CMOS COMPARATOR. 1. Comparator Design Specifications. Figure 1. Comparator Transfer Characteristics.



Similar documents
Lecture 250 Measurement and Simulation of Op amps (3/28/10) Page 250-1

Digital to Analog Converter. Raghu Tumati

CMOS Differential Amplifier

Laboratory 4: Feedback and Compensation

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

What Does Rail-to-Rail Operation Really Mean?

Fully Differential CMOS Amplifier

Design of a Fully Differential Two-Stage CMOS Op-Amp for High Gain, High Bandwidth Applications

Chapter 12: The Operational Amplifier

Transconductance. (Saturated) MOSFET Small-Signal Model. The small-signal drain current due to v gs is therefore given by

PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS

Lecture 060 Push-Pull Output Stages (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

Lab 7: Operational Amplifiers Part I

MOS Transistors as Switches

Reading: HH Sections , (pgs , )

Biasing in MOSFET Amplifiers

Transistor Amplifiers

High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/ FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

The 2N3393 Bipolar Junction Transistor

TS321 Low Power Single Operational Amplifier

Chapter 8 Differential and Multistage Amplifiers. EE 3120 Microelectronics II

HT9170 DTMF Receiver. Features. General Description. Selection Table

MAS.836 HOW TO BIAS AN OP-AMP

Description. 5k (10k) - + 5k (10k)

COMMON-SOURCE JFET AMPLIFIER

Loop Stability Analysis Differential Opamp Simulation

ENEE 307 Electronic Circuit Design Laboratory Spring A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742

Basic Op Amp Circuits

Transistor amplifiers: Biasing and Small Signal Model

Transmission Gate Characteristics

CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset


Supertex inc. HV Channel High Voltage Amplifier Array HV256. Features. General Description. Applications. Typical Application Circuit

Chapter 9: Controller design

Bipolar Transistor Amplifiers

Title : Analog Circuit for Sound Localization Applications

Chapter 10 Advanced CMOS Circuits

CD4013BC Dual D-Type Flip-Flop

High Speed, Low Power Monolithic Op Amp AD847

Precision, Unity-Gain Differential Amplifier AMP03

Differential Amplifier Offset. Causes of dc voltage and current offset Modeling dc offset R C

OPERATIONAL AMPLIFIER

Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 2

How To Power A Power Supply On A Microprocessor (Mii) Or Microprocessor Power Supply (Miio) (Power Supply) (Microprocessor) (Miniio) Or Power Supply Power Control (Power) (Mio) Power Control

CD40174BC CD40175BC Hex D-Type Flip-Flop Quad D-Type Flip-Flop

University of California, Berkeley Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits

Frequency Response of Filters

Section 3. Sensor to ADC Design Example

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators

Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS

SPICE MOSFET Declaration

LH0091 True RMS to DC Converter

LF442 Dual Low Power JFET Input Operational Amplifier

Monte Carlo Simulation of Device Variations and Mismatch in Analog Integrated Circuits

LM118/LM218/LM318 Operational Amplifiers

TS555. Low-power single CMOS timer. Description. Features. The TS555 is a single CMOS timer with very low consumption:

Using Op Amps As Comparators

10 BIT s Current Mode Pipelined ADC

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

Design of Two-Stage CMOS Op-Amp and Analyze the Effect of Scaling

Op amp DC error characteristics and the effect on high-precision applications

Operational Amplifier - IC 741

An Introduction to the EKV Model and a Comparison of EKV to BSIM

Building the AMP Amplifier

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.

Fundamentals of Microelectronics

Description. Output Stage. 5k (10k) - + 5k (10k)

School of Engineering Department of Electrical and Computer Engineering

Lecture 090 Large Signal MOSFET Model (3/24/10) Page 090-1

BJT Ebers-Moll Model and SPICE MOSFET model

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder

Application of Rail-to-Rail Operational Amplifiers

LM2902. Low-power quad operational amplifier. Features. Description

css Custom Silicon Solutions, Inc.

CD4013BC Dual D-Type Flip-Flop

Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors.

LM A, Adjustable Output, Positive Voltage Regulator THREE TERMINAL ADJUSTABLE POSITIVE VOLTAGE REGULATOR

HCF4056B BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION

Wide Bandwidth, Fast Settling Difet OPERATIONAL AMPLIFIER

Design of a TL431-Based Controller for a Flyback Converter

3.4 - BJT DIFFERENTIAL AMPLIFIERS

CD4027BM CD4027BC Dual J-K Master Slave Flip-Flop with Set and Reset

DS1232LP/LPS Low Power MicroMonitor Chip

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits

High Speed, Low Cost, Triple Op Amp ADA4861-3

Chapter 11 Current Programmed Control

DALLAS DS1233 Econo Reset. BOTTOM VIEW TO-92 PACKAGE See Mech. Drawings Section on Website

DM74121 One-Shot with Clear and Complementary Outputs

Audio Tone Control Using The TLC074 Operational Amplifier

CHAPTER 2 POWER AMPLIFIER

Data Sheet. ACPL-077L Low Power 3.3 V / 5 V High Speed CMOS Optocoupler Design for System Level Reliability. Description. Features. Functional Diagram

LM101A LM201A LM301A Operational Amplifiers

LC2 MOS Quad 8-Bit D/A Converter AD7226

CD4001BC/CD4011BC Quad 2-Input NOR Buffered B Series Gate Quad 2-Input NAND Buffered B Series Gate

css Custom Silicon Solutions, Inc.

EDUMECH Mechatronic Instructional Systems. Ball on Beam System

Transcription:

CMOS COMARATOR. Comparator Design Specifications o OH ( in+ - in- ) OL (a) OH L H ( in+ - in- ) OL (b) OS OH L H ( in+ - in- ) OL (c) Figure. Comparator Transfer Characteristics. A comparator is a circuit that has binary output. deally its output shown in Figure (a) is defined as follows:

O OH OL if if inin+ inin+ > 0 < 0 This is not realizable because its gain is infinity. Figure (b) shows a realizable first order transfer characteristic of a comparator. ts output is defined as follows: O A OH OL ( - ) if ( if L if ( inin+ < ( - - in+ inin+ in- ) > - inin+ ) < H ) < L H Another nonideal characteristic of practical comparator is the present of input offset. That is the output does not change until the input difference reached the input offset os. Figure (c) shows this transfer characteristic. ts output is defined as follows: O A OH OL ( - ) - A OS if ( if inin+ L if ( < ( - - in+ inin+ in- ) > - inin+ ) < H ) < L H The input offset can be minimized or ignored by proper layout. f the input step is sufficiently small the output should not slew and the transient response will be a linear response. The settling time is the time needed for the output to reach a final value within a predetermined tolerance, when excited by a small signal. Small-signal settling time is determined by the gain bandwidth product of the amplifier, this will be shown in the opamp circuit section later. f the input step magnitude is sufficiently large, the comparator will slew by virtue of not having enough current to charge or discharge the compensating and/or load capacitances. The slew rate is determined from the slope of the output waveform during the rise or fall of the output. Slew rate is limited by the currentsourcing/sinking capability in charging the output capacitor. Settling time is important in analog signal processing. t is necessary to wait until the amplifier has settled to within a few tenths of a percent of its final value in order to avoid errors in the accuracy of processing analog signals. A longer settling time implies that the rate of processing analog signals must be reduced. n the following design, a 0m signal must be resolved using the comparator in Figure and 3. The power supply rails are DD5 and SS-5. That is, the output will swing by 0 ( from 5 to 5) when the input signal swing by 0m( from 5m to 5m). The comparator gain must be at least 0,000 (0/0m). The following specifications will be used in designing the comparator in well and well processes. DD5, SS-5, A>0000, -3<CMR<3, -4.5<o<4.5, SR0/us.. Designing the Comparator with MOS nput Drivers

(3) DD M3 w.u l6.6u (5) M4 w.u l6.6u M6 w59.4u l6.6u D3 (6) O D4 M D D M w5.4u w5.4u l6.6u l6.6u G SS () SS () G Rb 5 GS (9) () C SS 5uA GS M w.u l6.6u (8) CL pf + o - M8 w.u l6.6u M5 w5.4u l6.6u (4) SS Figure. The CMOS Comparator mplementation with MOS input drivers. Figure shows the comparator schematic diagram implemented with MOS input drivers.. Determine the current drive requirement of M to satisfy the SR specification, if C L pf d D C L CL (SR) (E -)(0E6) 0uA dt. Determine the size of M6 and M to satisfy the output-voltage swing requirement. DS(SAT) DS(SAT) Similarly, O(min) β DS ( - DS SS DS(SAT) 4.5 ( 5) 0.5 ) DS (0E - 6) (40E - 6)(0.5) 4 GS 0 3

SD6(SAT) 6 DD ( - O(max) SD6 SD6(SAT) ) 5 (4.5) 0.5 (0E - 6) (5E - 6)(0.5) 0.666 3. Calculate the gain of the second stage. A g g (5E - 6)(0E - 6)(0.666) m6 SD6 6 ds6 + g ds SD6 ( λ + λ ) (0E - 6)(0.0 + 0.0) 00 4. Calculate the gain of the first stage to satisfy the overall gain. A A A A 0000 / A 0000 00 5. Determine the first stage biasing current using the minimum allowable size of, and minimum output offset. (a) Consider M4 and M6. Using the minimum size for M4, determine the current SD4 that mirror with M6. That is, 4 SD4 SD6 (0uA).85uA 0.666 6 (b) Consider M5 and M. Using the minimum size for M5, determine the current DS5 that mirror with M. That is, DS5 SD4 DS DS5 DS 5 /.5uA DS5 DS (0uA) 4 SD3 /.5uA 5uA (c) Select the larger of the two SD4 and adjust the size of M4 SD4 6.5E - 6 (0.666) 0E - 6 4 SD6.333 4

6. Determine the size of M to satisfy the gain requirement. A g ds g m + g [A ds4 DS ( λ + λ )] DS DS ( λ + λ ) DS [(00)(.5E - 6)(0.0 + 0.0)] (40E - 6)(.5E - 6) 0.5 Let be the minimum size of. Then re-calculate the gain of the first stage. A A g A ds g m + g A ds4 DS DS ( λ + λ ) (4.4)(00) 44 (40E - 6)(.5E - 6)() (.5E - 6)(0.0 + 0.0) 4.4. The minimum size of M5 () in step 5(b) can be adjusted to satisfy the negative input CMR of 3. G(min) DS5(SAT) DS5(SAT) 5 SS + G(min) -3- (-5) - ( DS5(SAT) DS5 DS5 DS5(SAT) SS (.5E - 6) (40E - 6)() 5 ) + DS DS + 0.65 (5E - 6) (40E - 6)(0.65) T T 0.59 Select the larger of the two, 5. o adjustment needed, since this is the value used earlier in the calculation. 8. The minimum size of M3() in step 5(a) can be adjusted to meet the positive input CMR of 3. G(max) 3 DD - ( DD SD3 - G(max) 3 SD3 - - T3 T3 + + T T ) (.5E - 6) (5E - 6)(5-3- - + ) 5

Select the larger of the two, 3. o further adjustment needed. 9. Determine the size of M8 to provide as the main current mirror for the comparator. For DS5 0.5 and DS 0.5, this voltage corresponds to the value of G8-3.5 or GS8.5. Let SD8 0uA. DS8 (0E - 6) ( - ) (40E - 6)(.5 -) 8 GS8 T 4 The external resistor Rb connected between G8 and ground must be chosen to provide the required current for M8 of 0uA. R 0 0 ( 3.5) 0E - 6 G8 b DS8 5 0. Select the width of each transistor. AR M M M3 M4 M5 M6 M M8 (ua).5.5.5.5 5 0 0 0 T W/L.333.333 0.666 4 4 W(u) 5.6 5.6.46.46 5.6 59.3.4.4 L(u) 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 Leff(u) 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 Finding the W, L to the nearest multiple of λ0.6. AR M M M3 M4 M5 M6 M M8 (ua).5.5.5.5 5 0 0 0 T W/L.333.333 0.666 4 4 W(u) 5.4 5.4..* 5.4* 59.4*.*. L(u) 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 Leff(u) 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 *Adjusted to satisfy the balance condition to minimize the input offset voltage, os: 6 4 59.4.. 5.4 8.5 8. 5 6

3. Designing the Comparator with MOS nput Drivers (3) DD M8 w60u l6.6u (9) M5 w30u l6.6u SD5 M w60u l6.6u Rb5k () G - SD + () GD M w5u l6.6u M w5u l6.6u () (6) (8) CL pf + o M3 w5.4u l-6.6u GS3 (5) M4 w5.4u l-6.6u M6 w.6u l6.6u - (4) SS Figure 3. CMOS Comparator mplementation with MOS input drivers. Figure 3 shows the comparator schematic diagram implemented with MOS input dricers.. Determine the current drive requirement of M to satisfy the SR specification, if C L pf d D C L CL (SR) (E -)(0E6) 0uA dt. Determine the size of M6 and M to satisfy the output-voltage swing requirement. SD(SAT) SD(SAT) DD β ( - SD O(max) DS DS(SAT) ) 5 4.5 0.5 SD (0E - 6) (5E - 6)(0.5) 0.666 Similarly,

DS6(SAT) 6 O(min) ( DS6 SS DS6(SAT) 4.5 ( 5) 0.5 ) (0E - 6) (40E - 6)(0.5) 4 3. Calculate the gain of the second stage. A g g (40E - 6)(0E - 6)(4) m6 DS6 6 ds6 + g ds DS6 ( λ + λ ) (0E - 6)(0.0 + 0.0) 00 4. Calculate the gain of the first stage to satisfy the overall gain. A A A A 0000 / A 0000 00 5. Determine the first stage biasing current using the minimum allowable size of, and minimum output offset. (a) Consider M4 and M6. Using the minimum size for M4, determine the current SD4 that mirror with M6. That is, DS4 SD5 DS4 4 6 DS6 (0uA) 4 (5uA) 0uA 5uA (b) Consider M5 and M. Using the minimum size for M5, determine the current DS5 that mirror with M. That is, SD5 DS4 SD SD5 SD 5 /.85 / 0.93uA SD5 SD (0uA) 0.666 /.85/ 0.93uA.85uA DS3 (c) Select the larger of the two SD4 and adjust the size of M4 if necessary. The larger SD4 5uA from 5(a). o adjustment needed, since this is the value use in calculation. 6. Determine the size of M to satisfy the gain requirement. 8

A g ds g m + g [A ds4 SD ( λ + λ )] SD SD ( λ + λ ) SD [(00)(5E - 6)(0.0 + 0.0)] (5E - 6)(5E - 6).666. The minimum size of M5 () in step 5(b) can be adjusted to satisfy the positive input CMR of 3. G(max) G(max) SD5(SAT) SD5(SAT) 5 5-3 - DD DD DD - ( - SD5(SAT) SD5(SAT) G(max) (5E - 6) (5E - 6)(.666) SD5 SD5 DS5(SAT) 5 ) - SG SD SD 0.5 (0E - 6) (5E - 6)(0.5) T T 5.333 Select the larger of the two, 5 5.333 and adjust the size of M for proper mirroring with M5. 5 0 (5.333) 0 5 0.666 8. The minimum size of M3 or M4() in step 5(a) can be adjusted to meet the negative input CMR of - 3. G(min) 3 SS + ( G(min) DS3 - SS 3 DS3 - + T3 T3 + T T ) (40E - 6)[-3- (5E - 6) (-5) -+ ] 6 Select the larger of the two, 3. o further adjustment needed. 9

9. Determine the size of M8 to provide as the main current mirror for the comparator. For SD5 0.5 and SD 0.5, this voltage corresponds to the value of G8 3.5 or SG8.5. Let SD8 0uA. SD8 (0E - 6) ( - ) (5E - 6)(5-3.5 -) 8 SG8 T 0.666 The external resistor Rb connected between G8 and ground must be chosen to provide the required current for M8 of 0uA. R 0 3.5 0 0E - 6 G8 b DS8 5 0. Select the width of each transistor. AR M M M3 M4 M5 M6 M M8 (ua) 5 5 5 5 0 0 0 0 T W/L.666.666 5.333 4 0.666 0.666 W(u) 4.93 4.93 5.6 5.6 9.86.4 59.3 59.3 L(u) 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 Leff(u) 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 Finding the W, L to the nearest multiple of λ0.6. AR M M M3 M4 M5 M6 M M8 (ua) 5 5 5 5 0 0 0 0 T W/L.666.666 5.333 4 0.666 0.666 W(u) 5 5 5.4 5.4 30.6 60 60 L(u) 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 Leff(u) 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 *Adjusted to satisfy the balance condition to minimize the input offset voltage, os: W W 6 4 6 4 W W.6 60 5.4 30 4 4 5 5 0

4. Comparator Simulation 4.. CMOS Comparator mplementation with MOS nput Drivers The Spice netlist is given below: * Filename"diffcmp.cir" * MOS Diff Amp with MOS nput Drivers and Current Mirror Load * nput Signals 0 DC 0 OS 0 DC 0 * ower Supplies DD 3 0 DC 5OLT SS 4 0 DC -5OLT * etlist for CMOS COMARATOR in well M 5 4 MOS W5.4U L6.6U M 6 4 MOS W5.4U L6.6U M3 5 5 3 3 M4 6 5 3 3 MOS W.U MOS W.U L6.6U L6.6U M5 9 4 4 MOS W5.4U L6.6U M6 8 6 3 3 M 8 9 4 4 MOS W59.4U L6.6U MOS W.U L6.6U M8 9 9 4 4 MOS W.U L6.6U * External Components CL 8 0 pf RB 9 0 5 * SCE arameters.model MOS MOS TO 40U + GAMMA.0 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U0550 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9.MODEL MOS MOS TO- 5U + GAMMA0.6 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U000 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9 * Analysis.DC -mv m u.tf (8).ROBE.ED

To eliminate the input offset voltage, the negative of os is applied at the negative input of the comparator. That is, the Spice entry for OS is modified as follow: OS 0 DC 39.85uv **** SMALL-SGAL CHARACTERSTCS (8)/.8E+04

UT RESSTACE AT.000E+0 OUTUT RESSTACE AT (8).69E+06 4.. Comparator Transient Response Slew Rate Measurement * Filename"diffcmp.cir" * MOS Diff Amp with MOS nput and Current Mirror Load * nput Signal 0 WL(0,-5 0us,-5 0.0us,5 30us, 5 30.0us,-5 s, -5) OS 0 DC -88.50u *ower Supplies DD 3 0 DC 5OLT SS 4 0 DC -5OLT * etlist for Slew Rate Measurement * etlist for CMOS COMARATOR in well M 5 4 M 6 4 MOS W5.4U MOS W5.4U L6.6U L6.6U M3 5 5 3 3 MOS W.U L6.6U M4 6 5 3 3 M5 9 4 4 MOS W.U MOS W5.4U L6.6U L6.6U M6 8 6 3 3 MOS W59.4U L6.6U M 8 9 4 4 M8 9 9 4 4 MOS W.U L6.6U MOS W.U L6.6U * External Components CL 8 0 pf RB 9 0 5 * SCE arameters.model MOS MOS TO 40U + GAMMA.0 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U0550 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9.MODEL MOS MOS TO- 5U + GAMMA0.6 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U000 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9 *Analysis.TRA.ns 40us.ROBE.ED 3

4..3 Comparator Transient Response Settling Time Measurement * Filename"diffcmp.cir" * MOS Diff Amp with MOS nput and Current Mirror Load * nput Signal 0 WL(0,-5m 0us,-5m 0.0us,5m 30us, 5m 30.0us,-5m s, - 5m) OS 0 DC 0 *ower Supplies DD 3 0 DC 5OLT SS 4 0 DC -5OLT * etlist for CMOS COMARATOR in well M 5 4 M 6 4 MOS W5.4U MOS W5.4U L6.6U L6.6U M3 5 5 3 3 MOS W.U L6.6U M4 6 5 3 3 M5 9 4 4 MOS W.U MOS W5.4U L6.6U L6.6U M6 8 6 3 3 MOS W59.4U L6.6U M 8 9 4 4 M8 9 9 4 4 MOS W.U L6.6U MOS W.U L6.6U * External Components CL 8 0 pf RB 9 0 5 * SCE arameters.model MOS MOS TO 40U + GAMMA.0 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U0550 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9.MODEL MOS MOS TO- 5U 4

+ GAMMA0.6 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U000 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9 *Analysis.TRA.ns 40us.ROBE.ED Upper output voltage for 5% settling time, 0.95(o(max))0.95(4.85)4.6 Lower output voltage for 5% settling time, 0.95(o(min))0.95(-5)4.5 4..4 Comparator Open-loop Transfer Function * Filename"diffcmp4.cir" * MOS Diff Amp with MOS nput and Current Mirror Load * nput Signal 0 AC *ower Supplies DD 3 0 DC 5OLT SS 4 0 DC -5OLT * etlist for CMOS COMARATOR in well M 5 0 MOS W5.4U L6.6U M 6 MOS W5.4U L6.6U M3 5 5 3 3 MOS W.U L6.6U M4 6 5 3 3 M5 9 4 4 MOS W.U MOS W5.4U L6.6U L6.6U M6 8 6 3 3 MOS W59.4U L6.6U M 8 9 4 4 MOS W.U L6.6U 5

M8 9 9 4 4 MOS W.U L6.6U * External Components CL 8 0 pf RB 9 0 5 * SCE arameters.model MOS MOS TO 40U + GAMMA.0 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U0550 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9.MODEL MOS MOS TO- 5U + GAMMA0.6 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U000 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9 *Analysis.AC DEC 0 0.HZ 00MegHZ.ROBE.ED 4.. CMOS Comparator mplementation with MOS nput Drivers * Filename"diffcmpp.cir" * CMOS Comparator with MOS nput Drivers * nput Signals 0 DC 0 OS 0 DC 0 * ower Supplies DD 3 0 DC 5OLT SS 4 0 DC -5OLT * etlist for CMOS Comparator in well M 5 MOS W5U L6.6U 6

M 6 MOS W5U L6.6U M3 5 5 4 4 M4 6 5 4 4 MOS W5.4U MOS W5.4U L6.6U L6.6U M5 9 3 3 MOS W30U L6.6U M6 8 6 4 4 M 8 9 3 3 MOS W.6U L6.6U MOS W60U L6.6U M8 9 9 3 3 MOS W60U L6.6U * External Components CL 8 0 pf RB 9 0 5 * SCE arameters.model MOS MOS TO 40U + GAMMA.0 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U0550 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9.MODEL MOS MOS TO- 5U + GAMMA0.6 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U000 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9 * Analysis.DC -mv m u.tf (8).ROBE.ED To eliminate the input offset voltage the negative of os is applied - input. OS 0 DC 88.50u

**** SMALL-SGAL CHARACTERSTCS (8)/.96E+04 UT RESSTACE AT.000E+0 OUTUT RESSTACE AT (8).84E+06 4.. Comparator Transient Response for Slew Rate Measuremnt * Filename"diffcmpp.cir" * MOS Diff Amp with MOS nput and Current Mirror Load * nput Signal 0 WL(0,-5 0us,-5 0.0us,5 30us, 5 30.0us,-5 s, -5) OS 0 DC 0 *ower Supplies DD 3 0 DC 5OLT SS 4 0 DC -5OLT * etlist for CMOS Comparator in well M 5 MOS W5U L6.6U M 6 MOS W5U L6.6U M3 5 5 4 4 MOS W5.4U L6.6U M4 6 5 4 4 MOS W5.4U L6.6U M5 9 3 3 MOS W30U L6.6U M6 8 6 4 4 MOS W.6U L6.6U M 8 9 3 3 MOS W60U L6.6U M8 9 9 3 3 MOS W60U L6.6U * External Components CL 8 0 pf RB 9 0 5 8

* SCE arameters.model MOS MOS TO 40U + GAMMA.0 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U0550 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9.MODEL MOS MOS TO- 5U + GAMMA0.6 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U000 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9 *Analysis.TRA.ns 40us.ROBE.ED 4.. Comparator Transient Response for Settling Time Measurement * Filename"diffcmpp.cir" * MOS Diff Amp with MOS nput and Current Mirror Load * nput Signal 0 WL(0,-5m 0us,-5m 0.0us,5m 30us, 5m 30.0us,-5m s, - 5m) OS 0 DC 0 *ower Supplies DD 3 0 DC 5OLT SS 4 0 DC -5OLT * etlist for Slew Rate Measurement * etlist for CMOS Comparator in well M 5 M 6 MOS W5U MOS W5U L6.6U L6.6U M3 5 5 4 4 MOS W5.4U L6.6U M4 6 5 4 4 M5 9 3 3 MOS W5.4U MOS W30U L6.6U L6.6U M6 8 6 4 4 MOS W.6U L6.6U 9

M 8 9 3 3 MOS W60U L6.6U M8 9 9 3 3 MOS W60U L6.6U * External Components CL 8 0 pf RB 9 0 5 * SCE arameters.model MOS MOS TO 40U + GAMMA.0 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U0550 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9.MODEL MOS MOS TO- 5U + GAMMA0.6 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U000 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9 *Analysis.TRA.ns 40us.ROBE.ED 4..3 Comparator Open-loop Transfer Function * Filename"diffcmpp3.cir" * CMOS Comparator with MOS nput Drivers * nput Signals 0 AC OS 0 DC -88.50u * ower Supplies 0

DD 3 0 DC 5OLT SS 4 0 DC -5OLT * etlist for CMOS Comparator in well M 5 M 6 MOS W5U MOS W5U L6.6U L6.6U M3 5 5 4 4 MOS W5.4U L6.6U M4 6 5 4 4 M5 9 3 3 MOS W5.4U MOS W30U L6.6U L6.6U M6 8 6 4 4 MOS W.6U L6.6U M 8 9 3 3 M8 9 9 3 3 MOS W60U MOS W60U L6.6U L6.6U * External Components CL 8 0 pf RB 9 0 5 * SCE arameters.model MOS MOS TO 40U + GAMMA.0 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U0550 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9.MODEL MOS MOS TO- 5U + GAMMA0.6 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U000 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9 * Analysis.AC DEC 0 0.HZ 00MegHZ.ROBE.ED 4..4 Comparator Adjusted for 0-5 Operation

* Filename"diffcp5.cir" * CMOS Comparator with MOS nput Drivers * nput Signals 0 DC 0 OS 0 DC.5 * ower Supplies DD 3 0 DC 5OLT SS 4 0 DC 0OLT * etlist for CMOS Comparator in well M 5 MOS W5U L6.6U M 6 M3 5 5 4 4 MOS W5U MOS W5.4U L6.6U L6.6U M4 6 5 4 4 MOS W5.4U L6.6U M5 9 3 3 M6 8 6 4 4 MOS W30U L6.6U MOS W.6U L6.6U M 8 9 3 3 MOS W60U L6.6U M8 9 9 3 3 MOS W60U L6.6U * External Components CL 8 0 pf RB 9 0 5 * SCE arameters.model MOS MOS TO 40U + GAMMA.0 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U0550 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9.MODEL MOS MOS TO- 5U + GAMMA0.6 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U000 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9 * Analysis.DC.49.5 u.robe.ed

4..5 Comparator Transient Response for 0-5 Operation * Filename"diffcp5t.cir" * MOS Diff Amp with MOS nput and Current Mirror Load * nput Signal 0 WL(0,.495 0us,.495 0.0us,.505 30us,.505 30.0us,.495 s,.495) OS 0 DC.5 *ower Supplies DD 3 0 DC 5OLT SS 4 0 DC 0OLT * etlist for CMOS Comparator in well M 5 M 6 MOS W5U MOS W5U L6.6U L6.6U M3 5 5 4 4 MOS W5.4U L6.6U M4 6 5 4 4 M5 9 3 3 MOS W5.4U MOS W30U L6.6U L6.6U M6 8 6 4 4 MOS W.6U L6.6U M 8 9 3 3 M8 9 9 3 3 MOS W60U MOS W60U L6.6U L6.6U * External Components CL 8 0 pf RB 9 0 5 * SCE arameters.model MOS MOS TO 40U + GAMMA.0 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U0550 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9.MODEL MOS MOS TO- 5U + GAMMA0.6 LAMBDA0.0 H0.6 + TOX0.05U LD0.5U CJ5E-4 CJSW0E-0 + U000 MJ0.5 MJSW0.5 CGSO0.4E-9 CGDO0.4E-9 *Analysis 3

.TRA.ns 40us.ROBE.ED 4