2 DIODE CLIPPING and CLAMPING CIRCUITS


 Eustace Gordon
 1 years ago
 Views:
Transcription
1 2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of diode clipping nd clmping circuits when the is is pplied. 2.2 Bsic Description As you know, diodes cn e used s switches depending on the ising type, reverse of forwrd. The clipping circuit, lso referred to s clipper, clips off some of the portions of the input signl nd uses the clipped signl s the output signl. The clmping circuit or clmper keeps the mplitude of the output signl sme s tht of the input signl except tht the D.C. level (offset) hs een chnged. The clmper through which the input wveform shifts to positive direction is clled positive clmper, otherwise, is clled negtive clmper. Fig. 2.1 Idel Diode Switch Terminlogy 2.2. Clipper Circuits There re two types of clipper circuits, the series nd prllel diode clipping circuits Series Diode Clipping Circuit In these type of circuits, the diode is connected etween the input nd output voltge terminls (Fig 2.2) 10
2 Fig. 2.2 As Fig.2.2 revels, the negtive cycle of the input voltge cn e clipped of y this type of series clippers. Reverse of the diode pins yields to positive cycle clipping circuit s shown in Fig Fig. 2.3 Previous circuits clip the vlues lrger or smller thn zero voltge. This voltge, techniclly clled threshold voltge nd cn e chnged to desired vlue y inserting D.C. voltge source. This is chieved in two different wys. In the first type, the voltge source of E m ( positive or negtive) is connected through output terminls s in Fig Depending on the diode connection (norml 11
3 or reverse), the vlues smller (Fig.2.4.) or greter (Fig.2.4.) thn E m is clipped nd ssigned s E m.. Fig Note tht if E m is negtive, ( where the voltge source is reversely connected) gin the vlues smller or lrger thn this negtive vlue is clipped, do not get confused. In the second type of thresholded series clipping, the voltge source is pplied etween the input nd output terminls, series with the diode. This time, the clipped vlues re ssigned to zero nd the net output voltge equls to the difference etween the input nd threshold vlues.(if E m is negtive, then E 0 = E E m = E + E m ) Fig
4 Prllel Diode Clipping Circuit In this type of clippers, the diode is connected etween output terminls. The on/off stte of diode directly ffects the output voltge. These type of clippers my lso hve nonzero threshold voltge y ddition of voltge series with diode. Following figures illustrte the clipping process. Fig. 2.6 Zero Threshold Prllel Clippers Fig. 2.7 Thresholded Prllel Clippers 13
5 2.2. Clmper Circuits Clmper Circuits, or riefly clmpers re used to chnge the D.C. level of signl to desired vlue.( Fig 2.8 ). Fig 2.8 Being different from clippers, clmping circuits uses cpcitor nd diode connection. When diode is in its on stte, the output voltge equls to diode drop voltge (idelly zero) plus the voltge source, if ny. Now let us exmine the clmping process for the circuit in Fig Fig 2.9 Typicl Clmping Circuit As you know, this circuit, in fct, is series RC circuit. The resistnce of diode ( severl ohms ove its drop voltge) nd the smll cpcitnce yield to smll timeconstnt for this circuit. This mens tht the cpcitor will rpidly e chrged if ny input voltge, tht is enough to swtich on the diode, is pplied. The diode will conduct during the positive cycle of the input signl (Fig. 2.10) nd output voltge will e idelly zero ( in prctice this voltge equls ~0.6 V). Fig Diode conducts during positive cycle Note tht during positive cycle the cpcitor is rpidly chrged in inverse polrity with the input voltge. After trnsition to negtive cycle, the diode ecomes to its off stte. In this cse, the output voltge equls to the sum of the input voltge nd the voltge cross the terminls of the cpcitor which hve the sme polrity with ech other.(fig 2.11) 14
6 E 0 =  ( E i + E c ) Fig Diode is switched off during negtive cycle The resulting signl fter complete cycle is shown elow. Fig By this process, the input signl is shifted to negtive D.C. vlue (its mximum vlue is idelly zero) without ny chnge in its mplitude idelly. There exist gin modified versions of this circuit inwhich threshold vlue is inserted for clmping. Following figures illustrte these modifictions nd resulting outputs. 15
7 Fig.2.13 Fig
8 2.3 Experiment Equipments 1. KL 200 Liner Circuit L. Device 2. Experiment Module: KL Experiment Instruments: Oscilloscope, Multimeter 4. Connection cles nd shortcircuit clips 2.4 Procedures Procedure 1: Series Diode Clipping Circuit ( 1 ) Locte lock of module KL ( 2 ) Insert shortcircuit clips refering to Fig Fig ( 3 ) Using oscilloscope, djust function genertor to 10 V pp ( 7.07 V rms), 1kHz Sine wve. Mke good djustment since this signl is the common input signl tht will e used during whole experiment. ( 4 ) Adjust oscilloscope divisions until you hve cler view of input signl. 17
9 ( 5 ) Disconnect function genertor output from oscilloscope nd pply this to TP2. ( 6 ) Exmine the output signl y connecting the second chnnel of oscilloscope to TP3. Record the plot on Grph 2.1. ( 7 ) Turn off ll ctive devices, nd reconfigure the shortcircuit clips refering to Fig ( 8 ) Only chnge the genertor output from TP2 to TP1. ( 9 ) Agin exmine the output wveform nd plot output wveform on Grph 2.1. Grph
10 Procedure 2: Thresholded Series Diode Clipping Circuit In this procedure, threshold vlue is dded to the previous circuit lyout. This is chieved y sustitution of lower shortcircuit clip with voltge source. ( 1 ) Turn off ll ctive devices, nd connect shortcircuit clip nd voltge source ( + 5 V DC) y refering to Fig Fig ( 2 ) Record the plot of output voltge on Grph 2.2. (on Pg. 25) ( 3 ) Turn off ll ctive devices, nd reconfigure shortcircuit clips refering to Fig ( 4 ) Plot output wveform on Grph 2.2. Turn off ll ctive devices. Now you will pply negtive threshold vlue to the clipper circuit. ( 5 ) Refering to Fig.2.17, reconfigure short circuit clips nd sustitute +5V DC source with 5 V DC Source. Do not directly reverse the terminls of + 5 V source, this will cuse short circuit!!! 19
11 Fig ( 6 ) Oserve nd plot the output wveform on Grph 2.2.c ( 7 ) Turn off ll ctive devices gin nd rerrnge short circuit clip refering to Fig ( 8 ) Oserve nd plot output voltge on Grph 2.2.d 20
12 c d Grph 2.2 Procedure 3: Prllel Diode Clipping Circuit ( 1 ) Locte lock c of module KL ( 2 ) Refer to Fig nd rrnge short circuit clips. 21
13 Fig ( 3 ) Oserve output voltge on TP2 nd plot on Grph 2.3. ( 4 ) Turn off ll ctive devices nd rerrnge short circuit clips y refering to Fig ( 5 ) Oserve output voltge on TP2 nd plot on Grph 2.3. Grph
14 Procedure 4 : Diode Clmping Circuit ( 1 ) Now locte lock e. ( 2 ) Arrnge clips ccording to Fig Fig ( 3 ) Oserve nd plot OUT voltge on Grph 2.4. ( 4 ) Turn off ll ctive devices nd rerrnge circuit in Fig ( 5 ) Agin plot OUT voltge on Grph
15 Grph Conclusion In this experiment you hve lerned two min types of diode circuits. Clippers Clmpers Although the clippers re lso clssified into series nd prllel clipping circuits, oth circuits re sed on the sme principle. In other words, the design of oth circuits utilizes the chrcteristics of diode tht will e forwrd turned on nd will reversely turned off. Clmpers cn e used to chnge the DC level of n input signl. 24
CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001
CS99S Lortory 2 Preprtion Copyright W. J. Dlly 2 Octoer, 2 Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes to oserve logic
More informationSirindhorn International Institute of Technology Thammasat University at Rangsit
Sirindhorn Interntionl Institute of Technology Thmmst University t Rngsit School of Informtion, Computer nd Communiction Technology COURSE : ECS 204 Bsic Electricl Engineering L INSTRUCTOR : Asst. Prof.
More informationVersion 001 CIRCUITS holland (1290) 1
Version CRCUTS hollnd (9) This printout should hve questions Multiplechoice questions my continue on the next column or pge find ll choices efore nswering AP M 99 MC points The power dissipted in wire
More information14.2. The Mean Value and the RootMeanSquare Value. Introduction. Prerequisites. Learning Outcomes
he Men Vlue nd the RootMenSqure Vlue 4. Introduction Currents nd voltges often vry with time nd engineers my wish to know the men vlue of such current or voltge over some prticulr time intervl. he men
More informationAnswer, Key Homework 10 David McIntyre 1
Answer, Key Homework 10 Dvid McIntyre 1 This printout should hve 22 questions, check tht it is complete. Multiplechoice questions my continue on the next column or pge: find ll choices efore mking your
More informationQuadratic Equations  1
Alger Module A60 Qudrtic Equtions  1 Copyright This puliction The Northern Alert Institute of Technology 00. All Rights Reserved. LAST REVISED Novemer, 008 Qudrtic Equtions  1 Sttement of Prerequisite
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationAssuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C;
B26 Appendix B The Bsics of Logic Design Check Yourself ALU n [Arthritic Logic Unit or (rre) Arithmetic Logic Unit] A rndomnumer genertor supplied s stndrd with ll computer systems Stn KellyBootle,
More information10.5 Graphing Quadratic Functions
0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions
More informationChapter 9: Quadratic Equations
Chpter 9: Qudrtic Equtions QUADRATIC EQUATIONS DEFINITION + + c = 0,, c re constnts (generlly integers) ROOTS Synonyms: Solutions or Zeros Cn hve 0, 1, or rel roots Consider the grph of qudrtic equtions.
More informationLecture 15  Curve Fitting Techniques
Lecture 15  Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting  motivtion For root finding, we used given function to identify where it crossed zero where does fx
More information, and the number of electrons is 19. e e 1.60 10 C. The negatively charged electrons move in the direction opposite to the conventional current flow.
Prolem 1. f current of 80.0 ma exists in metl wire, how mny electrons flow pst given cross section of the wire in 10.0 min? Sketch the directions of the current nd the electrons motion. Solution: The chrge
More informationReasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
More informationEQUATIONS OF LINES AND PLANES
EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in pointdirection nd twopoint
More informationNumerical Solutions of Linear Systems of Equations
EE 6 Clss Notes Numericl Solutions of Liner Systems of Equtions Liner Dependence nd Independence An eqution in set of equtions is linerly independent if it cnnot e generted y ny liner comintion of the
More informationCONIC SECTIONS. Chapter 11
CONIC SECTIONS Chpter 11 11.1 Overview 11.1.1 Sections of cone Let l e fied verticl line nd m e nother line intersecting it t fied point V nd inclined to it t n ngle α (Fig. 11.1). Fig. 11.1 Suppose we
More informationOr more simply put, when adding or subtracting quantities, their uncertainties add.
Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re
More informationRotating DC Motors Part I
Rotting DC Motors Prt I he previous lesson introduced the simple liner motor. Liner motors hve some prcticl pplictions, ut rotting DC motors re much more prolific. he principles which eplin the opertion
More information15.6. The mean value and the rootmeansquare value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style
The men vlue nd the rootmensqure vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time
More informationnot to be republished NCERT POLYNOMIALS CHAPTER 2 (A) Main Concepts and Results (B) Multiple Choice Questions
POLYNOMIALS (A) Min Concepts nd Results Geometricl mening of zeroes of polynomil: The zeroes of polynomil p(x) re precisely the xcoordintes of the points where the grph of y = p(x) intersects the xxis.
More informationSolenoid Operated Proportional Directional Control Valve (with Pressure Compensation, Multiple Valve Series)
Solenoid Operted Proportionl Directionl Control Vlve (with Pressure Compenstion, Multiple Vlve Series) Hydrulic circuit (Exmple) v Fetures hese stcking type control vlves show pressure compensted type
More informationExample 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
More informationBayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the
More informationMA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!
MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more
More informationIn the following there are presented four different kinds of simulation games for a given Büchi automaton A = :
Simultion Gmes Motivtion There re t lest two distinct purposes for which it is useful to compute simultion reltionships etween the sttes of utomt. Firstly, with the use of simultion reltions it is possile
More informationAppendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:
Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you
More informationTwo hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Friday 16 th May 2008. Time: 14:00 16:00
COMP20212 Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Digitl Design Techniques Dte: Fridy 16 th My 2008 Time: 14:00 16:00 Plese nswer ny THREE Questions from the FOUR questions provided
More informationUnderstanding Basic Analog Ideal Op Amps
Appliction Report SLAA068A  April 2000 Understnding Bsic Anlog Idel Op Amps Ron Mncini Mixed Signl Products ABSTRACT This ppliction report develops the equtions for the idel opertionl mplifier (op mp).
More informationGraphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
More informationMathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
More informationContent Objectives: After completing the activity, students will gain experience of informally proving Pythagoras Theorem
Pythgors Theorem S Topic 1 Level: Key Stge 3 Dimension: Mesures, Shpe nd Spce Module: Lerning Geometry through Deductive Approch Unit: Pythgors Theorem Student ility: Averge Content Ojectives: After completing
More informationSquare Roots Teacher Notes
Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this
More information4.0 5Minute Review: Rational Functions
mth 130 dy 4: working with limits 1 40 5Minute Review: Rtionl Functions DEFINITION A rtionl function 1 is function of the form y = r(x) = p(x) q(x), 1 Here the term rtionl mens rtio s in the rtio of two
More informationChapter 6 Solving equations
Chpter 6 Solving equtions Defining n eqution 6.1 Up to now we hve looked minly t epressions. An epression is n incomplete sttement nd hs no equl sign. Now we wnt to look t equtions. An eqution hs n = sign
More informationIntegration by Substitution
Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is
More informationFAULT TREES AND RELIABILITY BLOCK DIAGRAMS. Harry G. Kwatny. Department of Mechanical Engineering & Mechanics Drexel University
SYSTEM FAULT AND Hrry G. Kwtny Deprtment of Mechnicl Engineering & Mechnics Drexel University OUTLINE SYSTEM RBD Definition RBDs nd Fult Trees System Structure Structure Functions Pths nd Cutsets Reliility
More informationSPARK QUENCHERS EFFECT OF SPARK QUENCHER
Sprk Quenchers re esily selectble electronic components designed to prevent or substntilly minimize the occurrence of rcing nd noise genertion in rely nd switch contcts. EFFECT OF SPARK QUENCHER Arc suppression
More informationBasic Math Review. Numbers. Important Properties. Absolute Value PROPERTIES OF ADDITION NATURAL NUMBERS {1, 2, 3, 4, 5, }
ƒ Bsic Mth Review Numers NATURAL NUMBERS {1,, 3, 4, 5, } WHOLE NUMBERS {0, 1,, 3, 4, } INTEGERS {, 3,, 1, 0, 1,, } The Numer Line 5 4 3 1 0 1 3 4 5 Negtive integers Positive integers RATIONAL NUMBERS All
More informationExperiment 6: Friction
Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht
More informationTwo special Righttriangles 1. The
Mth Right Tringle Trigonometry Hndout B (length of )  c  (length of side ) (Length of side to ) Pythgoren s Theorem: for tringles with right ngle ( side + side = ) + = c Two specil Righttringles. The
More informationSimple Electric Circuits
Simple Eletri Ciruits Gol: To uild nd oserve the opertion of simple eletri iruits nd to lern mesurement methods for eletri urrent nd voltge using mmeters nd voltmeters. L Preprtion Eletri hrges move through
More informationA.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324
A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................
More informationPHYS1231 Higher Physics 1B Solutions Tutorial 2
PHYS3 Higher Physics Solutions Tutoril sic info: lthough the term voltge is use every y, in physics it is mesure of firly bstrct quntity clle Electric Potentil. It s importnt to istinguish electric potentil
More informationRotating DC Motors Part II
Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors
More informationAlgebra Review. How well do you remember your algebra?
Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then
More informationIn this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists.
Mth 52 Sec S060/S0602 Notes Mtrices IV 5 Inverse Mtrices 5 Introduction In our erlier work on mtrix multipliction, we sw the ide of the inverse of mtrix Tht is, for squre mtrix A, there my exist mtrix
More informationCurve Sketching. 96 Chapter 5 Curve Sketching
96 Chpter 5 Curve Sketching 5 Curve Sketching A B A B A Figure 51 Some locl mximum points (A) nd minimum points (B) If (x, f(x)) is point where f(x) reches locl mximum or minimum, nd if the derivtive of
More informationExponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep.
Exponentition: Theorems, Proofs, Problems Pre/Clculus, Verits Prep. Our Exponentition Theorems Theorem A: n+m = n m Theorem B: ( n ) m = nm Theorem C: (b) n = n b n ( ) n n Theorem D: = b b n Theorem E:
More informationAnswer, Key Homework 8 David McIntyre 1
Answer, Key Homework 8 Dvid McIntyre 1 This printout should hve 17 questions, check tht it is complete. Multiplechoice questions my continue on the net column or pge: find ll choices before mking your
More informationChapter 28. Direct Current Circuits
858 CHAPTER 28 Direct Current Circuits Chpter 28 Direct Current Circuits CHAPTER OUTLNE 28.1 Electromotive Force 28.2 Resistors in Series nd Prllel 28.3 Kirchhoff s Rules 28.4 RC Circuits 28.5 Electricl
More informationElectric Circuits. Simple Electric Cell. Electric Current
Electric Circuits Count Alessndro olt (74587) Georg Simon Ohm (787854) Chrles Augustin de Coulomb (736 806) André Mrie AMPÈRE (775836) Crbon Electrode () Simple Electric Cell wire Zn Zn Zn Zn Sulfuric
More informationMath Review 1. , where α (alpha) is a constant between 0 and 1, is one specific functional form for the general production function.
Mth Review Vribles, Constnts nd Functions A vrible is mthemticl bbrevition for concept For emple in economics, the vrible Y usully represents the level of output of firm or the GDP of n economy, while
More information4 ChopperControlled DC Motor Drive
4 ChopperControlled DC Motor Drive Chopper: The vrible dc voltge is controlled by vrying the on nd offtimes of converter. Fig. 4.1 is schemtic digrm of the chopper. Its frequency of opertion is f 1
More informationChapter 1 Introduction to CMOS Circuit Design
Chpter 1 Introduction to CMOS Circuit Design JinFu Li Advnced Relile Systems (ARES) L. Deprtment of Electricl Engineering Ntionl Centrl University Jhongli, Tiwn Outline Introduction MOS Trnsistor Switches
More informationSection 74 Translation of Axes
62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 74 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the
More informationSection 54 Trigonometric Functions
5 Trigonometric Functions Section 5 Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form
More informationHomework Assignment 1 Solutions
Dept. of Mth. Sci., WPI MA 1034 Anlysis 4 Bogdn Doytchinov, Term D01 Homework Assignment 1 Solutions 1. Find n eqution of sphere tht hs center t the point (5, 3, 6) nd touches the yzplne. Solution. The
More informationPHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS
PHY 222 Lb 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS Nme: Prtners: INTRODUCTION Before coming to lb, plese red this pcket nd do the prelb on pge 13 of this hndout. From previous experiments,
More information11. Fourier series. sin mx cos nx dx = 0 for any m, n, sin 2 mx dx = π.
. Fourier series Summry of the bsic ides The following is quick summry of the introductory tretment of Fourier series in MATH. We consider function f with period π, tht is, stisfying f(x + π) = f(x) for
More informationSolving Linear Equations  Formulas
1. Solving Liner Equtions  Formuls Ojective: Solve liner formuls for given vrile. Solving formuls is much like solving generl liner equtions. The only difference is we will hve severl vriles in the prolem
More informationTreatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.
The nlysis of vrince (ANOVA) Although the ttest is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the ttest cn be used to compre the mens of only
More informationWeek 11  Inductance
Week  Inductnce November 6, 202 Exercise.: Discussion Questions ) A trnsformer consists bsiclly of two coils in close proximity but not in electricl contct. A current in one coil mgneticlly induces n
More informationMath 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.
Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose
More informationand thus, they are similar. If k = 3 then the Jordan form of both matrices is
Homework ssignment 11 Section 7. pp. 24925 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If
More informationUse Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
More informationMerCarb 2 bbl Carburetor
TO: SERVICE MANAGER TECHNICIANS PARTS MANAGER No. 978 Revised June 1999. Informtion underlined is new. MerCr 2 l Cruretor 8 Point Cruretor Check List To ensure tht the cruretor is the cuse of the engine
More information! Transistors MOSFET. " Model. ! Zeroth order transistor model. " Good enough for [what?] ! How to construct static CMOS gates
ESE370: CircuitLevel Modeling, Design, nd Optimiztion or Digitl Systems Lec 2: Septemer 2, 2016 Trnsistor Introduction nd Gtes rom Trnsistors Tody! Trnsistors MOSFET " Model! Zeroth order trnsistor model
More informationSolutions to Section 1
Solutions to Section Exercise. Show tht nd. This follows from the fct tht mx{, } nd mx{, } Exercise. Show tht = { if 0 if < 0 Tht is, the bsolute vlue function is piecewise defined function. Grph this
More informationWritten Homework 6 Solutions
Written Homework 6 Solutions Section.10 0. Explin in terms of liner pproximtions or differentils why the pproximtion is resonble: 1.01) 6 1.06 Solution: First strt by finding the liner pproximtion of f
More informationNewton s Three Laws. d dt F = If the mass is constant, this relationship becomes the familiar form of Newton s Second Law: dv dt
Newton s Three Lws For couple centuries before Einstein, Newton s Lws were the bsic principles of Physics. These lws re still vlid nd they re the bsis for much engineering nlysis tody. Forml sttements
More information4. DC MOTORS. Understand the basic principles of operation of a DC motor. Understand the operation and basic characteristics of simple DC motors.
4. DC MOTORS Almost every mechnicl movement tht we see round us is ccomplished by n electric motor. Electric mchines re mens o converting energy. Motors tke electricl energy nd produce mechnicl energy.
More informationSection 2.3. Motion Along a Curve. The Calculus of Functions of Several Variables
The Clculus of Functions of Severl Vribles Section 2.3 Motion Along Curve Velocity ccelertion Consider prticle moving in spce so tht its position t time t is given by x(t. We think of x(t s moving long
More informationAe2 Mathematics : Fourier Series
Ae Mthemtics : Fourier Series J. D. Gibbon (Professor J. D Gibbon, Dept of Mthemtics j.d.gibbon@ic.c.uk http://www.imperil.c.uk/ jdg These notes re not identicl wordforword with my lectures which will
More information3 Sensor types. M12 connector type. 4 Part description GX_M. 1 Main body. 2 Tip of the sensor 3 Nut 4 LED. 5 Mounting GXM
INSTRUCTIONS Cylindricl Inductive Proximity Sensor GXM Series Sensor s The GXM series consists of 2 nd wire s. Both re ville s cle or connector (M12) nd cn e connected correspondingly vi cle or connector.
More informationArea Between Curves: We know that a definite integral
Are Between Curves: We know tht definite integrl fx) dx cn be used to find the signed re of the region bounded by the function f nd the x xis between nd b. Often we wnt to find the bsolute re of region
More informationProblem Set 2 Solutions
University of Cliforni, Berkeley Spring 2012 EE 42/100 Prof. A. Niknej Prolem Set 2 Solutions Plese note tht these re merely suggeste solutions. Mny of these prolems n e pprohe in ifferent wys. 1. In prolems
More information. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2
7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6
More informationOn the Meaning of Regression Coefficients for Categorical and Continuous Variables: Model I and Model II; Effect Coding and Dummy Coding
Dt_nlysisclm On the Mening of Regression for tegoricl nd ontinuous Vribles: I nd II; Effect oding nd Dummy oding R Grdner Deprtment of Psychology This describes the simple cse where there is one ctegoricl
More informationAntiderivatives/Indefinite Integrals of Basic Functions
Antiderivtives/Indefinite Integrls of Bsic Functions Power Rule: x n+ x n n + + C, dx = ln x + C, if n if n = In prticulr, this mens tht dx = ln x + C x nd x 0 dx = dx = dx = x + C Integrl of Constnt:
More informationIFTA 23rd Annual Conference. Friday, October 8, 2010. Yukitoshi Higashino, MFTA
IFTA 23rd Annul Conference Fridy, Octoer 8, 2010 Border Line Pttern for the Ichimoku Kinko Hyo (Cndlestick Chrt)  Positioning with Bse Lines nd Timing for TimeBsed Loss Cutting 1 Yukitoshi Higshino,
More informationChapter 4: Dynamic Programming
Chpter 4: Dynmic Progrmming Objectives of this chpter: Overview of collection of clssicl solution methods for MDPs known s dynmic progrmming (DP) Show how DP cn be used to compute vlue functions, nd hence,
More informationSection A4 Rational Expressions: Basic Operations
A Appendi A A BASIC ALGEBRA REVIEW 7. Construction. A rectngulr opentopped bo is to be constructed out of 9 by 6inch sheets of thin crdbord by cutting inch squres out of ech corner nd bending the
More informationSPECIAL PRODUCTS AND FACTORIZATION
MODULE  Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come
More informationMATH 150 HOMEWORK 4 SOLUTIONS
MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive
More informationChapter 8  Practice Problems 1
Chpter 8  Prctice Problems 1 MULTIPLE CHOICE. Choose the one lterntive tht best completes the sttement or nswers the question. A hypothesis test is to be performed. Determine the null nd lterntive hypotheses.
More informationEE247 Lecture 4. For simplicity, will start with all pole ladder type filters. Convert to integrator based form example shown
EE247 Lecture 4 Ldder type filters For simplicity, will strt with ll pole ldder type filters Convert to integrtor bsed form exmple shown Then will ttend to high order ldder type filters incorporting zeros
More informationTunable Active DualBand Bandpass Filter Design Using MMIC Technology
Interntionl Journl of Engineering & Technology IJETIJENS Vol: 11 No: 1 11 Tunle Active DulBnd Bndpss Filter Design Using MMIC Technology A. Alhyri 1, A.Hizdeh, M. Dousti 3 1 Islmic Azd University Broujerd
More informationSCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra
SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mthemtics Bsic Alger. Opertions nd Epressions. Common Mistkes. Division of Algeric Epressions. Eponentil Functions nd Logrithms. Opertions nd their Inverses. Mnipulting
More informationFactoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
More informationExponents base exponent power exponentiation
Exonents We hve seen counting s reeted successors ddition s reeted counting multiliction s reeted ddition so it is nturl to sk wht we would get by reeting multiliction. For exmle, suose we reetedly multily
More informationModule 9. DC Machines. Version 2 EE IIT, Kharagpur
Module 9 DC Mchines Lesson 39 D.C Motors Contents 39 D.C Shunt Motor (Lesson39) 4 39.1 Gols of the lesson.. 4 39.2 Introduction. 4 39.3 Importnt Ides. 5 39.4 Strting of D.C shunt motor. 7 39.4.1 Problems
More informationRegular Sets and Expressions
Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite
More information1479 INDUCTIVE PROXIMITY SENSORS
179 INDUCTIVE PROXIMITY SENSORS INTRODUCTION Principles of opertion A proximity sensor detects the pproch of n object without mking contct. There re three types of proximity sensors: 1) Highfrequency
More informationChapter. Contents: A Constructing decimal numbers
Chpter 9 Deimls Contents: A Construting deiml numers B Representing deiml numers C Deiml urreny D Using numer line E Ordering deimls F Rounding deiml numers G Converting deimls to frtions H Converting
More information9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes
The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is soclled becuse when the sclr product of two vectors
More informationVectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.
Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles
More informationLesson 10. Parametric Curves
Return to List of Lessons Lesson 10. Prmetric Curves (A) Prmetric Curves If curve fils the Verticl Line Test, it cn t be expressed by function. In this cse you will encounter problem if you try to find
More informationTRIANGULATION AND TRILATERATION
1 TRIANGULATION AND TRILATERATION 1.1 GENERAL The horizontl positions of points is network developed to provide ccurte control for topogrphic mpping, chrting lkes, rivers nd ocen cost lines, nd for the
More informationThe AVL Tree Rotations Tutorial
The AVL Tree Rottions Tutoril By John Hrgrove Version 1.0.1, Updted Mr222007 Astrt I wrote this doument in n effort to over wht I onsider to e drk re of the AVL Tree onept. When presented with the tsk
More information