 61 1. A dog runs into a room and sees a cat at the other end of the room. The dog instantly stops running but slides along
More informationDerivatives as Rates of Change
Derivatives as Rates of Change OneDimensional Motion An object moving in a straight line For an object moving in more complicated ways, consider the motion of the object in just one of the three dimensions
More information