The Wind Integration National Dataset (WIND) toolkit
|
|
|
- Dorthy Kelly
- 9 years ago
- Views:
Transcription
1 The Wind Integration National Dataset (WIND) toolkit EWEA Wind Power Forecasting Workshop, Rotterdam December 3, 2013 Caroline Draxl NREL/PR NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.
2 Impact of high wind penetrations on power systems operations? Photo by Jamie Keller, NREL Photo by Energy Northwest, NREL
3 Impact of high wind penetrations on power systems operations? Photo by Jamie Keller, NREL Photo by Energy Northwest, NREL
4 Need for high resolution wind power data Artifacts still remain after corrections Time of Day 4
5 Need for high resolution wind power data Realistically reflects ramp characteristics Spatial seams Capacity factors of wind plant production Time-synchronous with load profiles Recent years Lasts at least 4 years to evaluate inter-annual variability Easy access. 5
6 Wind power forecasts and production time series for Wind Integration National Dataset WIND toolkit: Re-analysis: Meteorological and power data set Re-forecast: power data set (1 h, 4 h, 6 h, 24 h) Freely available online data extraction tool Acknowledgements: NREL: Bri-Mathias Hodge, Dan Getman, Wesley Jones, Kirsten Orwig 3 TIER: Jim McCaa, Padriac Fowler, Eric Grimit Members of Technical Review Committee U.S. Department of Energy. 6
7 The Weather Research and Forecasting (WRF) model setup WRF V km for re-analysis, 6 km nest for forecasts Boundary conditions: NOAA Reforecast2 Global Ensemble Forecast System Control 1-degree, NCEP Real-time global 1/12 th degree Sea Surface Temperature analysis Model output: 5 min for re-analysis, 1 h for forecasts Terrain U.S. Geological Survey GTOPO30 Yonsei University (YSU) boundary layer scheme, topographic wind enhancement 100+ terabytes model output: Parallel asynchronous I/O to improve output speed 50:1. 7
8 126,000 land-based and offshore existing and potential wind facilities Each site is a 2x2-km grid cell in the numerical weather prediction data set Site selection process o Exclusion criteria: Federal lands, national parks, open water areas Areas with slopes greater than 20% Within buffer area of developed land and airports Offshore: wind resource, distance from shore at least 8 km, bathymetry (max depth 30 m) Ranking based on computed potential MWh. 8
9 126,000 land-based and offshore existing and potential wind facilities 9
10 Create state-of-the-art forecasts without cheating by mimicking real forecast errors 10
11 Create state-of-the-art forecasts without cheating by mimicking real forecast errors NWP is the basis o Initialized daily at 00 UTC o 6-km grid o Hourly output. Respect the spatial-temporal correlation of typical forecast errors at forecast horizons For forecast horizons <= 6 h: statistical model for each site Post processing at each site to remove bias Each forecast: deterministic value + P10/P90 probability of exceedance values. 11
12 Probabilistic forecasts with nonparametric error quantiles Empirical forecast error distributions differ based on power regime Conditional, nonparametric dressing approach Yields approximate calibration (reliability) Dynamic adjustment to weather regime changes and seasonal forecast skill. 12
13 Power conversion Bias removal from wind speeds: o Time series smoothing o Blend in truth with a limited weight o Adjust until forecast time series and error histograms are reasonable and error metrics are similar to state of the art. Wind speed adjustment for wakes: o Max. two turbines per square kilometer, each site max. eight 2-MW turbines o Apply wake losses to wind speed o Each 2x2-km site considered independently. Application of power curves Statistical adjustment to power using total variance, autocorrelation of sites, spatial covariance. 13
14 Power conversion Bias removal from wind speeds o Time series smoothing o Blend in truth with a limited weight o Adjust until forecast time series and error histograms are reasonable and error metrics are similar to state of the art. Wind speed adjustment for wakes o Max. 2 turbines per square kilometer, each site max. eight 2MW turbines o Apply wake losses to wind speed o Each 2x2 km site considered independently Application of power curves Statistical adjustment to power using total variance, autocorrelation of sites, spatial covariance. 14
15 Power conversion Bias removal from wind speeds: o Time series smoothing o Blend in truth with a limited weight o Adjust until forecast time series and error histograms are reasonable and error metrics are similar to state of the art. Wind speed adjustment for wakes: o Max. two turbines per square kilometer, each site max. eight 2-MW turbines o Apply wake losses to wind speed o Each 2x2-km site considered independently. Application of power curves Statistical adjustment to power using total variance, autocorrelation of sites, spatial covariance. 15
16 Online data extraction tool 16
17 developer.nrel.gov Select a date range Choose the attributes of interest Stay within the size limit 17
18 Summary State-ofthe-art wind integration data set for continental U.S.A. Deterministic and probabilistic power forecasts: mimicking current industry forecast errors Free online data extraction tool 18
19 Summary State-ofthe-art wind integration data set for continental U.S.A. Deterministic and probabilistic power forecasts: mimicking current industry forecast errors Free online data extraction tool Technical report with recommendations of use and validation results 19
20 Summary State-ofthe-art wind integration data set for continental U.S.A. Deterministic and probabilistic power forecasts: mimicking current industry forecast errors Free online data extraction tool Technical report with recommendations of use and validation results 20
Forecaster comments to the ORTECH Report
Forecaster comments to the ORTECH Report The Alberta Forecasting Pilot Project was truly a pioneering and landmark effort in the assessment of wind power production forecast performance in North America.
Partnership to Improve Solar Power Forecasting
Partnership to Improve Solar Power Forecasting Venue: EUPVSEC, Paris France Presenter: Dr. Manajit Sengupta Date: October 1 st 2013 NREL is a national laboratory of the U.S. Department of Energy, Office
The Role of Resource Assessment in Scaling Up Renewable Energy
The Role of Resource Assessment in Scaling Up Renewable Energy Charging Ahead: Scaling Up Renewable Energy in the Developing World Nisha Thirumurthy October 27, 2015 NREL is a national laboratory of the
Improving Accuracy of Solar Forecasting February 14, 2013
Improving Accuracy of Solar Forecasting February 14, 2013 Solar Resource Forecasting Objectives: Improve accuracy of solar resource forecasts Enable widespread use of solar forecasts in power system operations
The Weather Intelligence for Renewable Energies Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation
Energies 2015, 8, 9594-9619; doi:10.3390/en8099594 Article OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies The Weather Intelligence for Renewable Energies Benchmarking Exercise on Short-Term
Virtual Met Mast verification report:
Virtual Met Mast verification report: June 2013 1 Authors: Alasdair Skea Karen Walter Dr Clive Wilson Leo Hume-Wright 2 Table of contents Executive summary... 4 1. Introduction... 6 2. Verification process...
Piping Plover Distribution Modeling
Piping Plover Distribution Modeling Scientific Name: Charadrius melodus Distribution Status: Migratory Summer Breeder State Rank: S2B Global Rank: G3 Inductive Modeling Model Created By: Joy Ritter Model
Black Tern Distribution Modeling
Black Tern Distribution Modeling Scientific Name: Chlidonias niger Distribution Status: Migratory Summer Breeder State Rank: S3B Global Rank: G4 Inductive Modeling Model Created By: Joy Ritter Model Creation
Titelmasterformat durch Klicken. bearbeiten
Evaluation of a Fully Coupled Atmospheric Hydrological Modeling System for the Sissili Watershed in the West African Sudanian Savannah Titelmasterformat durch Klicken June, 11, 2014 1 st European Fully
Validation n 2 of the Wind Data Generator (WDG) software performance. Comparison with measured mast data - Flat site in Northern France
Validation n 2 of the Wind Data Generator (WDG) software performance Comparison with measured mast data - Flat site in Northern France Mr. Tristan Fabre* La Compagnie du Vent, GDF-SUEZ, Montpellier, 34967,
Meteo Dashboard a decision support system for offshore wind farms. Delft Software Days Jan-Joost Schouten Harbour, Coastal and Offshore Engineering
Meteo Dashboard a decision support system for offshore wind farms Delft Software Days Jan-Joost Schouten Harbour, Coastal and Offshore Engineering Content: Objective Intro offshore wind System components
Application of Numerical Weather Prediction Models for Drought Monitoring. Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia
Application of Numerical Weather Prediction Models for Drought Monitoring Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia Contents 1. Introduction 2. Numerical Weather Prediction Models -
Comparison of Resource and Energy Yield Assessment Procedures
Comparison of Resource and Energy Yield Assessment Procedures Niels G. Mortensen and Hans E. Jørgensen Wind Energy Division, Risø DTU EWEA Wind Resource Assessment Technology Workshop 2011 F Acknowledgements
Wind resources map of Spain at mesoscale. Methodology and validation
Wind resources map of Spain at mesoscale. Methodology and validation Martín Gastón Edurne Pascal Laura Frías Ignacio Martí Uxue Irigoyen Elena Cantero Sergio Lozano Yolanda Loureiro e-mail:[email protected]
Development of a. Solar Generation Forecast System
ALBANY BARCELONA BANGALORE 16 December 2011 Development of a Multiple Look ahead Time Scale Solar Generation Forecast System John Zack Glenn Van Knowe Marie Schnitzer Jeff Freedman AWS Truepower, LLC Albany,
The impact of window size on AMV
The impact of window size on AMV E. H. Sohn 1 and R. Borde 2 KMA 1 and EUMETSAT 2 Abstract Target size determination is subjective not only for tracking the vector but also AMV results. Smaller target
Real-time Ocean Forecasting Needs at NCEP National Weather Service
Real-time Ocean Forecasting Needs at NCEP National Weather Service D.B. Rao NCEP Environmental Modeling Center December, 2005 HYCOM Annual Meeting, Miami, FL COMMERCE ENVIRONMENT STATE/LOCAL PLANNING HEALTH
A Guide to Using the WIND Toolkit Validation Code
A Guide to Using the WIND Toolkit Validation Code W. Lieberman-Cribbin Colgate University C. Draxl and A. Clifton National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department
REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES
REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES Mitigating Energy Risk through On-Site Monitoring Marie Schnitzer, Vice President of Consulting Services Christopher Thuman, Senior Meteorologist Peter Johnson,
Very High Resolution Arctic System Reanalysis for 2000-2011
Very High Resolution Arctic System Reanalysis for 2000-2011 David H. Bromwich, Lesheng Bai,, Keith Hines, and Sheng-Hung Wang Polar Meteorology Group, Byrd Polar Research Center The Ohio State University
Developing sub-domain verification methods based on Geographic Information System (GIS) tools
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED U.S. Army Research, Development and Engineering Command Developing sub-domain verification methods based on Geographic Information System (GIS) tools
Burrowing Owl Distribution Modeling
Burrowing Owl Distribution Modeling Scientific Name: Athene cunicularia Distribution Status: Migratory Summer Breeder State Rank: S3B Global Rank: G4 Inductive Modeling Model Created By: Joy Ritter Model
Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction
Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction Jin Xu, Shinjae Yoo, Dantong Yu, Dong Huang, John Heiser, Paul Kalb Solar Energy Abundant, clean, and secure
Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley
University: Florida Institute of Technology Name of University Researcher Preparing Report: Sen Chiao NWS Office: Las Vegas Name of NWS Researcher Preparing Report: Stanley Czyzyk Type of Project (Partners
NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada
NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada 1. INTRODUCTION Short-term methods of precipitation nowcasting range from the simple use of regional numerical forecasts
Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis
Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis Authors Name/s per 1st Affiliation (Author) Authors Name/s per 2nd Affiliation (Author) line 1 (of Affiliation): dept. name
Catastrophe Bond Risk Modelling
Catastrophe Bond Risk Modelling Dr. Paul Rockett Manager, Risk Markets 6 th December 2007 Bringing Science to the Art of Underwriting Agenda Natural Catastrophe Modelling Index Linked Securities Parametric
A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning.
A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning. 31st Annual International Symposium on Forecasting Lourdes Ramírez Santigosa Martín
User Perspectives on Project Feasibility Data
User Perspectives on Project Feasibility Data Marcel Šúri Tomáš Cebecauer GeoModel Solar s.r.o., Bratislava, Slovakia [email protected] http://geomodelsolar.eu http://solargis.info Solar Resources
Meteorological Forecasting of DNI, clouds and aerosols
Meteorological Forecasting of DNI, clouds and aerosols DNICast 1st End-User Workshop, Madrid, 2014-05-07 Heiner Körnich (SMHI), Jan Remund (Meteotest), Marion Schroedter-Homscheidt (DLR) Overview What
4.4 GRAPHICAL AND ANALYTICAL SOFTWARE VISUALIZATION TOOLS FOR EVALUATING METEOROLOGICAL AND AIR QUALITY MODEL PERFORMANCE
4.4 GRAPHICAL AND ANALYTICAL SOFTWARE VISUALIZATION TOOLS FOR EVALUATING METEOROLOGICAL AND AIR QUALITY MODEL PERFORMANCE Irene Lee * Exponent Inc., Natick, Massachusetts 1. INTRODUCTION A critical part
IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS
IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS M. J. Mueller, R. W. Pasken, W. Dannevik, T. P. Eichler Saint Louis University Department of Earth and
IBM Big Green Innovations Environmental R&D and Services
IBM Big Green Innovations Environmental R&D and Services Smart Weather Modelling Local Area Precision Forecasting for Weather-Sensitive Business Operations (e.g. Smart Grids) Lloyd A. Treinish Project
Database of measurements on the offshore wind farm Egmond aan Zee
Database of measurements on the offshore wind farm Egmond aan Zee A.J. Brand J.W. Wagenaar P.J. Eecen M.C. Holtslag 1 1 TU Delft, Faculty Aerospace Engineering Presented at the the EWEA 2012 conference,
Coupling micro-scale CFD simulations to meso-scale models
Coupling micro-scale CFD simulations to meso-scale models IB Fischer CFD+engineering GmbH Fabien Farella Michael Ehlen Achim Fischer Vortex Factoria de Càlculs SL Gil Lizcano Outline Introduction O.F.Wind
Modeling Demand Response for Integration Studies
Modeling Demand Response for Integration Studies Marissa Hummon, Doug Arent NREL Team: Paul Denholm, Jennie Jorgenson, Elaine Hale, David Palchak, Greg Brinkman, Dan Macumber, Ian Doebber, Matt O Connell,
Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF
3 Working Group on Verification and Case Studies 56 Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF Bogdan Alexandru MACO, Mihaela BOGDAN, Amalia IRIZA, Cosmin Dănuţ
Next generation models at MeteoSwiss: communication challenges
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Next generation models at MeteoSwiss: communication challenges Tanja Weusthoff, MeteoSwiss Material from
HFIP Web Support and Display and Diagnostic System Development
HFIP Web Support and Display and Diagnostic System Development Paul A. Kucera, Tatiana Burek, and John Halley-Gotway NCAR/Research Applications Laboratory HFIP Annual Meeting Miami, FL 18 November 2015
An Initial Assessment of the Impacts of Sea Level Rise to the California Coast
An Initial Assessment of the Impacts of Sea Level Rise to the California Coast Photo by D. Revell 2/23/08 California Coastal Records Project Dr. David Revell and Matt Heberger, P.E. Dr. Peter Gleick, Bob
Enlarged Wind Power Statistics 2010 including Denmark, Germany, Ireland and Great Britain
1 Enlarged Wind Power Statistics 2010 including Denmark, Germany, Ireland and Great Britain Background This work is based on hourly time series for wind power output in Denmark, Germany, Ireland and Great
Wind Power Forecasting Pilot Project Part B: The Quantitative Analysis Final Report
Report Wind Power Forecasting Pilot Project Part B: The Quantitative Analysis Final Report A Report to: Attention: The Alberta Electric System Operator 25, 33-5 th Avenue SW Calgary, Alberta T2P L4 Mr.
Meteorological SPACE WEATHER SPECIAL! BRITISH ANTARCTIC SURVEY The meteorological capabilities and work of the BAS explained
THE INTERNATIONAL REVIEW OF WEATHER, CLIMATE AND HYDROLOGY TECHNOLOGIES AND SERVICES Meteorological T E C H N O L O G Y I N T E R N A T I O N A L SPACE WEATHER SPECIAL! Exclusive interview with the UK
Design and Operation of Power Systems with Large Amounts of Wind Power, first results of IEA collaboration
Design and Operation of Power Systems with Large Amounts of Wind Power, first results of IEA collaboration H. Holttinen, P. Meibom, A. Orths, F. Van Hulle, C. Ensslin, L. Hofmann, J. McCann, J. Pierik,
Totally Integrated Power SIESTORAGE. The modular energy storage system for a reliable power supply. www.siemens.com/siestorage
Totally Integrated Power SIESTORAGE The modular energy storage system for a reliable power supply www.siemens.com/siestorage Totally Integrated Power (TIP) We bring power to the point. Our products, systems,
PART 1. Representations of atmospheric phenomena
PART 1 Representations of atmospheric phenomena Atmospheric data meet all of the criteria for big data : they are large (high volume), generated or captured frequently (high velocity), and represent a
Huai-Min Zhang & NOAAGlobalTemp Team
Improving Global Observations for Climate Change Monitoring using Global Surface Temperature (& beyond) Huai-Min Zhang & NOAAGlobalTemp Team NOAA National Centers for Environmental Information (NCEI) [formerly:
Fire Weather Index: from high resolution climatology to Climate Change impact study
Fire Weather Index: from high resolution climatology to Climate Change impact study International Conference on current knowledge of Climate Change Impacts on Agriculture and Forestry in Europe COST-WMO
System-friendly wind power
System-friendly wind power Lion Hirth (neon) Simon Müller (IEA) BELEC 28 May 2015 [email protected] Seeking advice on power markets? Neon Neue Energieökonomik is a Berlin-based boutique consulting
A E O L I S F O R E C A S T I N G S E R V I C E S WIND FARM ENERGY ASSESSMENT - FEASIBILITY STUDY. Kees van Vliet
A E O L I S F O R E C A S T I N G S E R V I C E S WIND FARM ENERGY ASSESSMENT - FEASIBILITY STUDY Kees van Vliet September 2007 K o n i n g s l a a n 11 2 3 5 8 3 G V U t r e c h t T h e N e t h e r l
Price Responsive Demand for Operating Reserves in Co-Optimized Electricity Markets with Wind Power
Price Responsive Demand for Operating Reserves in Co-Optimized Electricity Markets with Wind Power Zhi Zhou, Audun Botterud Decision and Information Sciences Division Argonne National Laboratory [email protected],
Wind resources and wind turbine wakes in large wind farms. Professor R.J. Barthelmie Atmospheric Science and Sustainability
Wind resources and wind turbine wakes in large wind farms Professor R.J. Barthelmie Atmospheric Science and Sustainability Overview Wind resource of Egypt Based on Wind Atlas for Egypt Wind turbine wakes
Solar Input Data for PV Energy Modeling
June 2012 Solar Input Data for PV Energy Modeling Marie Schnitzer, Christopher Thuman, Peter Johnson Albany New York, USA Barcelona Spain Bangalore India Company Snapshot Established in 1983; nearly 30
Overview of BNL s Solar Energy Research Plans. March 2011
Overview of BNL s Solar Energy Research Plans March 2011 Why Solar Energy Research at BNL? BNL s capabilities can advance solar energy In the Northeast World class facilities History of successful research
Probabilistic forecast information optimised to end-users applications: three diverse examples
Probabilistic forecast information optimised to end-users applications: three diverse examples ECMWF User Seminar 2015 Vanessa Stauch, Renate Hagedorn, Isabel Alberts, Reik Schaab Our group Land Transport
Monitoring the Operation of Wind Turbines Alex Robertson, Vestas Northern Europe
Monitoring the Operation of Wind Turbines Alex Robertson, Vestas Northern Europe Renewable Efficient Energy II Conference, 21.03.2012, Vaasa, Finland Modern wind power plant produce more data than ever
CIESIN Columbia University
Conference on Climate Change and Official Statistics Oslo, Norway, 14-16 April 2008 The Role of Spatial Data Infrastructure in Integrating Climate Change Information with a Focus on Monitoring Observed
DESWAT project (Destructive Water Abatement and Control of Water Disasters)
A new national hydrological forecast and warning system is now in advanced implementation phase, within the Romanian Waters National Administration, in the framework of DESWAT project. The main objectives
Hybrid-DA in NWP. Experience at the Met Office and elsewhere. GODAE OceanView DA Task Team. Andrew Lorenc, Met Office, Exeter.
Hybrid-DA in NWP Experience at the Met Office and elsewhere GODAE OceanView DA Task Team Andrew Lorenc, Met Office, Exeter. 21 May 2015 Crown copyright Met Office Recent History of DA for NWP 4DVar was
EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS
EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS Author Marie Schnitzer Director of Solar Services Published for AWS Truewind October 2009 Republished for AWS Truepower: AWS Truepower, LLC
Satellite-Based Software Tools for Optimizing Utility Planning, Simulation and Forecasting
Satellite-Based Software Tools for Optimizing Utility Planning, Simulation and Forecasting Tom Hoff, President, Research & Consulting ISES Webinar February 23, 2015 Copyright 2015 Clean Power Research,
6.9 A NEW APPROACH TO FIRE WEATHER FORECASTING AT THE TULSA WFO. Sarah J. Taylor* and Eric D. Howieson NOAA/National Weather Service Tulsa, Oklahoma
6.9 A NEW APPROACH TO FIRE WEATHER FORECASTING AT THE TULSA WFO Sarah J. Taylor* and Eric D. Howieson NOAA/National Weather Service Tulsa, Oklahoma 1. INTRODUCTION The modernization of the National Weather
USING SIMULATED WIND DATA FROM A MESOSCALE MODEL IN MCP. M. Taylor J. Freedman K. Waight M. Brower
USING SIMULATED WIND DATA FROM A MESOSCALE MODEL IN MCP M. Taylor J. Freedman K. Waight M. Brower Page 2 ABSTRACT Since field measurement campaigns for proposed wind projects typically last no more than
Expert System for Solar Thermal Power Stations. Deutsches Zentrum für Luft- und Raumfahrt e.v. Institute of Technical Thermodynamics
Expert System for Solar Thermal Power Stations Institute of Technical Thermodynamics Stuttgart, July 2001 - Expert System for Solar Thermal Power Stations 2 Solar radiation and land resources for solar
Performance Analysis and Application of Ensemble Air Quality Forecast System in Shanghai
Performance Analysis and Application of Ensemble Air Quality Forecast System in Shanghai Qian Wang 1, Qingyan Fu 1, Ping Liu 2, Zifa Wang 3, Tijian Wang 4 1.Shanghai environmental monitoring center 2.Shanghai
Power fluctuations from large offshore wind farms
Power fluctuations from large offshore wind farms Poul Sørensen Wind Energy Systems (VES) Wind Energy Division Project was funded by Energinet.dk PSO 2004-6506 Geographical spreading 2 Wind turbine sites
Understanding Raster Data
Introduction The following document is intended to provide a basic understanding of raster data. Raster data layers (commonly referred to as grids) are the essential data layers used in all tools developed
Mode-S Enhanced Surveillance derived observations from multiple Air Traffic Control Radars and the impact in hourly HIRLAM
Mode-S Enhanced Surveillance derived observations from multiple Air Traffic Control Radars and the impact in hourly HIRLAM 1 Introduction Upper air wind is one of the most important parameters to obtain
EVALUATION OF NUMERICAL WEATHER PREDICTION SOLAR IRRADIANCE FORECASTS IN THE US
EVALUATION OF NUMERICAL WEATHER PREDICTION SOLAR IRRADIANCE FORECASTS IN THE US Richard Perez ASRC, Albany, NY, [email protected],edu Mark Beauharnois ASRC, Albany, NY [email protected],edu Karl Hemker,
APPENDIX A : 1998 Survey of Proprietary Risk Assessment Systems
APPENDIX A : 1998 Survey of Proprietary Risk Assessment Systems In its 1997 paper, the working party reported upon a survey of proprietary risk assessment systems designed for use by UK household insurers
MIKE 21 FLOW MODEL HINTS AND RECOMMENDATIONS IN APPLICATIONS WITH SIGNIFICANT FLOODING AND DRYING
1 MIKE 21 FLOW MODEL HINTS AND RECOMMENDATIONS IN APPLICATIONS WITH SIGNIFICANT FLOODING AND DRYING This note is intended as a general guideline to setting up a standard MIKE 21 model for applications
Hybrid Data Assimilation in the GSI
Hybrid Data Assimilation in the GSI Rahul Mahajan NOAA / NWS / NCEP / EMC IMSG GSI Hybrid DA Team: Daryl Kleist (UMD), Jeff Whitaker (NOAA/ESRL), John Derber (EMC), Dave Parrish (EMC), Xuguang Wang (OU)
California Renewable Energy Forecasting, Resource Data and Mapping
Final Report California Renewable Energy Forecasting, Resource Data and Mapping Appendix B Wind Energy Forecasting: A Review of State-of-the-Art and Recommendations for Better Forecasts Regents of the
INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr.
INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr. Meisenbach M. Hable G. Winkler P. Meier Technology, Laboratory
Near Real Time Blended Surface Winds
Near Real Time Blended Surface Winds I. Summary To enhance the spatial and temporal resolutions of surface wind, the remotely sensed retrievals are blended to the operational ECMWF wind analyses over the
Daily High-resolution Blended Analyses for Sea Surface Temperature
Daily High-resolution Blended Analyses for Sea Surface Temperature by Richard W. Reynolds 1, Thomas M. Smith 2, Chunying Liu 1, Dudley B. Chelton 3, Kenneth S. Casey 4, and Michael G. Schlax 3 1 NOAA National
MetFetch: Automated Meteorological Data Retrieval for Fast-Running Emergency Response Codes
MetFetch: Automated Meteorological Data Retrieval for Fast-Running Emergency Response Codes 18 th Annual George Mason University Conference on Atmospheric Transport and Dispersion Modeling June 25, 2014
Introduction to Imagery and Raster Data in ArcGIS
Esri International User Conference San Diego, California Technical Workshops July 25, 2012 Introduction to Imagery and Raster Data in ArcGIS Simon Woo slides Cody Benkelman - demos Overview of Presentation
User manual data files meteorological mast NoordzeeWind
User manual data files meteorological mast NoordzeeWind Document code: NZW-16-S-4-R03 Version: 2.0 Date: 1 October 2007 Author: ing. HJ Kouwenhoven User manual data files meteorological mast NoordzeeWind
SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY
SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY Wolfgang Traunmüller 1 * and Gerald Steinmaurer 2 1 BLUE SKY Wetteranalysen, 4800 Attnang-Puchheim,
Providing drivers with actionable intelligence can minimize accidents, reduce driver claims and increase your bottom line. Equip motorists with the
Providing drivers with actionable intelligence can minimize accidents, reduce driver claims and increase your bottom line. Equip motorists with the ability to make informed decisions based on reliable,
FLOWSTAR-Energy Validation NoordZee Wind Farm
FLOWSTAR-Energy Validation NoordZee Wind Farm Cambridge Environmental Research Consultants (CERC) Ltd January 26 Introduction FLOWSTAR-Energy 5. NoordZee is an offshore wind farm in Denmark. A FLOWSTAR-Energy
Solar and PV forecasting in Canada
Solar and PV forecasting in Canada Sophie Pelland, CanmetENERGY IESO Wind Power Standing Committee meeting Toronto, September 23, 2010 Presentation Plan Introduction How are PV forecasts generated? Solar
Offshore Wind Farms the Need for Metocean Data
Offshore Wind Farms the Need for Metocean Data Vagner Jacobsen and Morten Rugbjerg DHI Water & Environment, Agern Allé 5, DK-2970 Hørsholm, Denmark Introduction The wind power community has a long record
