IRGP463DPbF IRGP463D-EPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 175 C 5 μs short circuit SOA Square RBSOA G 1% of the parts tested for 4X rated current (I LM ) Positive V CE (ON) Temperature co-efficient Ultra fast soft Recovery Co-Pak Diode Tight parameter distribution Lead Free Package C E n-channel V CES = 6V I C = 48A, T C = 1 C t SC 5μs, T J(max) = 175 C V CE(on) typ. = 1.65V Benefits High Efficiency in a wide range of applications Suitable for a wide range of switching frequencies due to Low V CE (ON) and Low Switching losses Rugged transient Performance for increased reliability Excellent Current sharing in parallel operation Low EMI C G CE IRGP463DPbF G E C G IRGP463D-EPbF G C E Gate Collector Emitter Absolute Maximum Ratings Parameter Max. Units V CES Collector-to-Emitter Voltage 6 V I C @ T C = 25 C Continuous Collector Current 96 I C @ T C = 1 C Continuous Collector Current 48 I CM Pulse Collector Current 2 I LM Clamped Inductive Load Current c 192 A I F @ T C = 25 C Diode Continous Forward Current 96 I F @ T C = 1 C Diode Continous Forward Current 48 I FM Diode Maximum Forward Current e 192 V GE Continuous Gate-to-Emitter Voltage ±2 V Transient Gate-to-Emitter Voltage ±3 P D @ T C = 25 C Maximum Power Dissipation 33 W P D @ T C = 1 C Maximum Power Dissipation 17 T J Operating Junction and -55 to +175 T STG Storage Temperature Range C Soldering Temperature, for 1 sec. 3 (.63 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 1 lbf in (1.1 N m) Thermal Resistance Parameter Min. Typ. Max. Units R θjc (IGBT) Thermal Resistance Junction-to-Case-(each IGBT).45 C/W R θjc (Diode) Thermal Resistance Junction-to-Case-(each Diode).92 R θcs Thermal Resistance, Case-to-Sink (flat, greased surface).24 R θja Thermal Resistance, Junction-to-Ambient (typical socket mount) 4 1 www.irf.com 213 International Rectifier March 15, 213
IRGP463DPbF/IRGP463D-EPbF Electrical Characteristics @ T J = 25 C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions Ref.Fig V (BR)CES Collector-to-Emitter Breakdown Voltage 6 V V GE = V, I C = 15μA f CT6 ΔV (BR)CES /ΔT J Temperature Coeff. of Breakdown Voltage.3 V/ C V GE = V, I C = 1mA (25 C-175 C) CT6 1.65 2.14 I C = 48A, V GE = 15V, T J = 25 C 5,6,7 V CE(on) Collector-to-Emitter Saturation Voltage 2. V I C = 48A, V GE = 15V, T J = 15 C 9,1,11 2.5 I C = 48A, V GE = 15V, T J = 175 C V GE(th) Gate Threshold Voltage 4. 6.5 V V CE = V GE, I C = 1.4mA 9, 1, ΔV GE(th) /ΔTJ Threshold Voltage temp. coefficient -21 mv/ C V CE = V GE, I C = 1.mA (25 C - 175 C) 11, 12 gfe Forward Transconductance 32 S V CE = 5V, I C = 48A, PW = 8μs I CES Collector-to-Emitter Leakage Current 1. 15 μa V GE = V, V CE = 6V 45 1 V GE = V, V CE = 6V, T J = 175 C V FM Diode Forward Voltage Drop 1.95 2.91 V I F = 48A 8 1.45 I F = 48A, T J = 175 C I GES Gate-to-Emitter Leakage Current ±1 na V GE = ±2V Switching Characteristics @ T J = 25 C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions Ref.Fig Q g Total Gate Charge (turn-on) 95 14 I C = 48A 24 Q ge Gate-to-Emitter Charge (turn-on) 28 42 nc V GE = 15V CT1 Q gc Gate-to-Collector Charge (turn-on) 35 53 V CC = 4V E on Turn-On Switching Loss 625 1141 I C = 48A, V CC = 4V, V GE = 15V CT4 E off Turn-Off Switching Loss 1275 1481 μj R G = 1Ω, L = 2μH, L S = 15nH, T J = 25 C E total Total Switching Loss 19 2622 Energy losses include tail & diode reverse recovery t d(on) Turn-On delay time 6 78 I C = 48A, V CC = 4V, V GE = 15V CT4 t r Rise time 4 56 ns R G = 1Ω, L = 2μH, L S = 15nH, T J = 25 C t d(off) Turn-Off delay time 145 176 t f Fall time 35 46 E on Turn-On Switching Loss 1625 I C = 48A, V CC = 4V, V GE =15V 13, 15 E off Turn-Off Switching Loss 1585 μj R G =1Ω, L=2μH, L S =15nH, T J = 175 C f CT4 E total Total Switching Loss 321 Energy losses include tail & diode reverse recovery WF1, WF2 t d(on) Turn-On delay time 55 I C = 48A, V CC = 4V, V GE = 15V 14, 16 t r Rise time 45 ns R G = 1Ω, L = 2μH, L S = 15nH CT4 t d(off) Turn-Off delay time 165 T J = 175 C WF1 t f Fall time 45 WF2 C ies Input Capacitance 325 pf V GE = V 23 C oes Output Capacitance 245 V CC = 3V C res Reverse Transfer Capacitance 9 f = 1.Mhz T J = 175 C, I C = 192A 4 RBSOA Reverse Bias Safe Operating Area FULL SQUARE V CC = 48V, Vp =6V CT2 Rg = 1Ω, V GE = +15V to V SCSOA Short Circuit Safe Operating Area 5 μs V CC = 4V, Vp =6V 22, CT3 Rg = 1Ω, V GE = +15V to V Erec Reverse Recovery Energy of the Diode 845 μj T J = 175 C 17, 18, 19 t rr Diode Reverse Recovery Time 115 ns V CC = 4V, I F = 48A 2, 21 I rr Peak Reverse Recovery Current 4 A V GE = 15V, Rg = 1Ω, L =2μH, L s = 15nH WF3 WF4 Notes: V CC = 8% (V CES ), V GE = 2V, L = 2μH, R G = 1Ω. This is only applied to TO-247AC package. ƒ Pulse width limited by max. junction temperature. Refer to AN-186 for guidelines for measuring V (BR)CES safely. 2 www.irf.com 213 International Rectifier March 15, 213
I CE (A) I CE (A) I C (A) I C (A) I C (A) P tot (W) IRGP463DPbF/IRGP463D-EPbF 1 35 9 8 3 7 25 6 5 4 2 15 3 2 1 1 5 25 5 75 1 125 15 175 2 25 5 75 1 125 15 175 2 T C ( C) T C ( C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature 1 1 Fig. 2 - Power Dissipation vs. Case Temperature 1 1μsec 1μsec 1 1 1msec 2 DC 1 Tc = 25 C Tj = 175 C Single Pulse.1 1 1 1 1 Fig. 3 - Forward SOA T C = 25 C, T J 175 C; V GE =15V 1 2 1 1 1 1 Fig. 4 - Reverse Bias SOA T J = 175 C; V GE =15V 18 18 16 14 12 1 V GE = 18V VGE = 15V VGE = 12V VGE = 1V VGE = 8.V 16 14 12 1 V GE = 18V VGE = 15V VGE = 12V VGE = 1V VGE = 8.V 8 8 6 6 4 4 2 2 2 4 6 8 1 2 4 6 8 1 Fig. 5 - Typ. IGBT Output Characteristics T J = -4 C; tp = 8μs Fig. 6 - Typ. IGBT Output Characteristics T J = 25 C; tp = 8μs 3 www.irf.com 213 International Rectifier March 15, 213
I CE (A) I CE (A) I F (A) IRGP463DPbF/IRGP463D-EPbF 2 2 18 16 14 12 1 V GE = 18V VGE = 15V VGE = 12V VGE = 1V VGE = 8.V 18 16 14 12 1-4 c 25 C 175 C 8 6 4 2 2 4 6 8 1 Fig. 7 - Typ. IGBT Output Characteristics T J = 175 C; tp = 8μs 2 18 16 14 8 6 4 2. 1. 2. 3. 4. V F (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 8μs 2 18 16 14 12 1 8 I CE = 24A I CE = 48A I CE = 96A 12 1 8 I CE = 24A I CE = 48A I CE = 96A 6 6 4 4 2 2 5 1 15 2 5 1 15 2 V GE (V) V GE (V) Fig. 9 - Typical V CE vs. V GE T J = -4 C Fig. 1 - Typical V CE vs. V GE T J = 25 C 2 2 18 16 18 16 T J = 25 C T J = 175 C 14 14 12 I CE = 24A 12 1 8 I CE = 48A I CE = 96A 1 8 6 6 4 4 2 2 5 1 15 2 5 1 15 V GE (V) V GE (V) Fig. 11 - Typical V CE vs. V GE T J = 175 C Fig. 12 - Typ. Transfer Characteristics V CE = 5V; tp = 1μs 4 www.irf.com 213 International Rectifier March 15, 213
I RR (A) I RR (A) Energy (μj) Swiching Time (ns) Energy (μj) Swiching Time (ns) IRGP463DPbF/IRGP463D-EPbF 6 1 5 4 E OFF td OFF 3 E ON 1 td ON 2 t F 1 t R 5 1 15 1 2 4 6 8 1 I C (A) I C (A) Fig. 13 - Typ. Energy Loss vs. I C T J = 175 C; L = 2μH; V CE = 4V, R G = 1Ω; V GE = 15V 5 Fig. 14 - Typ. Switching Time vs. I C T J = 175 C; L = 2μH; V CE = 4V, R G = 1Ω; V GE = 15V 1 45 4 E OFF td OFF 35 E ON t R td ON 3 1 25 t F 2 15 1 25 5 75 1 125 Rg (Ω) Fig. 15 - Typ. Energy Loss vs. R G T J = 175 C; L = 2μH; V CE = 4V, I CE = 48A; V GE = 15V 45 1 25 5 75 1 125 R G (Ω) Fig. 16 - Typ. Switching Time vs. R G T J = 175 C; L = 2μH; V CE = 4V, I CE = 48A; V GE = 15V 45 4 35 3 25 R G = 1Ω R G = 22Ω 4 35 3 2 R G = 47Ω 25 15 1 5 R G = 1Ω 2 15 2 4 6 8 1 1 25 5 75 1 125 I F (A) R G (Ω) Fig. 17 - Typ. Diode I RR vs. I F T J = 175 C Fig. 18 - Typ. Diode I RR vs. R G T J = 175 C 5 www.irf.com 213 International Rectifier March 15, 213
Capacitance (pf) Energy (μj) Time (μs) I RR (A) Q RR (nc) V GE, Gate-to-Emitter Voltage (V) IRGP463DPbF/IRGP463D-EPbF 45 4 4 35 3 25 2 35 3 25 2 96A 1Ω 47Ω 48A 22Ω 24A 1Ω 15 15 1 2 4 6 8 1 di F /dt (A/μs) Fig. 19 - Typ. Diode I RR vs. di F /dt V CC = 4V; V GE = 15V; I F = 48A; T J = 175 C 1 5 1 15 di F /dt (A/μs) Fig. 2 - Typ. Diode Q RR vs. di F /dt V CC = 4V; V GE = 15V; T J = 175 C 9 18 4 8 7 6 R G = 1Ω R G = 22Ω 16 14 35 3 5 4 R G = 47Ω 12 1 25 2 Current (A) 3 2 1 R G = 1Ω 8 6 15 1 1 2 4 6 8 1 I F (A) Fig. 21 - Typ. Diode E RR vs. I F T J = 175 C 4 5 8 1 12 14 16 18 V GE (V) Fig. 22 - V GE vs. Short Circuit Time V CC = 4V; T C = 25 C 16 Cies 14 12 V CES = 3V V CES = 4V 1 1 1 Coes 8 6 Cres 4 2 1 2 4 6 8 1 25 5 75 1 Q G, Total Gate Charge (nc) Fig. 23 - Typ. Capacitance vs. V CE Fig. 24 - Typical Gate Charge vs. V GE V GE = V; f = 1MHz I CE = 48A; L = 6μH 6 www.irf.com 213 International Rectifier March 15, 213
IRGP463DPbF/IRGP463D-EPbF 1 Thermal Response ( Z thjc ).1.1.1 D =.5.2.1.5.2.1 SINGLE PULSE ( THERMAL RESPONSE ) R 1 R 1 R 2 R 2 R 3 R 3 τ J τ J τ 1 τ 1 τ 2 τ 2 τ 3 τ 3 Ci= τi/ri Ci i/ri Ri ( C/W) τi (sec).872.114.1599.152.22.233 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc.1 1E-6 1E-5.1.1.1.1 1 t 1, Rectangular Pulse Duration (sec) τ C τ Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 1 Thermal Response ( Z thjc ) 1.1.1.1 D =.5.2.1.5.2.1 R 1 R 1 R 2 R 2 R 3 R 3 τ J τ J τ 1 τ 1 τ 2 τ 2 τ 3 τ 3 Ci= τi/ri Ci i/ri Ri ( C/W) τi (sec).2774.98.3896.3869.254.3195 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc.1 1E-6 1E-5.1.1.1.1 1 t 1, Rectangular Pulse Duration (sec) τ C τ Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) 7 www.irf.com 213 International Rectifier March 15, 213
IRGP463DPbF/IRGP463D-EPbF L L 1K VCC 8 V + - Rg VCC Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / 4X L DC VCC -5V Rg / DRIVER VCC R SH Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit C force R = VCC ICM 1K Rg VCC G force D1 22K.75μF C sense E sense Fig.C.T.5 - Resistive Load Circuit E force Fig.C.T.6 - BVCES Filter Circuit 8 www.irf.com 213 International Rectifier March 15, 213
IRGP463DPbF/IRGP463D-EPbF 7 14 7 14 6 12 6 12 5 1 5 tr 1 4 8 4 TEST CURRENT 8 VCE (V) 3 2 1 tf 5% V CE 9% I CE 6 4 2 ICE (A) VCE (V) 3 2 1 9% test 1% test current 5% V CE 6 4 2 ICE (A) 5% I CE -1 E OFF Loss -.4.1.6 1.1 Time(μs) Fig. WF1 - Typ. Turn-off Loss Waveform @ T J = 175 C using Fig. CT.4-2 E ON -1-2 6.2 6.4 6.6 6.8 7. Time (μs) Fig. WF2 - Typ. Turn-on Loss Waveform @ T J = 175 C using Fig. CT.4 6 6 6 5 4 3 Q RR 5 4 V CE I CE 5 4 IRR(A) 2 1 t RR VCE (V) 3 2 3 2 ICE (A) -1-2 -3 Peak I RR 1% Peak I RR 1 1-4 -.15 -.5.5.15.25 time (μs) Fig. WF3 - Typ. Diode Recovery Waveform @ T J = 175 C using Fig. CT.4-1 -5.. 5. 1. time (μs) Fig. WF4 - Typ. S.C. Waveform @ T J = 25 C using Fig. CT.3-1 9 www.irf.com 213 International Rectifier March 15, 213
IRGP463DPbF/IRGP463D-EPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information EXAMPLE: THIS IS AN IRFPE3 WIT H AS S EMBLY LOT CODE 5657 AS S EMBLE D ON WW 35, 21 IN THE ASSEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INTERNATIONAL RECTIFIER LOGO ASS EMBLY LOT CODE IRFPE3 135H 56 57 PART NUMBER DATE CODE YEAR 1 = 21 WEEK 35 LINE H TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 1 www.irf.com 213 International Rectifier March 15, 213
IRGP463DPbF/IRGP463D-EPbF TO-247AD Package Outline Dimensions are shown in millimeters (inches) TO-247AD Part Marking Information E X AM P L E : T H IS IS AN IR G P 3 B 12 K D -E WITH ASSEMBLY LOT CODE 5657 AS SEMB LED ON WW 35, 2 IN T H E AS S E M B L Y L IN E "H " N ote: "P " in as s em bly line pos ition indicates "Lead-F ree" PART NUMBER IN T E R N AT IO N AL R E C T IF IE R LOGO 35H 5 6 5 7 DATE CODE ASSEMBLY YEAR = 2 LOT CODE WEEK 35 LINE H TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR s Web site. IR WORLD HEADQUARTERS: 11 N. Sepulveda Blvd.., El Segundo, California 9245, USA Tel: (31) 252-715 TAC Fax: (31) 252-793 Visit us at www.irf.com for sales contact information. 11 www.irf.com 213 International Rectifier March 15, 213