Meteorological Forecasting of DNI, clouds and aerosols
|
|
|
- Martina Garrett
- 10 years ago
- Views:
Transcription
1 Meteorological Forecasting of DNI, clouds and aerosols DNICast 1st End-User Workshop, Madrid, Heiner Körnich (SMHI), Jan Remund (Meteotest), Marion Schroedter-Homscheidt (DLR)
2 Overview What do we want to forecast? Local and short forecasts of DNI How to forecast? Different methods based on observations and numerical modeling Why is it difficult? Atmospheric phenomena have limited predictability. Combining different methods for the best forecast
3 What do we want to forecast? Direct normal irradiance Clouds Aerosols Local forecast for a solar power plant, about 1 square kilometre Forecast length: 0 to 240 minutes
4 How to forecast Ground-based observations by all-sky imagers: Calibrated images for cloud detection and classification Cloud velocities from two consecutive images Forecast with extrapolation Forecast length: ~ 30 minutes Spatial resolution: ~ 100 m Domain: local, ~ 1 km
5 Forecast with all-sky imagers Cloud Motion vector Forecast time t + 30 min
6 How to forecast Satellite-based observations: Utilize satellite imagers Optimize with rapid scan and highresolution observations Cloud motion vectors from optical flow techniques Forecast with extrapolation Forecast length: ~ 5-60 minutes, possibly up to 240 minutes Spatial resolution: ~ 3 km Domain: regional
7 Satellite-based observations Cloud fields from Meteosat Second Generation High Resolution Visible, centered over Greece (source DLR-IPA)
8 How to forecast Numerical weather prediction: Estimating initial state using all available information Solving the forecast equations as realistically as possible Time-critical production limits computational size Forecast length: up to 240 minutes, and longer Spatial resolution: ~ 3-20 km Domain: regional to global
9 Numerical weather prediction WRF (Meteotest), Harmonie (SMHI), WRF-Ensemble (DLR)
10 Difficulty with models: Parameterisation of unresolved physical processes Aerosol chemistry Turbulent mixing
11 Forecasting of DNI with Numerical weather prediction models Direct normal irradiance (DNI) is normally not a direct output of NWP models. DNI can be calculated with an external radiation code on basis of NWP input. NWP input: Clouds, water vapour (, precipitation) Winds, water vapour and temperature for aerosol chemistry and transport Winds also for advection of observed clouds
12 How to forecast aerosols Collect available observational information, e.g. from the WMO Sand and Dust Storm Warning Assessment and Advisory System s (SDSWAS) activity
13 How to forecast aerosols Global data assimilation of aerosols in the project Monitoring Atmospheric Composition and Climate (MACC) MACC delivers for Europe / Northern Africa generally good estimations Easily (and freely) available AOD@550nm - MBE Positive Bias Negative bias MBE of MACC AOD 550 nm Source: Mines Paristech / IEA SHC 46 MACC homepage
14 How to forecast aerosols High resolution aerosol modelling with COSMO- MUSCAT (TROPOS) Source: TROPOS
15 Targeted spatial and temporal scales Target Sky imagers Satellite Limited area NWP Global NWP 100 km Spatial resolution (log scale) 10 km 1 km 100 m 10 m 0.1 min 1 min 5 min 45 min 240 min 1 day Forecast time (log scale)
16 Why is forecasting difficult? Theoretical growth of forecast error
17 Error growth for different length scales From Lorenz-96 model: Error growth for two different length scales. The smaller length scale meso-gamma saturates faster.
18 Is higher resolution useful? Small-scale features in clouds have only a short predictability, if initialized correctly. Use of neighborhood method Take forecast over certain surrounding area, e.g. 20km x 20km and time interval. Calculate statistical measure for area: min, max, mean, median Result: Probability forecast for area Useful information for energy production?
19 Combining methods for the best forecast 3 Forecast error Forecast length
20 Combining methods for the best forecast Ground based methods Satellite based methods NWP based methods Images: SMHI, DLR Machine learning techniques (soft computing) combine the different forecasts in an optimal way. For example: FIS (Fuzzy inference systems), SVM (Support vector machine) KNN (K nearest neirbourgs) NN (Neural networks) ESTIMATIONS MEASUREMENTS
21 Meteotest: Shortest term forecast model satellite data cloud index cloud mask IR nighttime update: 15 min Numerical weather model WRF wind vectors update: 2x per day Meteotest WRF / different sources Aerosol data Meteotest / diff. sources Calculation of cloud index trajectories Prediction cloud position steps 15 min MACC / diff. so. ~16 min Post processing to reduce uncertainty Clearsky model prediction global & direct irradiance
22 Satellite & NWP based wind vectors Comparison of cloud motion vectors (CMV) based on satellite or NWP: quality is comparable but NWP based vectors much faster Comparison of Univ. Oldenburg (IEA SHC 46) Sat: satellite estimation NWP: NWP forecast CMV org: satellite based CMV 3500 m: NWP wind vectors at 3500 m
23 Cloud index & wind trajectories Source: Meteotest
24 Post processing Post processing: Kalman filter depending on cloud situation (only used for clear or totally cloudy situation but not for mixed) (Source: Meteotest)
25 Results: Forecast error for Global horizontal irradiance Opt. Modell (ECMWF/MOS)
26 Conclusions Methods for DNI forecasts include ground- and satellitebased observations, post-processing as well as numerical weather prediction. Different spatial and temporal scales are adressed by the methods. Predictability of atmospheric phenomena is scaledependent, extending from hours to weeks. Best forecast can be achieved by a combination of the different methods. Wind vectors from NWP and CMV are equally good. RMSE for 0-6 hours / all stations, GHI: W/m 2 (20-60%)
27 Thank you for your attention!
Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models. Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD
Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD Solar Radiation Reaching the Surface Incoming solar radiation can be reflected,
Solarstromprognosen für Übertragungsnetzbetreiber
Solarstromprognosen für Übertragungsnetzbetreiber Elke Lorenz, Jan Kühnert, Annette Hammer, Detlev Heienmann Universität Oldenburg 1 Outline grid integration of photovoltaic power (PV) in Germany overview
Partnership to Improve Solar Power Forecasting
Partnership to Improve Solar Power Forecasting Venue: EUPVSEC, Paris France Presenter: Dr. Manajit Sengupta Date: October 1 st 2013 NREL is a national laboratory of the U.S. Department of Energy, Office
A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning.
A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning. 31st Annual International Symposium on Forecasting Lourdes Ramírez Santigosa Martín
Solar and PV forecasting in Canada
Solar and PV forecasting in Canada Sophie Pelland, CanmetENERGY IESO Wind Power Standing Committee meeting Toronto, September 23, 2010 Presentation Plan Introduction How are PV forecasts generated? Solar
SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY
SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY Wolfgang Traunmüller 1 * and Gerald Steinmaurer 2 1 BLUE SKY Wetteranalysen, 4800 Attnang-Puchheim,
User Perspectives on Project Feasibility Data
User Perspectives on Project Feasibility Data Marcel Šúri Tomáš Cebecauer GeoModel Solar s.r.o., Bratislava, Slovakia [email protected] http://geomodelsolar.eu http://solargis.info Solar Resources
Development of a. Solar Generation Forecast System
ALBANY BARCELONA BANGALORE 16 December 2011 Development of a Multiple Look ahead Time Scale Solar Generation Forecast System John Zack Glenn Van Knowe Marie Schnitzer Jeff Freedman AWS Truepower, LLC Albany,
Deutsches Zentrum für Luft- und Raumfahrt (DLR) Earth Observation Center (EOC) Deutsches Fernerkundungsdatenzentrum (DFD)
Evaluierung von Global- und Direktstrahlungsvorhersagen des ECMWF insbesondere auch von Strahlungsvorhersagen basierend auf den neuen MACC Aerosolvorhersagen Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Expert System for Solar Thermal Power Stations. Deutsches Zentrum für Luft- und Raumfahrt e.v. Institute of Technical Thermodynamics
Expert System for Solar Thermal Power Stations Institute of Technical Thermodynamics Stuttgart, July 2001 - Expert System for Solar Thermal Power Stations 2 Solar radiation and land resources for solar
Forecasting of Solar Radiation
Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo Oldenburg University, Institute of Physics, Energy and Semiconductor Research Laboratory, Energy Meteorology Group 26111 Oldenburg,
Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction
Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction Jin Xu, Shinjae Yoo, Dantong Yu, Dong Huang, John Heiser, Paul Kalb Solar Energy Abundant, clean, and secure
Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula
Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula Mansour Almazroui Center of Excellence for Climate Change Research (CECCR) King Abdulaziz University, Jeddah, Saudi Arabia E-mail:
Photovoltaic and Solar Forecasting: State of the Art
Photovoltaic and Solar Forecasting: State of the Art Forecast PV power Actual PV power Report IEA PVPS T14 01:2013 Photo credits cover page Upper left image: Environment Canada, Data courtesy of NOAA (February
Solar Resource Assessment
Introduction to Resource Assessments Carsten Hoyer-Klick Folie 1 Solar Resource Assessment Folie 2 1 Global Horizontal Irradiation (GHI) Direct Horizontal Irradiation (DHI) Diffuse Irradiation (DIF) GHI
Review of solar irradiance forecasting methods and a proposition for small-scale insular grids
Review of solar irradiance forecasting methods and a proposition for small-scale insular grids Hadja Maïmouna Diagne, Mathieu David, Philippe Lauret, John Boland, Nicolas Schmutz To cite this version:
NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada
NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada 1. INTRODUCTION Short-term methods of precipitation nowcasting range from the simple use of regional numerical forecasts
EVALUATION OF NUMERICAL WEATHER PREDICTION SOLAR IRRADIANCE FORECASTS IN THE US
EVALUATION OF NUMERICAL WEATHER PREDICTION SOLAR IRRADIANCE FORECASTS IN THE US Richard Perez ASRC, Albany, NY, [email protected],edu Mark Beauharnois ASRC, Albany, NY [email protected],edu Karl Hemker,
Vaisala 3TIER Services Global Solar Dataset / Methodology and Validation
ENERGY Vaisala 3TIER Services Global Solar Dataset / Methodology and Validation Global Horizontal Irradiance 70 Introduction Solar energy production is directly correlated to the amount of radiation received
Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis
Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis Authors Name/s per 1st Affiliation (Author) Authors Name/s per 2nd Affiliation (Author) line 1 (of Affiliation): dept. name
Improving Accuracy of Solar Forecasting February 14, 2013
Improving Accuracy of Solar Forecasting February 14, 2013 Solar Resource Forecasting Objectives: Improve accuracy of solar resource forecasts Enable widespread use of solar forecasts in power system operations
The APOLLO cloud product statistics Web service The APOLLO cloud product statistics Web service
The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in
The impact of window size on AMV
The impact of window size on AMV E. H. Sohn 1 and R. Borde 2 KMA 1 and EUMETSAT 2 Abstract Target size determination is subjective not only for tracking the vector but also AMV results. Smaller target
Solar Resource & Radiometry Tasks in Antofagasta
Solar Resource & Radiometry Tasks in Antofagasta, Ph.D. [email protected] Mauricio Trigo, Mg. Tania Varas, Mg. Antofagasta, January 14nd, 2015 Index Introduction to Solar Radiation Measurements Climates
The potential role of forecasting for integrating solar generation into the Australian National Electricity Market
The potential role of forecasting for integrating solar generation into the Australian National Electricity Market Ben Elliston 1, Iain MacGill 1,2 1 School of Electrical Engineering and Telecommunications
Nowcasting: analysis and up to 6 hours forecast
Nowcasting: analysis and up to 6 hours forecast Very high resoultion in time and space Better than NWP Rapid update Application oriented NWP problems for 0 6 forecast: Incomplete physics Resolution space
Summary Report on National and Regional Projects set-up in Russian Federation to integrate different Ground-based Observing Systems
WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR INSTRUMENT AND METHODS OF OBSERVATION OPAG-UPPER AIR EXPERT TEAM ON REMOTE SENSING UPPER-AIR TECHNOLOGY AND TECHNIQUES First Session Geneva, Switzerland,
Overview of the IR channels and their applications
Ján Kaňák Slovak Hydrometeorological Institute [email protected] Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation
Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF
3 Working Group on Verification and Case Studies 56 Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF Bogdan Alexandru MACO, Mihaela BOGDAN, Amalia IRIZA, Cosmin Dănuţ
The Copernicus Atmosphere Monitoring Service (CAMS)
The Copernicus Atmosphere Monitoring Service (CAMS) Products, services and opportunities Vincent Henri Peuch Head of CAMS Vincent [email protected] Funded by the European Union Implemented by Atmospheric
Solar Input Data for PV Energy Modeling
June 2012 Solar Input Data for PV Energy Modeling Marie Schnitzer, Christopher Thuman, Peter Johnson Albany New York, USA Barcelona Spain Bangalore India Company Snapshot Established in 1983; nearly 30
IBM Big Green Innovations Environmental R&D and Services
IBM Big Green Innovations Environmental R&D and Services Smart Weather Modelling Local Area Precision Forecasting for Weather-Sensitive Business Operations (e.g. Smart Grids) Lloyd A. Treinish Project
Introduction to the forecasting world Jukka Julkunen FMI, Aviation and military WS
Boundary layer challenges for aviation forecaster Introduction to the forecasting world Jukka Julkunen FMI, Aviation and military WS 3.12.2012 Forecast for general public We can live with it - BUT Not
The Weather Intelligence for Renewable Energies Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation
Energies 2015, 8, 9594-9619; doi:10.3390/en8099594 Article OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies The Weather Intelligence for Renewable Energies Benchmarking Exercise on Short-Term
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR A. Maghrabi 1 and R. Clay 2 1 Institute of Astronomical and Geophysical Research, King Abdulaziz City For Science and Technology, P.O. Box 6086 Riyadh 11442,
Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley
University: Florida Institute of Technology Name of University Researcher Preparing Report: Sen Chiao NWS Office: Las Vegas Name of NWS Researcher Preparing Report: Stanley Czyzyk Type of Project (Partners
CLOUD COVER IMPACT ON PHOTOVOLTAIC POWER PRODUCTION IN SOUTH AFRICA
CLOUD COVER IMPACT ON PHOTOVOLTAIC POWER PRODUCTION IN SOUTH AFRICA Marcel Suri 1, Tomas Cebecauer 1, Artur Skoczek 1, Ronald Marais 2, Crescent Mushwana 2, Josh Reinecke 3 and Riaan Meyer 4 1 GeoModel
VALIDATION OF THE SUNY SATELLITE MODEL IN A METEOSAT ENVIRONMENT
VALIDATION OF THE SUNY SATELLITE MODEL IN A METEOSAT ENVIRONMENT Richard Perez ASRC, 251 Fuller Rd Albany, NY, 12203 [email protected],edu Jim Schlemmer ASRC [email protected],edu Shannon Cowlin
Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements
Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements Z. Li, M. C. Cribb, and F.-L. Chang Earth System Science Interdisciplinary Center University of Maryland College
REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES
REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES Mitigating Energy Risk through On-Site Monitoring Marie Schnitzer, Vice President of Consulting Services Christopher Thuman, Senior Meteorologist Peter Johnson,
Development of an Integrated Data Product for Hawaii Climate
Development of an Integrated Data Product for Hawaii Climate Jan Hafner, Shang-Ping Xie (PI)(IPRC/SOEST U. of Hawaii) Yi-Leng Chen (Co-I) (Meteorology Dept. Univ. of Hawaii) contribution Georgette Holmes
Solar Variability and Forecasting
Solar Variability and Forecasting Jan Kleissl, Chi Chow, Matt Lave, Patrick Mathiesen, Anders Nottrott, Bryan Urquhart Mechanical & Environmental Engineering, UC San Diego http://solar.ucsd.edu Variability
The APOLLO cloud product statistics Web service
The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in
How To Forecast Solar Power
Forecasting Solar Power with Adaptive Models A Pilot Study Dr. James W. Hall 1. Introduction Expanding the use of renewable energy sources, primarily wind and solar, has become a US national priority.
Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract
Clear Sky Radiance (CSR) Product from MTSAT-1R UESAWA Daisaku* Abstract The Meteorological Satellite Center (MSC) has developed a Clear Sky Radiance (CSR) product from MTSAT-1R and has been disseminating
http://www.isac.cnr.it/~ipwg/
The CGMS International Precipitation Working Group: Experience and Perspectives Vincenzo Levizzani CNR-ISAC, Bologna, Italy and Arnold Gruber NOAA/NESDIS & Univ. Maryland, College Park, MD, USA http://www.isac.cnr.it/~ipwg/
Statistical Learning for Short-Term Photovoltaic Power Predictions
Statistical Learning for Short-Term Photovoltaic Power Predictions Björn Wolff 1, Elke Lorenz 2, Oliver Kramer 1 1 Department of Computing Science 2 Institute of Physics, Energy and Semiconductor Research
Cloud Correction and its Impact on Air Quality Simulations
Cloud Correction and its Impact on Air Quality Simulations Arastoo Pour Biazar 1, Richard T. McNider 1, Andrew White 1, Bright Dornblaser 3, Kevin Doty 1, Maudood Khan 2 1. University of Alabama in Huntsville
Solar Radiation Measurement. Bruce W Forgan, WMO RAV Metrology Workshop, Melbourne, Novemberr 2011
Solar Radiation Measurement Bruce W Forgan, WMO RAV Metrology Workshop, Melbourne, Novemberr 2011 Why Do We Need Data on Solar Energy? Global Climate System Climate Energy Balance Solar Exposure and Irradiance
VALIDATION OF SHORT AND MEDIUM TERM OPERATIONAL SOLAR RADIATION FORECASTS IN THE US
VALIDATION OF SHORT AND MEDIUM TERM OPERATIONAL SOLAR RADIATION FORECASTS IN THE US Richard Perez, Sergey Kivalov, James Schlemmer, Karl Hemker Jr., ASRC, University at Albany David Renné National Renewable
Satellite remote sensing using AVHRR, ATSR, MODIS, METEOSAT, MSG
Satellite remote sensing using AVHRR, ATSR, MODIS, METEOSAT, MSG Ralf Meerkötter, Luca Bugliaro, Knut Dammann, Gerhard Gesell, Christine König, Waldemar Krebs, Hermann Mannstein, Bernhard Mayer, presented
FORECASTING SOLAR POWER INTERMITTENCY USING GROUND-BASED CLOUD IMAGING
FORECASTING SOLAR POWER INTERMITTENCY USING GROUND-BASED CLOUD IMAGING Vijai Thottathil Jayadevan Jeffrey J. Rodriguez Department of Electrical and Computer Engineering University of Arizona Tucson, AZ
Mode-S Enhanced Surveillance derived observations from multiple Air Traffic Control Radars and the impact in hourly HIRLAM
Mode-S Enhanced Surveillance derived observations from multiple Air Traffic Control Radars and the impact in hourly HIRLAM 1 Introduction Upper air wind is one of the most important parameters to obtain
IRS Level 2 Processing Concept Status
IRS Level 2 Processing Concept Status Stephen Tjemkes, Jochen Grandell and Xavier Calbet 6th MTG Mission Team Meeting 17 18 June 2008, Estec, Noordwijk Page 1 Content Introduction Level 2 Processing Concept
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low
National Database of Air Quality and Meteorological Information. Gregor Feig South African Weather Service
National Database of Air Quality and Meteorological Information Gregor Feig South African Weather Service Air Quality at the South African Weather Service 1. South African Air Quality Information System
Improvement in the Assessment of SIRS Broadband Longwave Radiation Data Quality
Improvement in the Assessment of SIRS Broadband Longwave Radiation Data Quality M. E. Splitt University of Utah Salt Lake City, Utah C. P. Bahrmann Cooperative Institute for Meteorological Satellite Studies
How To Measure Solar Spectral Irradiance
Accurate Determination of the TOA Solar Spectral NIR Irradiance Using a Primary Standard Source and the Bouguer-Langley Technique. D. Bolsée, N. Pereira, W. Decuyper, D. Gillotay, H. Yu Belgian Institute
USING CLOUD CLASSIFICATION TO MODEL SOLAR VARIABILITY
USING CLOUD CLASSIFICATION TO MODEL SOLAR VARIABILITY Matthew J. Reno Sandia National Laboratories Georgia Institute of Technology 777 Atlantic Drive NW Atlanta, GA 3332-25, USA [email protected]
CALIFORNIA RENEWABLE ENERGY FORECASTING, RESOURCE DATA, AND MAPPING
Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT CALIFORNIA RENEWABLE ENERGY FORECASTING, RESOURCE DATA, AND MAPPING Prepared for: Prepared by: California Energy Commission Regents of
Very High Resolution Arctic System Reanalysis for 2000-2011
Very High Resolution Arctic System Reanalysis for 2000-2011 David H. Bromwich, Lesheng Bai,, Keith Hines, and Sheng-Hung Wang Polar Meteorology Group, Byrd Polar Research Center The Ohio State University
Climate Models: Uncertainties due to Clouds. Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography
Climate Models: Uncertainties due to Clouds Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography Global mean radiative forcing of the climate system for
163 ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS
ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS Rita Pongrácz *, Judit Bartholy, Enikő Lelovics, Zsuzsanna Dezső Eötvös Loránd University,
Power Output Analysis of Photovoltaic Systems in San Diego County Mohammad Jamaly, Juan L Bosch, Jan Kleissl
1 Power Output Analysis of Photovoltaic Systems in San Diego County Mohammad Jamaly, Juan L Bosch, Jan Kleissl Abstract Aggregate ramp rates of 86 distributed photovoltaic (PV) systems installed in Southern
SOLAR IRRADIATION FORECASTING: STATE-OF-THE-ART AND PROPOSITION FOR FUTURE DEVELOPMENTS FOR SMALL-SCALE INSULAR GRIDS
SOLAR IRRADIATION FORECASTING: STATE-OF-THE-ART AND PROPOSITION FOR FUTURE DEVELOPMENTS FOR SMALL-SCALE INSULAR GRIDS Hadja Maïmouna Diagne 1,2 1 Réuniwatt, 14, rue de la Guadeloupe 97490 Sainte-Clotilde
Next generation models at MeteoSwiss: communication challenges
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Next generation models at MeteoSwiss: communication challenges Tanja Weusthoff, MeteoSwiss Material from
The Wind Integration National Dataset (WIND) toolkit
The Wind Integration National Dataset (WIND) toolkit EWEA Wind Power Forecasting Workshop, Rotterdam December 3, 2013 Caroline Draxl NREL/PR-5000-60977 NREL is a national laboratory of the U.S. Department
Data Analytic-Based Adaptive Solar Energy Forecasting Framework 1
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Data Analytic-Based Adaptive Solar Energy Forecasting Framework 1 Y. S. Manjili 2, Student Member, IEEE, R. E.
Big Data Assimilation Revolutionizing Weather Prediction
February 23, 2015, ISDA2015, Kobe Big Data Assimilation Revolutionizing Weather Prediction M. Kunii, J. Ruiz, G.-Y. Lien, K. Kondo, S. Otsuka, Y. Maejima, and Takemasa Miyoshi* RIKEN Advanced Institute
Synoptic assessment of AMV errors
NWP SAF Satellite Application Facility for Numerical Weather Prediction Visiting Scientist mission report Document NWPSAF-MO-VS-038 Version 1.0 4 June 2009 Synoptic assessment of AMV errors Renato Galante
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates C. N. Long Pacific Northwest National Laboratory Richland, Washington
Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography
Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu
Wind resources map of Spain at mesoscale. Methodology and validation
Wind resources map of Spain at mesoscale. Methodology and validation Martín Gastón Edurne Pascal Laura Frías Ignacio Martí Uxue Irigoyen Elena Cantero Sergio Lozano Yolanda Loureiro e-mail:[email protected]
Data Integration and long-term planning of the Observing Systems as a cross-cutting process in a NMS
Data Integration and long-term planning of the Observing Systems as a cross-cutting process in a NMS ECAC Zurich, Setpember 15 2020 Ch. Häberli Deputy Head Climate Division/Head Meteorological Data Coordination
PREDICTION OF PHOTOVOLTAIC SYSTEMS PRODUCTION USING WEATHER FORECASTS
PREDICTION OF PHOTOVOLTAIC SYSTEMS PRODUCTION USING WEATHER FORECASTS Jure Vetršek* 1 and prof. Sašo Medved 1 1University of Ljubljana, Faculty of Mechanical Engineering, Laboratory for Sustainable Technologies
IMPROVEMENT OF THE WEATHER RESEARCH AND FORECASTING (WRF) MODEL FOR SOLAR RESOURCE ASSESSMENTS AND FORECASTS UNDER CLEAR SKIES
World Renewable Energy Forum, Denver, CO, 2012 IMPROVEMENT OF THE WEATHER RESEARCH AND FORECASTING (WRF) MODEL FOR SOLAR RESOURCE ASSESSMENTS AND FORECASTS UNDER CLEAR SKIES José A. Ruiz-Arias NCAR/MMM,
Application of Numerical Weather Prediction Models for Drought Monitoring. Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia
Application of Numerical Weather Prediction Models for Drought Monitoring Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia Contents 1. Introduction 2. Numerical Weather Prediction Models -
Primary author: Kaspar, Frank (DWD - Deutscher Wetterdienst), [email protected]
Primary author: Kaspar, Frank (DWD - Deutscher Wetterdienst), [email protected] Co-authors: Johannes Behrendt (DWD - Deutscher Wetterdienst), Klaus-Jürgen Schreiber (DWD - Deutscher Wetterdienst) Abstract
Validation n 2 of the Wind Data Generator (WDG) software performance. Comparison with measured mast data - Flat site in Northern France
Validation n 2 of the Wind Data Generator (WDG) software performance Comparison with measured mast data - Flat site in Northern France Mr. Tristan Fabre* La Compagnie du Vent, GDF-SUEZ, Montpellier, 34967,
ICSU/WMO World Data Center for Remote Sensing of the Atmosphere (WDC RSAT)
ICSU/WMO World Data Center for Remote Sensing of the Atmosphere (WDC RSAT) Beate Hildenbrand (et al.) German Aerospace Center (DLR) GAW 2009, Geneva, 05 07 May 2009 http://wdc.dlr.de WDC RSAT overview
Use of numerical weather forecast predictions in soil moisture modelling
Use of numerical weather forecast predictions in soil moisture modelling Ari Venäläinen Finnish Meteorological Institute Meteorological research [email protected] OBJECTIVE The weather forecast models
Cloud Masking and Cloud Products
Cloud Masking and Cloud Products MODIS Operational Algorithm MOD35 Paul Menzel, Steve Ackerman, Richard Frey, Kathy Strabala, Chris Moeller, Liam Gumley, Bryan Baum MODIS Cloud Masking Often done with
RAPIDS Operational Blending of Nowcasting and NWP QPF
RAPIDS Operational Blending of Nowcasting and NWP QPF Wai-kin Wong and Edwin ST Lai Hong Kong Observatory The Second International Symposium on Quantitative Precipitation Forecasting and Hydrology 5-8
Saharan Dust Aerosols Detection Over the Region of Puerto Rico
1 Saharan Dust Aerosols Detection Over the Region of Puerto Rico ARLENYS RAMÍREZ University of Puerto Rico at Mayagüez, P.R., 00683. Email:[email protected] ABSTRACT. Every year during the months
SOLAR FORECASTING AND GRID INTEGRATION
Coauthors: Carlos Coimbra, Byron Washom * Juan Luis Bosch, Chi Chow, Mohammad Jamaly, Matt Lave, Ben Kurtz, Patrick Mathiesen, Andu Nguyen, Anders Nottrott, Bryan Urquhart, Israel Lopez Coto, Handa Yang,
Sub-grid cloud parametrization issues in Met Office Unified Model
Sub-grid cloud parametrization issues in Met Office Unified Model Cyril Morcrette Workshop on Parametrization of clouds and precipitation across model resolutions, ECMWF, Reading, November 2012 Table of
Data Processing Flow Chart
Legend Start V1 V2 V3 Completed Version 2 Completion date Data Processing Flow Chart Data: Download a) AVHRR: 1981-1999 b) MODIS:2000-2010 c) SPOT : 1998-2002 No Progressing Started Did not start 03/12/12
SOLAR AND PHOTOVOLTAIC FORECASTING THROUGH POST- PROCESSING OF THE GLOBAL ENVIRONMENTAL MULTISCALE NUMERICAL WEATHER PREDICTION MODEL
SOLAR AND PHOTOVOLTAIC FORECASTING THROUGH POST- PROCESSING OF THE GLOBAL ENVIRONMENTAL MULTISCALE NUMERICAL WEATHER PREDICTION MODEL Sophie Pelland 1, George Galanis 2,3 and George Kallos 2 1 CanmetENERGY,
