Vindkraft - ett lokalt och internationellt perspektiv. May 13th, 2015 Mikael Odenberger, Lisa Göransson, Thomas Unger and Karolina Nilsson

Similar documents
Vägar mot ett uthålligt energisystem i Europa

How To Make Money In Sweden

Sweden Energy efficiency report

Analysis of the EU Renewable Directive by a TIMES-Norway

Germany's energy transition: Status quo and Challenges.

Renewable Electricity in California in September 2015

From today s systems to the future renewable energy systems. Iva Ridjan US-DK summer school AAU Copenhagen 17 August 2015

Danish Energy Model RE Policy Tools MAIN Asian Dialog, Bali January Mr. Henrik Breum Special Advisor

Analysis of electricity production in EU-28 up to 2014 with a focus on renewables

REDUCING ENERGY CONSUMPTION AND PEAK POWER IN BELGIUM

4. Comparison with DECC (2014) Estimated impacts of energy and climate change policies on energy prices and bills

The Role and Effect of Wind Energy in the Northern European Electricity Market - Insights from the Danish Energy Concept 2030

Effects of a White Certificate trading scheme on the energy system of the EU-27

Integrating renewable energy sources and thermal storage

Swedish electricity certificate system

DANISH DISTRICT ENERGY PLANNING EXPERIENCE

Energy [R]evolution vs. IEA World Energy Outlook scenario

Offshore Wind: some of the Engineering Challenges Ahead

Renewable energy opportunities in the transformation of the energy system

Power Generation. Lilian Macleod Power Supply Manager National Grid

THE GREEN ELECTRCITY MARKET IN DENMARK: QUOTAS, CERTIFICATES AND INTERNATIONAL TRADE. Ole Odgaard Denmark

Energy Efficiency and Renewable Energy Sources in Sweden

Annual Electricity and Heat Questionnaire

R&D in Vattenfall Johan Söderbom

Merit Order of Energy Storages by 2030 The Impact of Technological Megatrends on Future Electricity Prices. Berlin, November 27, 2012

Austrian Energy Agency

Energy Consumption Increases Slightly in Renewables Continue to Grow / Advantages Due to Weather, Economic Trend, and Immigration

Wind Power and District Heating

Switch from gas to biomass in district heating Case Jelgava, Latvia. Kristian Rehnström, 25 February 2015

AB Fortum Värme samägt med Stockholms stad

Norwegian Energy Production and Consumption

SMARTGRID Roadmap 1.

Heating technology mix in a future German energy system dominated by renewables

Belgium Smart Grid Day. 18 th October 2012, Brussels Alex Murley, IEA

Tomas Kåberger. Sveriges energi- omställning Hur påverkas industrin? Ledande länders utveckling av vind-el

Impacts of large-scale solar and wind power production on the balance of the Swedish power system

GERMANY AS A SOLAR ROLE MODEL FOR THE WORLD?

OBSTACLES TO GREEN ELECTRICITY GENERATION BUSINESS

Arktis en kilde til fornybar energi?

SAP 2012 IN A NUTSHELL

The Norwegian bioenergy sector

Solar urban planning. The National state of the art in Sweden

Smart solutions for fleets of all types & sizes of power generation. Marcus König, E F IE SGS / September 2013

Germany Energy efficiency report

Integrating 300 GW wind power in European power systems: challenges and recommendations. Frans Van Hulle Technical Advisor

Future Energy Storage/Balancing Demand

The Norwegian Power System

Berlin, June 14, nd Annual Electricity Price & Load Forecasting Forum June Tim Buber

OUTLOOK FOR NATURAL GAS IN EUROPE

RENEWABLE ENERGY MIX FOR EGYPT

Role of Northern European forestry in the energy production chain, case Fortum. Jari Nylén Purchasing Manager Fortum Power and Heat Oy, HEAT

A vision of sustainable energy future: A multi-energy concept of smart energy systems Central European Student and Young Professionals Congress

Fortum a leading power and heat company in the Nordic area

Why Cities will have the Key Role in 100% Renewable Power Systems

Guidelines for Monthly Statistics Data Collection

GLOBAL RENEWABLE ENERGY MARKET OUTLOOK 2013

NEW NUCLEAR POWER PLANT UNIT IN FINLAND ACCEPTED BY THE FINNISH PARLIAMENT

A"Local"Authority"Biomass"Supply"Chain;" experiences"in"north"lanarkshire"and" Stockport" November"2013"

Aurinkolämpömarkkinat Skandinaviassa ATY Aurinkoseminaari Jari Varjotie, CEO

Renewable Energy Framework in Spain. Marine Technologies

Germany's renewable energy sector in the context of energy transition.

22nd Catalan Conference for a Sustainable Energy Future Without Nuclear Energy Professor Henrik Lund Aalborg University, Denmark

A sustainable energy and climate policy for the environment, competitiveness and long-term stability

Smarta elnät vad händer? Samordningsrådet & Europa

ACCELERATING GREEN ENERGY TOWARDS The Danish Energy Agreement of March 2012

Smart City Projects The City of Malmö. Trevor Graham, City of Malmö

Small-scale electricity generation is expected to play an important role in helping meet the target.

Swedish Bioenergy Association Bioenergy biomass production and use

Demand Response Market Overview. Glossary of Demand Response Services

Can India s Future Needs of Electricity be met by Renewable Energy Sources? S P Sukhatme Professor Emeritus IIT Bombay.

Renewable Energy Promotion Policies in Taiwan. Bureau of Energy Ministry of Economic Affairs

Reasons for the drop of Swedish electricity prices

FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE

VESI JA ENERGIA VIENTITUOTTEENA. Fortum Miko Olkkonen Senior Executing Manager, Hydro Projects Fortum Power & Heat Oy

Itämeren alueen energiahaasteet yhteinen etu vai riesa?

Why wind power works for Denmark

PHOTOVOLTAICS IN THE GERMAN POWER SYSTEM

Utilization of renewable energy sources and their role in climate change mitigation. Norsk Energi s experience

Energy over view and wind power. Ola Carlson. Chalmers University of Technology

INVESTING IN A TRANSITIONING SECTOR

Curtailment of renewables and its impact on NTC and storage capacities in 2030

The Energy Transition in Germany Past, Present and Future

Bioenergy in Norway will double within 2020

FINANCING OF LOW-CARBON ENERGY TECHNOLOGIES

Electric vehicles or use of hydrogen in the Norwegian transport sector in 2050?

The development of storage demand in Germany's energy transi6on. Results of the latest VDE Study

Clean coal from a Vattenfall perspective

Bright Green Island creates growth and development on Bornholm.

NATURAL GAS DEMAND AND SUPPLY Long Term Outlook to 2030

Renewable Energies in Egypt Activities of TU Berlin. Dipl.-Ing. Johannes Wellmann TU Berlin, Campus El Gouna

Contents. Wind power sector facts. Growth drivers. Immediate challenges. Innovative and global response

Value of storage in providing balancing services for electricity generation systems with high wind penetration

Bioenergy in Sweden and potential for the future in Europe.

FULL SOLAR SUPPLY OF INDUSTRIALIZED COUNTRIES - THE EXAMPLE JAPAN

Overview of State and Local Green Building Incentives Tri-state Area (New York, New Jersey and Connecticut)

RENEWABLE ENERGY DEVELOPMENT IN LITHUANIA ACHIEVEMENTS AND DRAWBACKS

Ministry of Power & Energy

The road towards a smart energy enabler

HEAT PUMPS AS A LINK BETWEEN INDUSTRY AND DISTRICT HEATING

Sustainable Schools Renewable Energy Technologies. Andrew Lyle RD Energy Solutions

Transcription:

Vindkraft - ett lokalt och internationellt perspektiv May 13th, 215 Mikael Odenberger, Lisa Göransson, Thomas Unger and Karolina Nilsson

TWh TWh The four main scenarios for European electricity supply of the Pathways research programme TWh TWh 5 Reference 5 Climate Market 4 3 2 1 Existing capacity New renewables CCS New fossil 4 3 2 1 Existing capacity New renewables CCS New fossil New nuclear 21 215 22 225 23 235 24 245 25 21 215 22 225 23 235 24 245 25 5 4 3 2 1 Regional Policy Existing capacity New renewables New fossil New nuclear CCS 21 215 22 225 23 235 24 245 25 5 4 3 2 1 Green Policy Existing capacity New renewables New fossil 21 215 22 225 23 235 24 245 25

TWh TWh Electricity supply in Sweden Green Policy Regional Policy 2 2 15 15 1 1 5 5 21 215 22 225 23 235 24 245 25 21 215 22 225 23 235 24 245 25 Nuclear Hydro Wind Coal Fossil Biomass, waste, peat Other renewables Gross demand Nuclear Hydro Wind Coal Fossil Biomass, waste, peat Other renewables Gross demand Common EU cert. scheme Nuc.: 45 yrs lifetime +13 TWh RES-E 22-212 (common Swe-Nor cert. scheme) Nuc.: 6 yrs lifetime (new optional)

TWh TWh Electricity supply in west Sweden Green Policy Regional Policy 5 5 4 4 3 3 2 2 1 1 212 22 225 23 235 24 245 25 212 22 225 23 235 24 245 25 Hydro Convent fossil Hydro Convent fossil Nuclear Biomass and waste Nuclear Biomass and waste Wind PV Wind PV Gross demand Gross demand -> Will require sufficient back-up either internally or through imports. During other time periods, large volumes of wind power will have to be exported Rough estimate: approx 18 TWh wind in 25 -> 8 GW compared to approx 5 GW max load and approx 2 GW hydro and thermal excl back-up

Future west Sweden rich in wind power Wind power resource base Electricity prices Electricity market (availability and price structure) Harmonizing measures (toolbox) DSM Linkages to the transport sector Linkages to the heating sector Trade

Available land surface for wind power installations Återstående ytor efter avdrag för vattendrag, infrastruktur, miljöoch naturskyddsområden, tättbebyggda områden (> 3 pp/km2) samt annat Available surface of total

Wind availability in the KASK region adapted to the level of detail in the model package Produktionsdata, det vill säga anpassat till en tänkt vindkraftpark (ca 1 meters rotorhöjd) (Chalmers vinddata baserat på ECMWF, (European Centre for Medium- Range Weather Forecasts) 9-13 timmar 13-18 timmar 18-22 timmar

What share of the estimated available land surface may be profitable for wind power exploitation? Full-load hours 35 3 25 2 ~55 EUR/MWh ~75 EUR/MWh Inv: 133 EUR/kW D&U: 25 EUR/kW 7%, 21 år 15 ~1 EUR/MWh 1 5 KASK- Norway KASK- Sweden 1 2 3 4 km2 If we assume 6-7 EUR/MWh as total revenue for wind power, apporoximately 1% of available surface is profitable to exploit under our assumptions BUT: If we put a wind farm on that surface -> 1 km2*1 kw/km2 = 1 GW!!! (alternatively, if we assume a higher revenue, the profitable surface increases)

Base case 23 (SWE) 9,5 GW Nuclear -> 55-6 TWh 6 year lifetime 16,7 GW Hydro power -> 65 TWh ca 5 GW CHP -> 14-16 TWh incl Backpreassure (ca 15 TWh today) (~4 GW Condens+Gas turb.) -> < 1 TWh (for a normal year) 11,5 GW Wind power -> 26 TWh (214 ca 5,5 GW -> ca 13 TWh) Sensitivity analysis by the dispatch-model EPOD: - Wind power levels of 15, 26, 5 och 7 TWh in Sweden by 23 - Nuclear power levels of GW, 5.6 GW (R3-4, O3 and F3 remains) and 9,5 GW kärnkraft i Sverige år 23 (in combination with 7 TWh wind)

1 16 211 316 421 526 631 736 841 946 151 1156 1261 1366 1471 1576 1681 1786 1891 1996 211 226 2311 2416 2521 2626 2731 2836 1 16 211 316 421 526 631 736 841 946 151 1156 1261 1366 1471 1576 1681 1786 1891 1996 211 226 2311 2416 2521 2626 2731 2836 GWh/3hr GWh/3hr Example: Swedish electricity generation up scaled wind power 1 9 8 7 6 5 4 3 2 1 26 TWh 5 TWh 1 9 8 7 6 5 4 3 2 1 Kärnkraft Kraftvärme Vindkraft Vattenkraft Övrigt Övrig termisk Last Kärnkraft Kraftvärme Vindkraft Vattenkraft Övrigt Övrig termisk Last Increasing wind power from 26 to 5 TWh wind power -> Less nuclear and hydro power used more dynamic (more variations close to max/min capacity) CHP marginally lower Increased Net export Source: EPOD_Regional ( Reg P )

1 9 179 268 357 446 535 624 713 82 891 98 169 1158 1247 1336 1425 1514 163 1692 1781 187 1959 248 2137 2226 2315 244 2493 2582 2671 276 2849 EUR/MWh El. price distribution all cases for 23 2 18 16 14 12 1 8 6 4 2 Price area SE3 Less available Nuclear (or other thermal power) -> more high price hours Increased wind power penetration -> more low price hours 15 TWh 23 26 TWh 23 5 TWh 23 7 TWh 23 7 TWh 23, 5,6 GW Nuc 7 TWh 23, NoNuc Results from sensitivity analysis: differences due to varying wind power and nuclear power levels only -> The more wind power the sharper price distribution -> Capacity surplus (remaining old power plants) dampen price spikes

SEK/MWh Average annual el. price (SE3) 7 6 5 4 3 2 1 Effect of increased wind power penetration (everything else constant) Effect of reduced nuclear capacity (everything else constant)

Example: extreme el. prices (percent of year; SE3) 3% 25% 2% 15% 1% 5% % 212 15 TWh 23 26 TWh 23 Antal timmar<1 EUR/MWh 5 TWh 23 7 TWh 23 7 TWh 23, 5,6 GW Nuc 7 TWh 23, NoNuc Antal timmar>1 EUR/MWh Clear threashold, i.e., exrtreme prices more significant above 5TWh Explained by large trading capacity and hydro power

SEK/MWh Annual average electrcity price given different load/production situations 1 8 6 4 2 Årligt medelelpris för olika produktionsprofiler Minskande elpris med stigande årlig vindkraftproduktion Stigande elpris med minskande KK-kapacitet (allt annat lika) Elpris, tidsmedel över ett år Elpris, vindkraft Elpris, kraftvärme The larger wind power penetration the lower the average electrcity price Mainly bio CHP gain if nuclear is shut down (high prices during winter time)

SEK/MWh SEK/MWh Green certificates as driver for wind power? 7 6 5 4 3 2 1 7 6 5 4 3 2 1 Elpris, vindkraft Elcertpris Marginalkostn för ny vind Elpris, tidsmedel över ett år Elcertpris Marginalkostn för ny vind -> Since prices are low when the wind blows the costs for wind power will have to be carried by the certificate scheme (or something else)

Variations in electricity prices at 7 TWh wind power 1 2 3 4 5 6 7 8 9 1 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 11 15 19 113 117 121 125 129 133 137 141 145 149 153 157 161 165 169 173 177 181 185 5 1 15 2 25 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 11 15 19 113 117 121 125 129 133 137 141 145 149 153 157 161 165 169 173 177 181 185 Serie1 Serie9 Serie8 Serie7 Serie6 Serie5 Serie4 Serie3 Serie2 Serie1

Toolbox Internal trade hydropower International trade geographical smoothening Demand Side Management Linkages to the transportation sector Linkages to the heat sector

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 11 15 19 113 117 121 125 129 133 137 141 145 149 153 157 161 165 GW 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 11 15 19 113 117 121 125 129 133 137 141 145 149 153 157 161 165 EUR/MWh Demand Side Management Households heating and hot water The building can store heat up to 1 hours Mainly in winter time Industry process dependent 3 25 2 15 1 5 without lines DSM 4 3 2 1 Serie1 Serie2

High cost intervals -duration 5 TWh wind Nuclear power in place 7 TWh wind No nuclear power

Linkages to the transportation sector EV:s and PHEV:s Charging of vehicles can be distributed over 8 hour periods office hour and night time Mainly workdays Electrofuels Easy storage over seasons All year

Low cost intervals -duration 5 TWh wind Nuclear power in place 7 TWh wind No nuclear power

Linkages to the heat sector Flexible CHP production Adjust alpha values depending on electricity price Long and short term variations Mainly in winter Heat pumps and electric boilers Use low cost electricity to produce heat Buildings and grids as heat storages 3-12h Mainly in winter