# M6a: Open Channel Flow (Manning s Equation, Partially Flowing Pipes, and Specific Energy)

Save this PDF as:

Size: px
Start display at page:

Download "M6a: Open Channel Flow (Manning s Equation, Partially Flowing Pipes, and Specific Energy)"

## Transcription

1 M6a: Open Channel Flow (, Partially Flowing Pipes, and Specific Energy) Steady Non-Uniform Flow in an Open Channel Robert Pitt University of Alabama and Shirley Clark Penn State - Harrisburg Continuity Equation: V A = V A Chin 006; Figure. Steady, Non-Uniform Flow in an Open Channel Manning Coefficients for Open Channels (Table 4., Chin 000) SI units (m/s; m) V = R n S f U.S. Customary units (ft/sec; ft).486 V = R n S f The momentum equation can be used to derive the expression for shear stress: τ o = γrs f γ = specific weight of water (6.4 lbs/ft) R = hydraulic radius (ft) Sf = hydraulic slope (ft/ft) (slope of the energy grade line, or the friction slope) Chin 006; Figure. Where Sf is the slope of the energy grade line (friction slope). If the channel slope is used, then implies uniform flow, which is rare. 6 Only valid for hydraulically rough flow, when: n RS f.9x0 (SI units)

2 Example: Determine the flow rate in a rectangular concrete channel with a width of m and a HGL slope of 0.00 m/m when the depth of flow is.5 m. Assume n = Given: n = 0.04 (concrete channel) L = m (width of channel) w =.5 m (depth of flow) s f = 0.00 m/m Use the Manning's equation: Q = A n R S f Need A (cross-sectional area of flow): A = Lw Substituting: A = ( m)(.5 m) A = 4.5 m Need R (hydraulic radius): R = A/P Need P, the wetted perimeter (noted on drawing by thicker lines). P = L + w Substituting: P = ( m) + (.5 m) P = 6 m Substituting into equation for hydraulic radius: R = A/P R = (4.5 m )/(6 m) R = 0.75 m Substituting into Manning's equation: (4.5m Q = Q = 8.9m / )(0.75m) (0.00m / m) 0.04 /sec /

3 Example: Given a V-shaped channel with a HGL slope of 0.00, a top width of 0 feet, and a depth of 5 feet, determine the velocity of flow using the Manning s equation. Find the discharge in both ft /sec (cfs) and m /sec (cms). Substituting: R = (5 ft )/4.4 ft R =.77 ft Assume that the channel is concrete-lined with a Manning s n of / / Q = AR S n.49 / / Q = (5 ft )(.77 ft) (0.00) 0.05 Q = 4.9 cfs = 5 ft /sec(0.048 m/ft) =.5 m /sec Example: Find the dimensions of a rectangular concrete channel to carry a flow of 50 m /sec, with a HGL slope of 0.05 and a mean velocity of 0. m/sec. Given: Q = 50 m /sec V = 0. m/sec S f = 0.05 Assume: Manning s n = 0.0 (concrete channel) Have everything needed to solve Manning s equation for the hydraulic radius, R: / / V = R S n / Vn R = / S / Vn R = / S (0.m /sec)(0.0 R = / (0.05) R =.m /

4 By definition, R = cross-sectional area of flow/wetted perimeter A = (Base of channel)(depth of flow) P = (Base of channel) + (Depth of flow) Substituting : R = (Base)(Depth) [ Base + Depth] =.m By the Continuity Equation: Q A = = ( Base)( Depth) V 50m /sec A = 0.m /sec A = 4.7m = ( Base)( Depth) Have two equations and two unknowns: 4.7m = ( Base)( Depth) 4.7 Base = Depth 4.7m.m = Base + Depth Base + Depth =.0m Depth =.0 Depth Depth Depth = Depth Depth = 0 Two possible solutions to quadratic (both are correct): Base =.9 m Depth of Flow = 5.04 m Base = 0. m Depth of Flow =.46 m Figure 5-8 (Chow 959) can be used to significantly shorten the calculation effort for the design of channels. This figure is used to calculate the normal depth (y) of a channel based on the channel side slopes and known flow and channel characteristics, using the Manning s equation in the following form: AR = nq.49 S 0.5 Initial channel characteristics that must be know include: z (the side slope), and b (the channel bottom width, assuming a trapezoid). It is easy to examine several different channel options (z and b) by calculating the normal depth (y) for a given peak discharge rate, channel slope, and roughness. The most practical channel can then be selected from the alternatives. 4

5 Composite Manning s n Estimate, Example. (Chin 006) A floodplain (next slide) can be divided into seven sections as shown below. Use the various formula in the table to estimate the composite roughness value for this channel. Floodplain showing seven separate sections corresponding to different values of n. Figure.5, Chin 006 Each section has the following geometric characteristics: These values are used with the prior equations to result in the following estimates for Manning s n: The estimates of the composite n values can vary considerably, resulting in similar differences in predicted discharges. 5

6 As shown earlier, the Manning s equation can also be also used to predict flows in pipes. Drainage systems are typically designed as open channel flows in circular pipes, although other cross-sectional shapes are used. Charts or tables can be used to help predict the flow conditions in these systems when the pipes are not flowing full. From: Metcalf and Eddy, Inc. and George Tchobanoglous. Wastewater Engineering: Collection and Pumping of Wastewater. McGraw-Hill, Inc. 98. Example: Determine the depth of flow and velocity in a sewer with a diameter of 00 mm having a HGL slope of m/m with an n value of 0.05 when discharging 0.0 m /sec. From: Metcalf and Eddy, Inc. and George Tchobanoglous. Wastewater Engineering: Collection and Pumping of Wastewater. McGraw-Hill, Inc. 98. Given: D = 00 mm S f = m/m n = 0.05 Q = 0.0 m /sec 6

7 Use the modified Manning s equation for partly full sewers: K' 8 / / Q = D S n Rearranging : nq K' = 8 / / D S Substituting : (0.05)(0.0m /sec) K' = 8 / (0.m) (0.005m / m) K' = / Using Table -5 (equation in terms of diameter of pipe): Close to K = Therefore, d/d = 0.8 Substituting: d/(0. m) = 0.8 Depth of flow, d = m To calculate velocity at depth of water of 84 mm, need to use continuity equation: Q = VA Using Manning s partial flow diagram (assuming a constant n): At d/d = 0.8 d/d = 0.8 A/A full = 0. From: Metcalf and Eddy, Inc. and George Tchobanoglous. Wastewater Engineering: Collection and Pumping of Wastewater. McGraw-Hill, Inc

8 Using Manning s partial flow diagram (assuming a constant n): At d/d = 0.8, A/A full = 0. Substituting: A Afull A = 0. = m A = 0.056m Calculate A full. A A full full π = D 4 = m π = 4 ( 0.m) Substituting into the continuity equation: Q = VA 0.0m /sec = V (0.056m V = 0.64m /sec ) In-Class Problem (Partially Flowing Sewer) Determine the depth of flow and velocity in a sewer with a diameter of 600 mm having a HGL slope of m/m with an n value of 0.0 when discharging m /sec. 8

9 Remember the problem having two correct answers: Typical Specific Energy Diagram (Figure.6, Chin 006) V E = y +α g When the water depth is close to critical, small changes in specific energy results in large depth changes, resulting in unstable and excessive wave action. Fr should be <0.86 or >. to prevent this. If water depth is deeper than the critical depth (y c ), then the flow is subcritical. If the water depth is shallower than the critical depth, then the flow is supercritical. The specific energy diagram is used to determine the most likely water depth. Prasuhn 987 In the subcritical zone, the water depth component is much larger than the velocity head In the supercritical zone, the velocity head component is much larger than the water depth. Prasuhn 987 9

10 In this example, the upstream flow is subcritical (deeper than the critical depth). When the water approaches an upward step, the specific energy calculation results in two possible water depth solutions. The correct downstream water depth solution is on the same limb of the specific energy diagram as the upstream water depth. In this case, the flow is still subcritical, although the water depth actually decreases (but it cannot pass through the critical depth value). In this example, the upstream flow is supercritical (shallower than the critical depth). When the water approaches an upward step, the specific energy calculation results in two possible water depth solutions. The correct downstream water depth solution is on the same limb of the specific energy diagram as the upstream water depth. In this case, the flow is still supercritical: the water depth increases (but it cannot pass through the critical depth value). Prasuhn 987 Prasuhn 987 In a rectangular channel, the critical depth can be easily calculated using a unit width flow rate: Q q = Where b is the width of the rectangular channel b The critical flow depth can then be calculated as: y c q = g E c = y c and the minimum specific energy in a rectangular channel is therefore: Example Problem: Determine the Downstream Water Depth when Affected by Channel Bottom Rise (ex. 7-, Prasuhn 987) Determine the downstream depth in a horizontal rectangular channel in which the bottom rises 0.5 ft, if the steady flow discharge is 00 cfs, the channel width is ft, and the upstream depth is 4 ft. The discharge per unit width is: q Q 00 ft /sec = = = 5cfs ft b ft / The critical depth is therefore: ( 5cfs / ft) q y c = =. 69 ft g =. ft / sec 0

11 The upstream depth is therefore subcritical. The upstream specific energy is calculated to be: ( 5cfs / ft) ( ft / sec )( 4 ft) q H 0 = y + = 4 ft + = 4. 6 ft gy. ( 5cfs / ft) ( ft / sec )( 4 ft) q H 0 = y + = 4 ft + = 4. 6 ft gy. H = H q z = y + gy 0 0 and the corresponding downstream specific energy is: q H 0 = H 0 z = y + gy H 0 = 4.6ft 0.5 ft = 4.ft = y +. ( 5cfs / ft) ( ft / sec ) y From the subcritical position on the specific energy diagram, the depth and the water surface elevation will both decrease downstream over the bump in the channel bottom. Therefore, y must be greater than y c and less than y - z:.69 ft < y <.5 ft Solving the equation by iteration within this range results in the solution of y =.09 ft. The trial solutions can be used to draw in the specific energy diagram. In-Class Problem Determine the downstream depth in a horizontal rectangular channel in which the bottom rises 0.75 ft, if the steady flow discharge is 550 cfs, the channel width is 5 ft, and the upstream depth is 6 ft. Also draw the specific energy diagram for this problem.

12 Choke What happens when z is increased to a greater and greater value under subcritical conditions? As z increases, H o must also continue to decrease. Therefore, y decreases as well. The limit is reached for subcritical flow when y equals the critical depth at which point the transition becomes a choke. A further increase in z results in the impossible situation where H o is less than H omin (there would be no positive solution to H o ): the upstream flow has insufficient energy to pass through the transition at the specified discharge. The flow will not cease, but will adjust itself to either a lower discharge or an increase in specific energy. The flow will likely not change due to upstream flow sources. The upstream flow will increase both its upstream depth and specific energy by means of a gentle swell or a series of small waves that travel upstream. The new upstream depth will be such that the flow can just pass the transition and y will equal y c, and H o will equal H omin. H o will exceed H omin by the value of z. This transition is called a choke since the critical depth prevails regardless of the increase in upstream energy. During supercritical flow conditions, the flow behavior is different as z increases. A choke occurs when the minimum specific energy is reached. However, when additional z occurs, a surge (wall of water) moves upstream. When equilibrium is reached, the supercritical flow will have been replaced by the identical subcritical flow discussed above, and the transition will continue to act as a choke. (summarized from Prasuhn 987)

### OPEN-CHANNEL FLOW. Free surface. P atm

OPEN-CHANNEL FLOW Open-channel flow is a flow of liquid (basically water) in a conduit with a free surface. That is a surface on which pressure is equal to local atmospheric pressure. P atm Free surface

### Appendix 4-C. Open Channel Theory

4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient

### What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)

OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure

### M6b: Water Surface Profiles and Hydraulic Jumps

Example.0 (Chin 006): Constriction in Channel M6b: Water Surface Profiles and Hdraulic Jumps Robert Pitt Universit of Alabama and Shirle Clark Penn State - Harrisburg A rectangular channel.0 m wide carries.0

### Topic 8: Open Channel Flow

3.1 Course Number: CE 365K Course Title: Hydraulic Engineering Design Course Instructor: R.J. Charbeneau Subject: Open Channel Hydraulics Topics Covered: 8. Open Channel Flow and Manning Equation 9. Energy,

### LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number

LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number Open channel flow must have a free surface. Normally free water surface is subjected to atmospheric

### Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology

M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: msiavashi@iust.ac.ir Landline: +98 21 77240391 Fall 2013 Introduction

### Floodplain Hydraulics! Hydrology and Floodplain Analysis Dr. Philip Bedient

Floodplain Hydraulics! Hydrology and Floodplain Analysis Dr. Philip Bedient Open Channel Flow 1. Uniform flow - Manning s Eqn in a prismatic channel - Q, V, y, A, P, B, S and roughness are all constant

### Open channel flow Basic principle

Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

### CITY UTILITIES DESIGN STANDARDS MANUAL

CITY UTILITIES DESIGN STANDARDS MANUAL Book 2 (SW) SW9 June 2015 SW9.01 Purpose This Chapter provides information for the design of open channels for the conveyance of stormwater in the City of Fort Wayne.

### Spreadsheet Use for Partially Full Pipe Flow Calculations

Spreadsheet Use for Partially Full Pipe Flow Calculations Course No: C02-037 Credit: 2 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY

### Hydraulic Jumps and Non-uniform Open Channel Flow, Course #507. Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.

Hydraulic Jumps and Non-uniform Open Channel Flow, Course #507 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com Many examples of open channel flow can be approximated

### Module 9: Basics of Pumps and Hydraulics Instructor Guide

Module 9: Basics of Pumps and Hydraulics Instructor Guide Activities for Unit 1 Basic Hydraulics Activity 1.1: Convert 45 psi to feet of head. 45 psis x 1 ft. = 103.8 ft 0.433 psi Activity 1.2: Determine

### Chapter 9. Steady Flow in Open channels

Chapter 9 Steady Flow in Open channels Objectives Be able to define uniform open channel flow Solve uniform open channel flow using the Manning Equation 9.1 Uniform Flow in Open Channel Open-channel flows

### Chapter 13 OPEN-CHANNEL FLOW

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required

### Experiment (13): Flow channel

Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and

### CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow

CHAPTER 9 CHANNELS APPENDIX A Hydraulic Design Equations for Open Channel Flow SEPTEMBER 2009 CHAPTER 9 APPENDIX A Hydraulic Design Equations for Open Channel Flow Introduction The Equations presented

### 2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT Open channel flow is defined as flow in any channel where the liquid flows with a free surface. Open channel flow is not under pressure; gravity is the

### CHAPTER 3 STORM DRAINAGE SYSTEMS

CHAPTER 3 STORM DRAINAGE SYSTEMS 3.7 Storm Drains 3.7.1 Introduction After the tentative locations of inlets, drain pipes, and outfalls with tail-waters have been determined and the inlets sized, the next

### CEE 370 Fall 2015. Laboratory #3 Open Channel Flow

CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:

### CHAPTER II UNIFORM FLOW AND ITS FORMULAS MODULE 1. This experiment was designed to observe the characteristics of uniform flow in

CHAPTER II UNIFORM FLOW AND ITS FORMULAS MODULE 1 2.1 Introduction and Objective This experiment was designed to observe the characteristics of uniform flow in the teaching flume and to utilize the common

### Note: first and second stops will be reversed. Bring clothing and shoes suitable for walking on rough ground.

Open Channel Page 1 Intro check on laboratory results Field Trip Note: first and second stops will be reversed Irrigation and Drainage Field Trip Bring clothing and shoes suitable for walking on rough

### Module 2: Review of Fluid Mechanics Basic Principles for Water Resources Engineering. Basic Definitions. Basic Definitions.

Module : Review of Fluid Mechanics Basic Principles for Water Resources Engineering Robert Pitt University of Alabama and Shirley Clark Penn State - Harrisburg Mass quantity of matter that a substance

### STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION DRAINAGE HANDBOOK OPEN CHANNEL. OFFICE OF DESIGN, DRAINAGE SECTION November 2009 TALLAHASSEE, FLORIDA

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION DRAINAGE HANDBOOK OPEN CHANNEL OFFICE OF DESIGN, DRAINAGE SECTION TALLAHASSEE, FLORIDA Table of Contents Open Channel Handbook Chapter 1 Introduction... 1

### 21. Channel flow III (8.10 8.11)

21. Channel flow III (8.10 8.11) 1. Hydraulic jump 2. Non-uniform flow section types 3. Step calculation of water surface 4. Flow measuring in channels 5. Examples E22, E24, and E25 1. Hydraulic jump Occurs

### Open Channel Flow 2F-2. A. Introduction. B. Definitions. Design Manual Chapter 2 - Stormwater 2F - Open Channel Flow

Design Manual Chapter 2 - Stormwater 2F - Open Channel Flow 2F-2 Open Channel Flow A. Introduction The beginning of any channel design or modification is to understand the hydraulics of the stream. The

### Chapter 10. Open- Channel Flow

Updated: Sept 3 2013 Created by Dr. İsmail HALTAŞ Created: Sept 3 2013 Chapter 10 Open- Channel Flow based on Fundamentals of Fluid Mechanics 6th EdiAon By Munson 2009* *some of the Figures and Tables

### Civil Engineering Hydraulics Open Channel Flow. Adult: Where s your costume? What are you supposed to be?

Civil Engineering Hydraulics Calvin: Trick or treat! Adult: Where s your costume? What are you supposed to be? Calvin: I m yet another resource-consuming kid in an overpopulated planet, raised to an alarming

### Lecture 25 Design Example for a Channel Transition. I. Introduction

Lecture 5 Design Example for a Channel Transition I. Introduction This example will be for a transition from a trapezoidal canal section to a rectangular flume section The objective of the transition design

### Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978)

Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978) I. An Example Culvert Design Design a concrete culvert using the

### CHAPTER 4 OPEN CHANNEL HYDRAULICS

CHAPTER 4 OPEN CHANNEL HYDRAULICS 4. Introduction Open channel flow refers to any flow that occupies a defined channel and has a free surface. Uniform flow has been defined as flow with straight parallel

### Design Charts for Open-Channel Flow HDS 3 August 1961

Design Charts for Open-Channel Flow HDS 3 August 1961 Welcome to HDS 3-Design Charts for Open-Channel Flow Table of Contents Preface DISCLAIMER: During the editing of this manual for conversion to an electronic

### Rational Method Hydrologic Calculations with Excel. Rational Method Hydrologic Calculations with Excel, Course #508. Presented by:

Rational Method Hydrologic Calculations with Excel, Course #508 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com Calculation of peak storm water runoff rate from a drainage

### Lecture 24 Flumes & Channel Transitions. I. General Characteristics of Flumes. Flumes are often used:

Lecture 24 Flumes & Channel Transitions I. General Characteristics of Flumes Flumes are often used: 1. Along contours of steep slopes where minimal excavation is desired 2. On flat terrain where it is

### Travel Time. Computation of travel time and time of concentration. Factors affecting time of concentration. Surface roughness

3 Chapter 3 of Concentration and Travel Time Time of Concentration and Travel Time Travel time ( T t ) is the time it takes water to travel from one location to another in a watershed. T t is a component

### Basic Hydraulic Principles

CHAPTER 1 Basic Hydraulic Principles 1.1 General Flow Characteristics In hydraulics, as with any technical topic, a full understanding cannot come without first becoming familiar with basic terminology

### Package rivr. October 16, 2015

Type Package Package rivr October 16, 2015 Title Steady and Unsteady Open-Channel Flow Computation Version 1.1 Date 2015-10-15 Author Michael C Koohafkan [aut, cre] Maintainer Michael C Koohafkan

### CHAPTER 5 OPEN CHANNEL HYDROLOGY

5.4 Uniform Flow Calculations 5.4.1 Design Charts CHAPTER 5 OPEN CHANNEL HYDROLOGY Following is a discussion of the equations that can be used for the design and analysis of open channel flow. The Federal

### Exercise (4): Open Channel Flow - Gradually Varied Flow

Exercise 4: Open Channel Flow - Gradually Varied Flow 1 A wide channel consists of three long reaches and has two gates located midway of the first and last reaches. The bed slopes for the three reaches

### SECTION 5: SANITARY SEWER SYSTEM DESIGN

SECTION 5: SANITARY SEWER SYSTEM DESIGN 5.01 GENERAL Sanitary sewer improvements shall be designed to serve the ultimate level of City development as defined in the General Plan and the Wastewater Facilities

### LECTURE 1: Review of pipe flow: Darcy-Weisbach, Manning, Hazen-Williams equations, Moody diagram

LECTURE 1: Review of pipe flow: Darcy-Weisbach, Manning, Hazen-Williams equations, Moody diagram 1.1. Important Definitions Pressure Pipe Flow: Refers to full water flow in closed conduits of circular

### FUNDAMENTALS OF FLUID MECHANICS Chapter 10 Flow in Open Channels

FUNDAMENTALS OF FLUID MECHANICS Chapter 10 Flow in Open Channels Jyh-Cherng Shieh Department of Bio-Industrial Mechatronics Engineering National Taiwan University 1 MAIN TOPICS General Characteristics

### Basic Hydrology. Time of Concentration Methodology

Basic Hydrology Time of Concentration Methodology By: Paul Schiariti, P.E., CPESC Mercer County Soil Conservation District What is the Time of Concentration? The time it takes for runoff to travel from

### Chapter 8: Flow in Pipes

Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

### 2O-1 Channel Types and Structures

Iowa Stormwater Management Manual O-1 O-1 Channel Types and Structures A. Introduction The flow of water in an open channel is a common event in Iowa, whether in a natural channel or an artificial channel.

### Storm Drainage Systems 11.9-1

Storm Drainage Systems 11.9-1 11.9 Gutter Flow Calculations 11.9.1 Introduction Gutter flow calculations are necessary in order to relate the quantity of flow (Q) in the curbed channel to the spread of

### L r = L m /L p. L r = L p /L m

NOTE: In the set of lectures 19/20 I defined the length ratio as L r = L m /L p The textbook by Finnermore & Franzini defines it as L r = L p /L m To avoid confusion let's keep the textbook definition,

### CHAPTER ONE Fluid Fundamentals

CHPTER ONE Fluid Fundamentals 1.1 FLUID PROPERTIES 1.1.1 Mass and Weight Mass, m, is a property that describes the amount of matter in an object or fluid. Typical units are slugs in U.S. customary units,

### The value of the wastewater flow used for sewer design is the daily peak flow. This can be estimated as follows:

This Section presents the theory of simplified sewer design. Firstly, in Section 2.1, the peak daily wastewater flow in the length of sewer being designed is described. Section 2.2 presents the trigonometric

### Open Channel Flow Measurement Weirs and Flumes

Open Channel Flow Measurement Weirs and Flumes by Harlan H. Bengtson, PhD, P.E. 1. Introduction Your Course Title Here Measuring the flow rate of water in an open channel typically involves some type of

### Hydraulics Guide. Table 1: Conveyance Factors (English Units)... 7 Table 2: Conveyance Factors (Metric Units)... 8

Table of Contents 1.1 Index of Tables... 1 1. Index of Figures... 1 1.3 Overview of Hydraulic Considerations... 1.4 Discharge Curves... 1.5 Conveyance Method... 5 1.6 Flow Velocity Considerations... 9

### CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 1100 ADDITIONAL HYDRAULIC STRUCTURES

CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 1100 ADDITIONAL HYDRAULIC STRUCTURES TABLE OF CONTENTS Page 1101 INTRODUCTION 1102 1102 CHANNEL DROPS

### Guo, James C.Y. (2004). Design of Urban Channel Drop Structure, J. of Flood Hazards News, December,

Guo, James C.. (004). esign of Urban Channel rop Structure, J. of Flood azards News, ecember, Guo, James C.., (009) Grade Control for Urban Channel esign, submitted to Elsevier Science, J. of ydro-environmental

### SECTION 5 - STORM DRAINS

Drainage Criteria Manual SECTION 5 - STORM DRAINS 5.1.0 GENERAL This The purpose of this section discusses briefly is to consider the hydraulic aspects of storm drains and their appurtenances in a storm

### Calculating resistance to flow in open channels

Alternative Hydraulics Paper 2, 5 April 2010 Calculating resistance to flow in open channels http://johndfenton.com/alternative-hydraulics.html johndfenton@gmail.com Abstract The Darcy-Weisbach formulation

### Hydraulics Laboratory Experiment Report

Hydraulics Laboratory Experiment Report Name: Ahmed Essam Mansour Section: "1", Monday 2-5 pm Title: Flow in open channel Date: 13 November-2006 Objectives: Calculate the Chezy and Manning coefficients

### DESIGN MANUAL CHAPTER 7: Energy Dissipation

DESIGN MANUAL CHAPTER 7: Energy Dissipation 7.0 ENERGY DISSIPATION... 7-1 7.1 SYMBOLS AND DEFINITIONS... 7-1 7.2 DESIGN CRITERIA... 7-2 7.2.1 GENERAL CRITERIA... 7-2 7.2.2 EROSION HAZARDS... 7-2 7.2.3

### A n. P w Figure 1: Schematic of the hydraulic radius

BEE 473 Watershed Engineering Fall 2004 OPEN CHANNELS The following provide the basic equations and relationships used in open channel design. Although a variety of flow conditions can exist in a channel

### CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 800 STORM SEWER SYSTEMS TABLE OF CONTENTS

CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 800 STORM SEWER SYSTEMS TABLE OF CONTENTS 801 INTRODUCTION 803 802 DESIGN PARAMETERS 804 802.1 - Allowable

### Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

### CIVE2400 Fluid Mechanics Section 2: Open Channel Hydraulics

CIVE400 Fluid Mechanics Section : Open Channel Hydraulics. Open Channel Hydraulics.... Definition and differences between pipe flow and open channel flow.... Types of flow.... Properties of open channels...

### CHAPTER IX HYDRAULICS AND DRAINAGE

CHAPTER IX HYDRAULICS AND DRAINAGE 9-04.1 GENERAL. Providing for the control of erosion is a necessary part of the complete design of any highway construction project. These provisions must include measures

### ADS, Inc. Drainage Handbook Hydraulics 3-1

ADS, Inc. Drainage Handbook Hydraulics 3-1 3-0 HYDRAULICS TABLE OF CONTENTS 3-1 Overview of Hydraulic Considerations... 3-2 3-2 Design Manning s Value... 3-2 3-3 Discharge Curves... 3-4 3-3 The Conveyance

### ...Eq(11.6) The energy loss in the jump is dependent on the two depths y 1 and y 2 3 = E =...Eq(11.7)

. Open Channel Flow Contd.5 Hydraulic Jump A hydraulic jump occurs when water in an open channel is flowing supercritical and is slowed by a deepening of the channel or obstruction in the channel. The

### Design of open channel

Design of open channel Manning s n Sides slope Seepage losses Evaporation losses Free board Data ssumptions Two unknowns b & Flow rate Q Tpe of soil Longitudinal slope S Meterlogical data (temp., wind...etc.

### CHAPTER 860 OPEN CHANNELS

HIGHWAY DESIGN MANUAL 860-1 CHAPTER 860 OPEN CHANNELS Topic 861 - General Index 861.1 - Introduction An open channel is a conveyance in which water flows with a free surface. Although closed conduits such

### Hydraulics Prof. A. K. Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati. Module No. # 02 Uniform Flow Lecture No.

Hydraulics Prof. A. K. Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Module No. # 02 Uniform Flow Lecture No. # 04 Computation of Uniform Flow (Part 02) Welcome to this

### Hydraulic Analysis of Junctions Open Channel Flow Figure 260A

NOTATION NUMERICAL SUBSCRIPT DENOTES POSITION A AREA OF FLOW, SQUARE FEET ( ft*) b WIDTH OF RECTANGULAR CHANNEL, FEET D DIAMETER OF. CONDUIT, FEET d DEPTH OF FLOW, FEET Ay CHANGE IN WATER SURFACE ELEVATl,ON,

### There are a number of criteria to consider when designing canals Below is a list of main criteria, not necessarily in order of importance:

Lecture 15 Canal Design Basics I. Canal Design Factors There are a number of criteria to consider when designing canals Below is a list of main criteria, not necessarily in order of importance: 1. Flow

### 1 Fundamentals of. open-channel flow 1.1 GEOMETRIC ELEMENTS OF OPEN CHANNELS

1 Fundamentals of open-channel flow Open channels are natural or manmade conveyance structures that normally have an open top, and they include rivers, streams and estuaries. n important characteristic

### Module 7: Hydraulic Design of Sewers and Storm Water Drains. Lecture 7 : Hydraulic Design of Sewers and Storm Water Drains

1 P age Module 7: Hydraulic Design of Sewers and Storm Water Drains Lecture 7 : Hydraulic Design of Sewers and Storm Water Drains 2 P age 7.1 General Consideration Generally, sewers are laid at steeper

### CHAPTER 5 OPEN-CHANNEL FLOW

CHAPTER 5 OPEN-CHANNEL FLOW 1. INTRODUCTION 1 Open-channel flows are those that are not entirely included within rigid boundaries; a part of the flow is in contract with nothing at all, just empty space

### CHAPTER 9. Outlet Protection

CHAPTER 9 Outlet Protection General Considerations Not an ABACT, but should be used in all watersheds to prevent erosion due to concentrated discharges For channel or swale, use guidance for pipe with

### Concrete Pipe Design Manual INDEX OF CONTENTS. FOREWORD... iii. Chapter 1. INTRODUCTION... 1

Concrete Pipe Design Manual INDEX OF CONTENTS FOREWORD...... iii Chapter 1. INTRODUCTION... 1 Chapter 2. HYDRAULICS OF SEWERS Sanitary Sewers... 3 Determination of Sewer System Type... 3 Determination

### Section 3. HYDRAULIC DESIGN A. Weirs and Orifices

Section 3. HYDRAULIC DESIGN A. Weirs and Orifices NOTE: Some of the graphs contained in this section are copied from the Los Angeles Hydraulics Manual and we wish to give them credit for their efforts.

### Open Channel Flow in Aquaculture

SRAC Publication No. 74 Southern Regional Aquaculture Center March 1995 PR VI Open Channel Flow in Aquaculture J. David Bankston, Jr. 1 and Fred Eugene Baker Open channel flow of water has been used in

### Pressure drop in pipes...

Pressure drop in pipes... PRESSURE DROP CALCULATIONS Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence caused by abrupt changes in direction, and friction

### FLOW RATE MEASUREMENTS BY FLUMES

Fourteenth International Water Technology Conference, IWTC 14 010, Cairo, Egypt 1 FLOW RATE MEASUREMENTS BY FLUMES W. Dbrowski 1 and U. Polak 1 Department of Environmental Engineering, Cracow University

### Basic Math for the Small Public Water Systems Operator

Basic Math for the Small Public Water Systems Operator Small Public Water Systems Technology Assistance Center Penn State Harrisburg Introduction Area In this module we will learn how to calculate the

### Riprap-lined Swale (RS)

Riprap-lined Swale (RS) Practice Description A riprap-lined swale is a natural or constructed channel with an erosion-resistant rock lining designed to carry concentrated runoff to a stable outlet. This

### EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015

EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015 Normal and Critical Depths Q1. If the discharge in a channel of width 5 m is 20 m 3 s 1 and Manning s n is 0.02 m 1/3 s, find: (a) the normal depth and Froude number

### Orifices may be constructed on a pipe, tee riser, baffle, or other structure intended for conveyance.

APPENDIX F CONTROL STRUCTURES FOR DETENTION SYSTEMS This appendix presents the methods and equations for the design of flow control structures. It includes illustrations and equations for the design of

### Scattergraph Principles and Practice Practical Application of the Froude Number to Flow Monitor Data

Scattergraph Principles and Practice Practical Application of the Froude Number to Flow Monitor Data Kevin L. Enfinger, P.E. and Patrick L. Stevens, P.E. ADS Environmental Services 4940 Research Drive

### Pipe Flow-Friction Factor Calculations with Excel

Pipe Flow-Friction Factor Calculations with Excel Course No: C03-022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980

### Chapter 7 Ditches and Channels

Chapter 7 Ditches and Channels TABLE OF CONTENTS CHAPTER 7 - DITCHES AND CHANNELS... 7-1 7.1 Introduction... 7-1 7.2 Design Policy... 7-2 7.2.1 Federal Policy... 7-2 7.2.2 Commonwealth of Virginia Policy...

### CHAPTER 2 HYDRAULICS OF SEWERS

CHAPTER 2 HYDRAULICS OF SEWERS SANITARY SEWERS The hydraulic design procedure for sewers requires: 1. Determination of Sewer System Type 2. Determination of Design Flow 3. Selection of Pipe Size 4. Determination

### APPENDIX M-2 SANITARY SEWER TECHNICAL MEMORANDUM. Stadium Reconstruction EIR

APPENDIX M-2 SANITARY SEWER TECHNICAL MEMORANDUM Stadium Reconstruction EIR Appendices \ AECOM Technical Services, Inc 401 West A Street Suite 1200 San Diego, CA 92101 www.aecom.com 619-610-7600 tel 619-610-7601

### Sharp-Crested Weirs for Open Channel Flow Measurement, Course #506. Presented by:

Sharp-Crested Weirs for Open Channel Flow Measurement, Course #506 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com A weir is basically an obstruction in an open channel

### 1. Carry water under the canal 2. Carry water over the canal 3. Carry water into the canal

Lecture 21 Culvert Design & Analysis Much of the following is based on the USBR publication: Design of Small Canal Structures (1978) I. Cross-Drainage Structures Cross-drainage is required when a canal

### Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical

European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru

### Part 654 Stream Restoration Design National Engineering Handbook

United States Department of Agriculture Natural Resources Conservation Service Stream Restoration Design Chapter 6 Issued August 007 Cover photo: Stream hydraulics focus on bankfull frequencies, velocities,

### DRAINAGE CRITERIA MANUAL (V. 2) CULVERTS CONTENTS

DRAINAGE CRITERIA MANUAL (V. 2) CONTENTS Section Page CU 1.0 INTRODUCTION AND OVERVIEW... 1 1.1 Required Design Information... 3 1.1.1 Discharge... 4 1.1.2 Headwater... 4 1.1.3 Tailwater... 5 1.1.4 Outlet

### Emergency Spillways (Sediment basins)

Emergency Spillways (Sediment basins) DRAINAGE CONTROL TECHNIQUE Low Gradient Velocity Control Short-Term Steep Gradient Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent [1] [1]

### ESTIMATING DISCHARGE AND STREAM FLOWS

ESTIMATING DISCHARGE AND STREAM FLOWS A Guide for Sand and Gravel Operators Prepared by: Joy P. Michaud and Marlies Wierenga, EnviroVision Art and design by: S. Noel, Noel Design, LLC July 2005 Ecology

### PUBLIC WORKS DESIGN, SPECIFICATIONS & PROCEDURES MANUAL LINEAR INFRASTRUCTURE

REGION OF PEEL PUBLIC WORKS DESIGN, SPECIFICATIONS & PROCEDURES MANUAL LINEAR INFRASTRUCTURE Sanitary Sewer Design Criteria REVISED July 2009 PUBLIC WORKS SANITARY SEWER DESIGN CRITERIA TABLE OF CONTENTS

### THE UNIVERSITY OF TRINIDAD & TOBAGO

THE UNIVERSITY OF TRINIDAD & TOBAGO FINAL ASSESSMENT/EXAMINATIONS APRIL 2014 Course Code and Title: Programme: Date and Time: Duration: HYDRAULICS FLUD2006 BASc. Civil Engineering Wednesday 16 th April,

### CHAPTER: 6 FLOW OF WATER THROUGH SOILS

CHAPTER: 6 FLOW OF WATER THROUGH SOILS CONTENTS: Introduction, hydraulic head and water flow, Darcy s equation, laboratory determination of coefficient of permeability, field determination of coefficient

### Broad Crested Weirs. I. Introduction

Lecture 9 Broad Crested Weirs I. Introduction The broad-crested weir is an open-channel flow measurement device which combines hydraulic characteristics of both weirs and flumes Sometimes the name ramp