Dynamic Wind Testing of Commercial Roofing Systems



Similar documents
Baskaran, B.A.; Paroli, R.M.; Kalinger, P.

research highlight Water Penetration Resistance of Windows - Study of Codes, Standards,Testing, and Certification

HAIL IMPACT TESTING OF EPDM ROOF ASSEMBLIES

Roofing Systems. New Applications / Re-Roofing / Maintenance

DuPont Tyvek Commercial Air Barrier Assemblies Exceed Air Barrier Association of America, ASHRAE 90.1

RenaissanceRe Wall of Wind Research -- Moving Innovations from Theory to Applications

Window Sill Details for Effective Drainage of Water

CHAPTER 7: Building Systems ROOFING SYSTEMS

FAST FACTS ADVANTAGES OF MULTI PLY BUILT-UP ROOFING. Asphalt Roofing Manufacturers Association

9/9/2013. Structures: What do we design for? THE PROBLEM. In Focus: Tornado/Hail Emerging Elephants Reducing impacts to life and property

UL Online Certifications Directory

metal Duil~ing manufacturers Association

Laboratory Report P Simulated Wind Uplift Testing of Adhered Single-Ply Roofing Systems in accordance with FM Standard 4470, Appendix C

UL 580 TEST REPORT. Rendered to: ARMSTRONG WORLD INDUSTRIES. SERIES/MODEL: MW Vector PRODUCT TYPE: Ceiling System, 3' OC

CF-Mesa, CF-Light Mesa, CF-Flute, CF-Metl-Plank, CF-Striated, CF-Santa Fe, CF-Architectural Flat, CF...

PERFORMANCE OF STANDING SEAM METAL ROOFS UNDER REALISTIC WIND LOADING

ANSI/SPRI WD-1 Wind Design Standard Practice for Roofing Assemblies. Table of Contents. 1.0 Introduction Methodology...2

Protecting Roofing Systems Against Windstorm Damage

Testing Water Penetration Resistance of Window Systems Exposed to Realistic Dynamic Air Pressures

CHAPTER VII. TITLE: STANDARDS FOR NEW ROOFING July 2015 CONSTRUCTION, RE-ROOFING CONSTRUCTION AND ROOFING SYSTEM GUARANTEE REQUIREMENTS

Roof Restoration System. For building owners, property management firms and facility managers. seamless possibilities

AIA PRESENTATION. Standing Seam Metal Roofing Seminar SSRLU2B 1 LU/HSW Hour

Landscaping products and amenities /

ISO Types 1-6: Construction Code Descriptions

APPLICATION INFORMATION FOR RESIDENTIAL ROOFING AND RESIDENTIAL ROOFING PACKET

CLOSED-CELL SPRAY FOAM Resisting Wind Uplift in Residential Buildings

ANSI/SPRI Wind Design Standard Practice for Roofing Assemblies

Metal Roof Systems in High-Wind Regions

SECTION STANDING SEAM METAL ROOF


SINGLE FAMILY RESIDENCE HURRICANE MITIGATION APPLICATION

A. Roofing Terminology: Definitions in ASTM D 1079 and glossary in NRCA's "The NRCA Roofing and Waterproofing Manual" apply to work of this Section.

Roofing Systems. There are many different systems, each with it's own special requirements and benefits. Browse through all the options below.

Predictive Service Life Tests for Roofing Membranes

COMMERCIAL BUILDING APPLICATIONS

Get Rid of Roof Problems for Good. How spray foam roofing can protect your building and make you money

TARRANT COUNTY DETAIL STANDARDS

Proven roofing SyStemS

Roofing and Sealants. Contents. Section Single-ply membrane splicing cement Most frequently used types of roofing

INNOVATIVE. ADAPTABLE. ENERGY EFFICIENT.

RACKING AND ATTACHMENT CRITERIA FOR EFFECTIVE MEMBRANE ROOF SYSTEM INTEGRATION Public Version 1: July 9, 2012

ROOFING APPLICATION STANDARD (RAS) No. 150 PRESCRIPTIVE BUR REQUIREMENTS

Test Report. Root Penetration Resistance Test. of Waterproofing Membrane for Green Roof System

Developing, Validating and Demonstrating Ways to Reduce Property Damage from Natural Hazards

INTERNATIONAL BUILDING CODE STRUCTURAL

CARLISLE S. c a r l i s l e - s y n t e c. c o m

FIELD TESTING SERVICES

NEW ELECTRICAL SUBSTATION Building 300 SECTION ETHYLENE-PROPYLENE-DIENE-MONOMER ROOFING WORK

CH. 2 LOADS ON BUILDINGS

IBHS Roofing Research

C3 Membrane Roofing System (C3 Illusions, C3 Evolution, C3, C3 Plus, and C3 Fleece Back) I. Cooley, mc. 50 Esten Avenue Pawtucket, RI 02860

CHESTERFLEX ROOF WATERPROOFING MEMBRANES

National Renewable Energy Laboratory

Property Policyholder Risk Improvement Report and Hurricane Survey

Commercial Residential Model Reviews

APIB Test Specification No. 09 WATERPROOFING MEMBRANES SWISS HAIL IMPACT PROTECTION REGISTER HSR / 07-15en Version 1.

COMMERCIAL ROOFING. Learning Objectives. Commercial Roofing Fundamentals May 2, 2012

TEST PROCEDURE FOR FIELD WITHDRAWAL RESISTANCE TESTING

foot skylight) is enough to knock a worker off their feet. A 10 mph wind gust on a 5 x 6 skylight develops a wind force of 270 lbs.

A Case for Standardized Dynamic Wind Uplift Pressure Test for Wood Roof Structural Systems

COMPARATIVE PERFORMANCE OF EPDM RUBBER ROOFING MEMBRANE AS PROTECTION AGAINST HAIL DAMAGE

Firestone RubberGard The EPDM reference

Rooftop Matters Benchmark Report. Executive Summary

Protecting YOUR NEW HOME FROM Wind Damage

Solar America Board for Codes and Standards

SECTION THERMOPLASTIC MEMBRANE ROOFING

PERIMETER FLASHING. Table of Contents

DIVISION: THERMAL AND MOISTURE PROTECTION SECTION: METAL ROOF PANELS REPORT HOLDER: FIRESTONE BUILDING PRODUCTS COMPANY, LLC

HOT ASPHALT BUILT-UP ROOFING SYSTEMS MORE LAYERS MEANS MORE PROTECTION

Building Owners Guide to a Duro-Last System!

How To Install A Membrane Roofing System

GAF HydroStop Brochure

Proper roof slope and drainage are important to prevent excessive water accumulation

Evaluating the Field Performance of Windows and Curtain Walls of Large Buildings

EPDM System Repair and Cleaning

Low-slope reroofing guidelines

Site Grading and Drainage to Achieve High-Performance Basements

REQUEST FOR PROPOSALS

WATERPROOFING OF REINFORCED CONCRETE FLAT ROOF 12

Roofing. Sarnafil S EL. Polymeric membrane for roof waterproofing. Product Description

Insulated Roof & Wall Panels. Product Data Sheet. Trapezoidal Insulated Roof Panels KS1000 RW

Iinterviewed with a school district

How To Test A Wrap N Drain X Dampproofing System

Firestone Warranty Program

Executive Summary Inclusion of Current Firewall Requirements in NBCC

AATC ROOF WORK INSTRUCTIONS

The Building Group First Tuesdays First Saint Paul s Lutheran Church 1301 North LaSalle Street, Chicago, Illinois

TEST REPORT. Rendered to: DEXERDRY. For: Deck Weatherproofing System Installed with AZEK Deck Boards

Gary Weaver, rro, hrci CURRICULUM VITAE. June Architectural Sheet Metal Expert. Roofing, Waterproofing &

Rain Penetration Tests on Manthorpe Mini Castellated Vent Tile with 15" x 9" Format Roof Tiles. Prepared for: Ben Hales

Sika Membran System For Sealing and Waterproofing Construction Gaps in Building Façades

HIGH PERFORMANCE PRE-APPLIED SYSTEM FOR BLIND SIDE & BELOW GRADE WATERPROOFING APPLICATIONS

Best Practices in Roof Design: Sustainable Energy Efficient Reroofing

WESTERN COOL ROOF SYSTEMS Sustainable - Energy Efficient FLUID APPLIED REINFORCED ROOF SYSTEM

TABLE OF CONTENTS" SECTION 3: Comparing Standing Seam Metal to Other Metal Roofs PAGE 7"

FOUNDATION INSULATING SYSTEM, INCLUDING WATERPROOFING AND DAMP PROOFING

Water Damage & Repair

How To Control Water Penetration In A Window

ROOF ASSEMBLIES AND ROOFTOP STRUCTURES

PERFORMANCE TEST REPORT. Rendered to: ARCHITECTURAL METAL SOLUTIONS, INC.

Transcription:

Construction Technology Update No. 55 Dynamic Wind Testing of Commercial Roofing Systems by A. Baskaran Single-ply roofs (SPRs) behave differently than built-up roofs and a simple test method is needed to ensure that they perform well under dynamic wind conditions. This Update describes a new test protocol developed by an industry-supported consortium project led by NRC s Institute for Research in Construction. Wind Effects on Roofs Wind damage is the reason for many roofing insurance claims but little is known about the performance in wind of the SPRs often installed on low-slope commercial and industrial buildings. However, it is known that SPRs react differently to wind effects than conventional built-up roofs. Wind passing over and around a building with a low-slope roof (Figure 1a) exerts positive pressure on the windward wall, negative pressure (suction) on the leeward wall and the walls parallel to the flow direction, and suction over most of the roof area. The suction generated at any particular roof location depends on the wind speed, wind direction, turbulence intensity or gusts, building topography, building geometry and Figure 1a. Wind-induced suction over a roof Figure 1b. Commercial roofs, with their almost-flat profiles and low parapets, can experience high local suction pressures along the roof perimeter.

Figure 2. Wind effects on single-ply mechanically attached roof assemblies architectural features, and varies with time. Commercial roofs, with their almost-flat profiles and low parapets, are likely to experience high local suction pressures along the roof perimeter (Figure 1b). Waterproof membranes are attached to the structural roof deck using fasteners (Figure 2). The attachment locations are then overlapped with another membrane sheet and the upper and lower sheets seamed together. Wind-induced suction repeatedly lifts the membrane between the attachments and causes membrane elongation and billowing. The magnitude of the wind-induced suction and the membrane s elastic properties determine the extent of billowing. Each roof component contributes resistance to the wind uplift force as illustrated by a force-resistance link diagram (Figure 3). All resistance links must remain connected for the roofing system to be durable and remain in place. Failure occurs when the wind uplift force is greater than the resistance of any one of these links. For example, the roof assembly is considered to have failed when a fastener (link 4) pulls out from the deck even though the membrane and its seams are in good condition. Similarly, failure is Figure 3. Force-resistance link diagram of single-ply roofs considered to have occurred when a seam (link 2) opens under gusting wind while other components remain intact. Testing and Certification of SPR Roofs When designing a new roof, the designer consults a building code to determine the design wind pressure for the geographic location and selects a roofing system and details (such as fastener spacing) appropriate for the local climatic wind conditions. To establish reliability, manufacturers of SPR systems test samples in accordance with standard methods to certify the systems will be able to withstand design wind loads; however, existing test methods have limitations. North American Test Methods Existing certification standards used in North America to assess wind uplift ratings of SPR systems include those issued by Factory Mutual (FM) 5 and Underwriters Laboratories. 7 Although easy to apply, these standards were developed for built-up roofing and do not simulate the dynamic wind conditions that generally cause mechanically fastened SPR roofs to fail. European Test Methods The common European testing method (European Union of Agrément UEAtc) 4 simulates actual wind conditions better than North American tests and, as a result, produces better estimates of actual wind uplift resistance of roofs. It uses a pressure load cycle based on meteorological data to simulate dynamic wind loading and accounts for size and edge effects, but the procedure is very timeconsuming. For example, one UEAtc cycle with 1415 gusts takes nearly 3 hours to complete, and it can take as long as 50 hours for a full investigation. 2

The goal of the SIGDERS project was to develop a test method that would: mimic real wind effects achieve failure modes observed under real conditions be easier to apply in the laboratory than existing tests allow for variation in roof design produce results quickly meet most North American building code requirements Figure 4. Wind tunnel model SIGDERS Test Protocol To develop a more effective test method for certifying mechanically fastened SPR systems, IRC formed a consortium called SIGDERS (Special Interest Group for Dynamic Evaluation of Roofing Systems). The first phase of the research was the full-scale wind tunnel testing of SPR systems with PVC and non-reinforced EPDM membranes (Figure 4). Both steady and gusty wind conditions were simulated and pressures measured at a number of locations to observe the fluctuations experienced by an SPR. Figure 5. Wind pressure distributions measured from the wind tunnel on full-scale roofs The typical mean wind pressure distributions for both normal and oblique winds are shown in Figure 5. Wind-induced pressures are negative (suction) and higher near the edges and corners than they are at the field of the roof. The tests showed that EPDM experiences a higher mean pressure than PVC for both normal and oblique wind conditions. Based on the wind tunnel results, a review of existing standards, and computer simulations, and using IRC s Dynamic Roofing Facility (DRF), IRC researchers devised a test loading procedure that allows a roofing system to be tested at any design wind pressure. This procedure, 3 represented in Figure 6, includes eight loading sequences in which a roof system is subjected to simulated gusts. The loading sequences are grouped into five different levels (Levels A to E). There are two groups of cycles at each test level: Group 1 cycles, which simulate wind-induced suction over a roof assembly, and Group 2 cycles, which simulate the effects of exterior wind fluctuations combined with a constant interior pressure on a building. Each group consists of four loading sequences in which the pressure level alternates between zero and a fixed pressure. Allowable internal pressure variations are explicitly specified in recent North American wind standards and the National Construction Technology Update No. 55 3

Figure 6. SIGDERS dynamic wind load cycle Building Code (NBC), 1,6 and are taken into account in the SIGDERS test protocol. Each loading sequence is performed at a pressure that is a percentage of the design wind pressure stipulated by applicable building codes and standards for a given type of building and a particular location, starting with lower pressures and increasing gradually with each level. For example, the Level A tests include one sequence of 400 cycles (gusts) at 25% of the design wind pressure, another sequence of 700 cycles at 50% of the design wind pressure, and so on, for a combined total of 2,200 cycles. To evaluate the ultimate strength of the roofing system, testing begins at Level A. If all the resistance links (Figure 3) remain connected, the roof is considered to have passed and obtains a rating. Testing then proceeds to the next level, where the pressure is increased (see Figure 6). Comparison of Test Protocols IRC s Dynamic Roofing Facility, used in the development of the SIGDERS loading cycle, permitted a comparison of the results obtained using the SIGDERS loading cycle with the results from both the UEAtc and FM procedures. Table 1 compares the test parameters and attributes of the FM, 5 UEAtc 4 and SIGDERS 2 test protocols. As shown in the table, the SIGDERS dynamic test protocol for SPRs produces failure modes similar to UEAtc, but has several additional benefits, such as the consideration of membrane flutter and the completion of tests in much less time. Benefits of the SIGDERS Test Protocol Support for the SIGDERS project by the roofing industry reflected a genuine need for new methods to ensure that roofing systems can perform in high, gusting winds. The new test protocol overcomes the limitations of current test methods. It has been submitted to the Canadian Standards Association for consideration as a national standard for Canada. It is likely that other jurisdictions in North America will benefit from this research as well. The test protocol will provide manufacturers with assurances that their products have been effectively tested and building owners with roofs that have longer service lives. 4 Construction Technology Update No. 55

Table 1. Features of the FM, UEAtc and SIGDERS test methods Parameter FM UEAtc SIGDERS Source data N/A Wind climatic Roof pressure data time histories Relationship with wind speed Yes No Yes Relationship with applicable codes and standards No No Yes Internal pressure No No Yes High-frequency fluctuations No Yes No Membrane flutter No No Yes Testing time* < 0.5 hours 55 hours 5 hours Maximum number of gusts N/A No 5000 Low-intensity gusts N/A 71% of test cycles 18% (<40% of test pressure) Medium-intensity gusts N/A 28% of test cycles 68% (40-75% of test pressure) High-intensity gusts N/A 1% of test cycles 14% (>75% of test pressure) Correction for temperature No Yes No Correction for specimen size No Yes Yes End product Static Fastener Dynamic evaluation design load evaluation *Varies according to roofing system Recently, SIGDERS released a report 2 describing the procedures for using the dynamic load cycle and installing the roof assembly, and reporting the test data. Once the SIGDERS test protocol becomes a national standard, manufacturers will be able to have their products tested, and after certifications are obtained, designers will be able to specify SPRs that meet the SIGDERS test requirements. Summary Developed by IRC in cooperation with manufacturers, building owners and roofing associations, SIGDERS is a new test protocol for easily evaluating the ultimate strength of flexible membrane roofing systems under dynamic wind conditions. Once implemented as a national standard, the protocol will contribute to improved predictability and service life of these roofing systems. References 1. ASCE. Minimum Design Loads for Buildings and Other Structures. ASCE Standard 7 98, American Society of Civil Engineers, Reston, VA, 1997, p. 13. 2. Baskaran, A. and Nabhan, F. Standard Test Method for the Dynamic Wind Uplift Resistance of Mechanically Attached Membrane Roofing Systems, Internal Report IRC-IR 699, National Research Council of Canada, Institute for Research in Construction, Ottawa, 2000. 3. Baskaran, A. and Chen, Y. Wind Load Cycle Development for Evaluating Mechanically Attached Single-Ply Roofs, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 77-78, 1998, pp. 83-96. 4. Baskaran, A. and Lei, W. A New Facility for Dynamic Wind Performance Evaluation of Roofing Systems. Proceedings of the Fourth International Symposium on Roofing Technology, NRCA/NIST, Washington, DC, 1997, pp. 168-179. 5

5. Factory Mutual Research, Approval Standard: Class I Roof Covers (4470), April 1986. 6. National Building Code of Canada 1995, Canadian Commission on Building and Fire Codes, National Research Council of Canada, Ottawa. Also structural commentaries (Part 4). 7. Underwriters Laboratories Inc., Standard for Uplift Pressure of Roof Assemblies (UL 560), 1996. SIGDERS consortium members Manufacturers Atlas Roofing Corporation Canadian General Tower Ltd. Carlisle SynTec Incorporated GAF Materials Corporation GenFlex Roofing Systems Firestone Building Products Company IKO Industries Ltd. Johns Manville Sarnafil Soprema Canada Stevens Roofing Systems Vicwest Steel Building Owners Canada Post Corporation Department of National Defence Public Works and Government Services Canada Associations Canadian Roofing Contractors Association Canadian Sheet Steel Building Institute Industrial Risk Insurers National Roofing Contractors Association Roof Consultants Institute Dr. A. Baskaran is a senior researcher in the Building Envelope and Structure Program of the National Research Council s Institute for Research in Construction. 2002 National Research Council of Canada November 2002 ISSN 1206-1220 Construction Technology Updates is a series of technical articles containing practical information distilled from recent construction research. For more information, contact Institute for Research in Construction, National Research Council of Canada, Ottawa K1A 0R6 Telephone: (613) 993-2607; Facsimile: (613) 952-7673; Internet: http://www.nrc.ca/irc