Partnership to Improve Solar Power Forecasting
|
|
|
- Buddy Freeman
- 10 years ago
- Views:
Transcription
1 Partnership to Improve Solar Power Forecasting Venue: EUPVSEC, Paris France Presenter: Dr. Manajit Sengupta Date: October 1 st 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.
2 2
3 3 Goals Demonstrate a state-of-the-science solar power forecasting system through applying cutting edge research Test the system with appropriate metrics in several geographically-diverse, high penetration solar utilities and ISOs Disseminate the research results widely to raise the bar on solar power forecasting technology
4 4 Application Regions SMUD MW SCE 350 Comm + 325Q Dist MW Xcel 90 MW LIPA 32 MW HECO 43 MW DeSoto Plant 25 MW
5 Project Concept 5
6 6 Metrics Development Metrics are a cornerstone of the forecast system development and application Important aspects: Standards of comparison to evaluate improvements o o Targets Baselines Engage stakeholders at all stages Emphases: 1. Weather values (e.g., cloud) - consider temporal and spatial events - Irradiance (DNI, GHI, POA) 2. Power 3. Operational relevance (value-based) a. Expert elicitation b. Conjoint experiments c. Mental Modeling Types of approaches (examples): Diagnostics (Distributions) Traditional metrics with statistical confidence Spatial methods
7 Seminal Research: Solar Forecasting System 7 To forecast clouds, aerosols, scattering, one must assimilate data and blend across scales.
8 8 Nowcasting 1. Total Sky Imaging 2. Statistical Prediction regimes and data 3. Satellite Cloud Advection Most current image Future image (estimation target) Cloud Advection Real time ingest of GOES-E and GOES-W satellite data 4. WRF Nowcasting Assimilate: -satellite data -TSI Data Cloud Type, AOD, Solar Irradiance
9 9 Empirical Statistical Prediction Create model determined by empirical fitting procedures Identify and Leverage Regime Example: empirically derived linear models of the form Methods to consider: Neural Networks Support Vector Machines Random Forests Genetic Algorithms Analog Methods ds/dt = L*s + r Also nonlinear fitting models
10 Satellite Cloud Advection Real time cloud properties from GOES: GSIP/Patmos-X 10
11 11 Hour(s) ahead forecasting: Cloud motion GSIP clouds + GFS cloud level winds Satellite observations from GOES are input to PATMOS-X algorithms to produce cloud map, including cloud-top heights. GFS model winds matched to cloud top height, then used to advect cloudy pixels No cloud evolution processed simple advection of initial cloud properties to future location due to direct advection Useful on time scales from 1-3 hours due to shearing effects
12 12 Vertical Cross Section Multi-sensor combined analysis/forecast of cloud fraction (Tom Auligné)
13 13 WRF-Solar Weather Research & Forecasting Model Solar version with improved: Satellite data assimilation Cloud physics parameterization Convective parameterization Clear-sky aerosol estimation Radiative transfer modeling Collaborate with NOAA to make relevant for operations
14 14
15 15 Uncertainty Quantification Analog Ensemble Method Statistical learning method to calibrate model output and provide probabilistic information Based on observed past modelobservation pairs Algorithm search for analogs and clusters them Shown to perform at least as well as full NWP ensemble systems Binned-spread/skill plot of power predictions from the calibrated ECMWF EPS (red), calibrated COSMO LEPS (blue) and AnEn (black)
16 Test 3 methods: Radiation to Power Conversion 1. Parametric fitting models 2. Explicit power conversion models a. PV-Watts b. System Advisor Model (SAM) 3. Empirical Power Conversion System Engineering Requires experience with building decision support systems Must seamlessly blend technologies across scales Must work with commercial partners to meet industry needs Provide reliable data streams for commercial forecasting partners 16
17 Operationalization & Validation Create predictions using new system for one full year o High resolution in regions with dense observations (e.g., Hawaii, BNL, Xcel, SMUD, SCE) Apply metrics o o o Weather models Power output Value Utilize existing tools as well as specialized capabilities Economic & value analysis MET includes tools to compare grids and points, using traditional and spatial methods, and methods for evaluating statistical significance. 17
18 18 Lasting Impact Open Source software Wide dissemination Improve decision making based on solar forecasts Advance solar energy penetration due to added value of forecasts. Make solar energy more economical in day ahead trading Improved ability to integrate solar energy into grid for reliability Stakeholder buy-in and optimal application of improved forecasting methodologies Advance the penetration of solar energy through stakeholder buy-in
19 Questions 19
Improving Accuracy of Solar Forecasting February 14, 2013
Improving Accuracy of Solar Forecasting February 14, 2013 Solar Resource Forecasting Objectives: Improve accuracy of solar resource forecasts Enable widespread use of solar forecasts in power system operations
Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction
Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction Jin Xu, Shinjae Yoo, Dantong Yu, Dong Huang, John Heiser, Paul Kalb Solar Energy Abundant, clean, and secure
Meteorological Forecasting of DNI, clouds and aerosols
Meteorological Forecasting of DNI, clouds and aerosols DNICast 1st End-User Workshop, Madrid, 2014-05-07 Heiner Körnich (SMHI), Jan Remund (Meteotest), Marion Schroedter-Homscheidt (DLR) Overview What
Development of a. Solar Generation Forecast System
ALBANY BARCELONA BANGALORE 16 December 2011 Development of a Multiple Look ahead Time Scale Solar Generation Forecast System John Zack Glenn Van Knowe Marie Schnitzer Jeff Freedman AWS Truepower, LLC Albany,
A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning.
A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning. 31st Annual International Symposium on Forecasting Lourdes Ramírez Santigosa Martín
Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models. Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD
Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD Solar Radiation Reaching the Surface Incoming solar radiation can be reflected,
Satellite-Based Software Tools for Optimizing Utility Planning, Simulation and Forecasting
Satellite-Based Software Tools for Optimizing Utility Planning, Simulation and Forecasting Tom Hoff, President, Research & Consulting ISES Webinar February 23, 2015 Copyright 2015 Clean Power Research,
The Wind Integration National Dataset (WIND) toolkit
The Wind Integration National Dataset (WIND) toolkit EWEA Wind Power Forecasting Workshop, Rotterdam December 3, 2013 Caroline Draxl NREL/PR-5000-60977 NREL is a national laboratory of the U.S. Department
REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES
REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES Mitigating Energy Risk through On-Site Monitoring Marie Schnitzer, Vice President of Consulting Services Christopher Thuman, Senior Meteorologist Peter Johnson,
SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY
SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY Wolfgang Traunmüller 1 * and Gerald Steinmaurer 2 1 BLUE SKY Wetteranalysen, 4800 Attnang-Puchheim,
Towards an NWP-testbed
Towards an NWP-testbed Ewan O Connor and Robin Hogan University of Reading, UK Overview Cloud schemes in NWP models are basically the same as in climate models, but easier to evaluate using ARM because:
Solar Variability and Forecasting
Solar Variability and Forecasting Jan Kleissl, Chi Chow, Matt Lave, Patrick Mathiesen, Anders Nottrott, Bryan Urquhart Mechanical & Environmental Engineering, UC San Diego http://solar.ucsd.edu Variability
Overview of BNL s Solar Energy Research Plans. March 2011
Overview of BNL s Solar Energy Research Plans March 2011 Why Solar Energy Research at BNL? BNL s capabilities can advance solar energy In the Northeast World class facilities History of successful research
Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis
Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis Authors Name/s per 1st Affiliation (Author) Authors Name/s per 2nd Affiliation (Author) line 1 (of Affiliation): dept. name
The APOLLO cloud product statistics Web service
The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in
The APOLLO cloud product statistics Web service The APOLLO cloud product statistics Web service
The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in
Predicting Solar Power Production:
$1,995 Non-Member Price Free for members only Predicting Solar Power Production: Irradiance Forecasting Models, Applications and Future Prospects Steven Letendre, PhD Miriam Makhyoun Mike Taylor Green
Solarstromprognosen für Übertragungsnetzbetreiber
Solarstromprognosen für Übertragungsnetzbetreiber Elke Lorenz, Jan Kühnert, Annette Hammer, Detlev Heienmann Universität Oldenburg 1 Outline grid integration of photovoltaic power (PV) in Germany overview
The Weather Intelligence for Renewable Energies Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation
Energies 2015, 8, 9594-9619; doi:10.3390/en8099594 Article OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies The Weather Intelligence for Renewable Energies Benchmarking Exercise on Short-Term
NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada
NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada 1. INTRODUCTION Short-term methods of precipitation nowcasting range from the simple use of regional numerical forecasts
USING CLOUD CLASSIFICATION TO MODEL SOLAR VARIABILITY
USING CLOUD CLASSIFICATION TO MODEL SOLAR VARIABILITY Matthew J. Reno Sandia National Laboratories Georgia Institute of Technology 777 Atlantic Drive NW Atlanta, GA 3332-25, USA [email protected]
Photovoltaic and Solar Forecasting: State of the Art
Photovoltaic and Solar Forecasting: State of the Art Forecast PV power Actual PV power Report IEA PVPS T14 01:2013 Photo credits cover page Upper left image: Environment Canada, Data courtesy of NOAA (February
Sub-grid cloud parametrization issues in Met Office Unified Model
Sub-grid cloud parametrization issues in Met Office Unified Model Cyril Morcrette Workshop on Parametrization of clouds and precipitation across model resolutions, ECMWF, Reading, November 2012 Table of
Solar and PV forecasting in Canada
Solar and PV forecasting in Canada Sophie Pelland, CanmetENERGY IESO Wind Power Standing Committee meeting Toronto, September 23, 2010 Presentation Plan Introduction How are PV forecasts generated? Solar
Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon
Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational
User Perspectives on Project Feasibility Data
User Perspectives on Project Feasibility Data Marcel Šúri Tomáš Cebecauer GeoModel Solar s.r.o., Bratislava, Slovakia [email protected] http://geomodelsolar.eu http://solargis.info Solar Resources
Review of solar irradiance forecasting methods and a proposition for small-scale insular grids
Review of solar irradiance forecasting methods and a proposition for small-scale insular grids Hadja Maïmouna Diagne, Mathieu David, Philippe Lauret, John Boland, Nicolas Schmutz To cite this version:
VALIDATION OF SHORT AND MEDIUM TERM OPERATIONAL SOLAR RADIATION FORECASTS IN THE US
VALIDATION OF SHORT AND MEDIUM TERM OPERATIONAL SOLAR RADIATION FORECASTS IN THE US Richard Perez, Sergey Kivalov, James Schlemmer, Karl Hemker Jr., ASRC, University at Albany David Renné National Renewable
The impact of window size on AMV
The impact of window size on AMV E. H. Sohn 1 and R. Borde 2 KMA 1 and EUMETSAT 2 Abstract Target size determination is subjective not only for tracking the vector but also AMV results. Smaller target
FORECASTING SOLAR POWER INTERMITTENCY USING GROUND-BASED CLOUD IMAGING
FORECASTING SOLAR POWER INTERMITTENCY USING GROUND-BASED CLOUD IMAGING Vijai Thottathil Jayadevan Jeffrey J. Rodriguez Department of Electrical and Computer Engineering University of Arizona Tucson, AZ
SOLAR FORECASTING AND GRID INTEGRATION
Coauthors: Carlos Coimbra, Byron Washom * Juan Luis Bosch, Chi Chow, Mohammad Jamaly, Matt Lave, Ben Kurtz, Patrick Mathiesen, Andu Nguyen, Anders Nottrott, Bryan Urquhart, Israel Lopez Coto, Handa Yang,
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang
The potential role of forecasting for integrating solar generation into the Australian National Electricity Market
The potential role of forecasting for integrating solar generation into the Australian National Electricity Market Ben Elliston 1, Iain MacGill 1,2 1 School of Electrical Engineering and Telecommunications
Validation n 2 of the Wind Data Generator (WDG) software performance. Comparison with measured mast data - Flat site in Northern France
Validation n 2 of the Wind Data Generator (WDG) software performance Comparison with measured mast data - Flat site in Northern France Mr. Tristan Fabre* La Compagnie du Vent, GDF-SUEZ, Montpellier, 34967,
Satellite'&'NASA'Data'Intro'
Satellite'&'NASA'Data'Intro' Research'vs.'Opera8ons' NASA':'Research'satellites' ' ' NOAA/DoD:'Opera8onal'Satellites' NOAA'Polar'Program:'NOAA>16,17,18,19,NPP' Geosta8onary:'GOES>east,'GOES>West' DMSP'series:'SSM/I,'SSMIS'
Simulated PV Power Plant Variability: Impact of Utility-imposed Ramp Limitations in Puerto Rico
Simulated PV Power Plant Variability: Impact of Utility-imposed Ramp Limitations in Puerto Rico Matthew Lave 1, Jan Kleissl 2, Abraham Ellis 3, Felipe Mejia 2 1 Sandia National Laboratories, Livermore,
Real-time Ocean Forecasting Needs at NCEP National Weather Service
Real-time Ocean Forecasting Needs at NCEP National Weather Service D.B. Rao NCEP Environmental Modeling Center December, 2005 HYCOM Annual Meeting, Miami, FL COMMERCE ENVIRONMENT STATE/LOCAL PLANNING HEALTH
CALIFORNIA RENEWABLE ENERGY FORECASTING, RESOURCE DATA, AND MAPPING
Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT CALIFORNIA RENEWABLE ENERGY FORECASTING, RESOURCE DATA, AND MAPPING Prepared for: Prepared by: California Energy Commission Regents of
"Attività di modellistica numerica previsionale meteorologica al Servizio IdroMeteoClima di ARPA Emilia-Romagna"
"Attività di modellistica numerica previsionale meteorologica al Servizio IdroMeteoClima di ARPA Emilia-Romagna" Author: Tiziana Paccagnella Organization: ARPA SIMC 1 ARPA-SIMC Modelling Group Head of
Assimilation of cloudy infrared satellite observations: The Met Office perspective
Assimilation of cloudy infrared satellite observations: The Met Office perspective Ed Pavelin, Met Office International Symposium on Data Assimilation 2014, Munich Contents This presentation covers the
Data Analytics at NICTA. Stephen Hardy National ICT Australia (NICTA) [email protected]
Data Analytics at NICTA Stephen Hardy National ICT Australia (NICTA) [email protected] NICTA Copyright 2013 Outline Big data = science! Data analytics at NICTA Discrete Finite Infinite Machine Learning
The Role of Resource Assessment in Scaling Up Renewable Energy
The Role of Resource Assessment in Scaling Up Renewable Energy Charging Ahead: Scaling Up Renewable Energy in the Developing World Nisha Thirumurthy October 27, 2015 NREL is a national laboratory of the
VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR
VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR Andrew Goldstein Yale University 68 High Street New Haven, CT 06511 [email protected] Alexander Thornton Shawn Kerrigan Locus Energy 657 Mission St.
Research and Development: Advancing Solar Energy in California
Research and Development: Advancing Solar Energy in California Laurie ten Hope Deputy Director Energy Research and Development Division California Energy Commission 2014 UC Solar Research Symposium San
Tools for Viewing and Quality Checking ARM Data
Tools for Viewing and Quality Checking ARM Data S. Bottone and S. Moore Mission Research Corporation Santa Barbara, California Introduction Mission Research Corporation (MRC) is developing software tools
IMPROVEMENT OF THE WEATHER RESEARCH AND FORECASTING (WRF) MODEL FOR SOLAR RESOURCE ASSESSMENTS AND FORECASTS UNDER CLEAR SKIES
World Renewable Energy Forum, Denver, CO, 2012 IMPROVEMENT OF THE WEATHER RESEARCH AND FORECASTING (WRF) MODEL FOR SOLAR RESOURCE ASSESSMENTS AND FORECASTS UNDER CLEAR SKIES José A. Ruiz-Arias NCAR/MMM,
Is Overproduction Costing You?
Is Overproduction Costing You? A review of the impacts of solar resource data on financing and revenues for PV plants Presented by: Marie Schnitzer Vice President of Consulting Services Paul Thienpont
Predictive modelling around the world 28.11.13
Predictive modelling around the world 28.11.13 Agenda Why this presentation is really interesting Introduction to predictive modelling Case studies Conclusions Why this presentation is really interesting
Nowcasting: analysis and up to 6 hours forecast
Nowcasting: analysis and up to 6 hours forecast Very high resoultion in time and space Better than NWP Rapid update Application oriented NWP problems for 0 6 forecast: Incomplete physics Resolution space
Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models Yefim L. Kogan Cooperative Institute
EVALUATION OF NUMERICAL WEATHER PREDICTION SOLAR IRRADIANCE FORECASTS IN THE US
EVALUATION OF NUMERICAL WEATHER PREDICTION SOLAR IRRADIANCE FORECASTS IN THE US Richard Perez ASRC, Albany, NY, [email protected],edu Mark Beauharnois ASRC, Albany, NY [email protected],edu Karl Hemker,
VALIDATION OF THE SUNY SATELLITE MODEL IN A METEOSAT ENVIRONMENT
VALIDATION OF THE SUNY SATELLITE MODEL IN A METEOSAT ENVIRONMENT Richard Perez ASRC, 251 Fuller Rd Albany, NY, 12203 [email protected],edu Jim Schlemmer ASRC [email protected],edu Shannon Cowlin
Fog and low cloud ceilings in the northeastern US: climatology and dedicated field study
Fog and low cloud ceilings in the northeastern US: climatology and dedicated field study Robert Tardif National Center for Atmospheric Research Research Applications Laboratory 1 Overview of project Objectives:
Big Data Assimilation Revolutionizing Weather Prediction
February 23, 2015, ISDA2015, Kobe Big Data Assimilation Revolutionizing Weather Prediction M. Kunii, J. Ruiz, G.-Y. Lien, K. Kondo, S. Otsuka, Y. Maejima, and Takemasa Miyoshi* RIKEN Advanced Institute
RAPIDS Operational Blending of Nowcasting and NWP QPF
RAPIDS Operational Blending of Nowcasting and NWP QPF Wai-kin Wong and Edwin ST Lai Hong Kong Observatory The Second International Symposium on Quantitative Precipitation Forecasting and Hydrology 5-8
Synoptic assessment of AMV errors
NWP SAF Satellite Application Facility for Numerical Weather Prediction Visiting Scientist mission report Document NWPSAF-MO-VS-038 Version 1.0 4 June 2009 Synoptic assessment of AMV errors Renato Galante
California Renewable Energy Forecasting, Resource Data and Mapping
Final Report California Renewable Energy Forecasting, Resource Data and Mapping Appendix A CURRENT STATE OF THE ART IN SOLAR FORECASTING Regents of the University of California Basic Ordering Agreement
ECMWF Aerosol and Cloud Detection Software. User Guide. version 1.2 20/01/2015. Reima Eresmaa ECMWF
ECMWF Aerosol and Cloud User Guide version 1.2 20/01/2015 Reima Eresmaa ECMWF This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction
BSRN Station Sonnblick
Spawning the Atmosphere Measurements, 22-23 Jan 2014, Bern BSRN Station Sonnblick Baseline surface radiation network station Sonnblick Marc Olefs, Wolfgang Schöner ZAMG Central Institute for Meteorology
Solar Input Data for PV Energy Modeling
June 2012 Solar Input Data for PV Energy Modeling Marie Schnitzer, Christopher Thuman, Peter Johnson Albany New York, USA Barcelona Spain Bangalore India Company Snapshot Established in 1983; nearly 30
Big Data Analytic Paradigms -From PCA to Deep Learning
The Intersection of Robust Intelligence and Trust in Autonomous Systems: Papers from the AAAI Spring Symposium Big Data Analytic Paradigms -From PCA to Deep Learning Barnabas K. Tannahill Aerospace Electronics
Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract
Clear Sky Radiance (CSR) Product from MTSAT-1R UESAWA Daisaku* Abstract The Meteorological Satellite Center (MSC) has developed a Clear Sky Radiance (CSR) product from MTSAT-1R and has been disseminating
How To Forecast Solar Power
Forecasting Solar Power with Adaptive Models A Pilot Study Dr. James W. Hall 1. Introduction Expanding the use of renewable energy sources, primarily wind and solar, has become a US national priority.
EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS
EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS Author Marie Schnitzer Director of Solar Services Published for AWS Truewind October 2009 Republished for AWS Truepower: AWS Truepower, LLC
Modeling of System of Systems via Data Analytics Case for Big Data in SoS 1
Modeling of System of Systems via Data Analytics Case for Big Data in SoS 1 Barnabas K. Tannahill Aerospace Electronics and Information Technology Division Southwest Research Institute San Antonio, TX,
Distributed Computing. Mark Govett Global Systems Division
Distributed Computing Mark Govett Global Systems Division Modeling Activities Prediction & Research Weather forecasts, climate prediction, earth system science Observing Systems Denial experiments Observing
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect Tuuli Perttula, FMI + Thanks to: Nadia Fourrié, Lydie Lavanant, Florence Rabier and Vincent Guidard, Météo
IBM Big Green Innovations Environmental R&D and Services
IBM Big Green Innovations Environmental R&D and Services Smart Weather Modelling Local Area Precision Forecasting for Weather-Sensitive Business Operations (e.g. Smart Grids) Lloyd A. Treinish Project
Next generation models at MeteoSwiss: communication challenges
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Next generation models at MeteoSwiss: communication challenges Tanja Weusthoff, MeteoSwiss Material from
Forecasting of Solar Radiation
Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo Oldenburg University, Institute of Physics, Energy and Semiconductor Research Laboratory, Energy Meteorology Group 26111 Oldenburg,
Cloud Grid Information Objective Dvorak Analysis (CLOUD) at the RSMC Tokyo - Typhoon Center
Cloud Grid Information Objective Dvorak Analysis (CLOUD) at the RSMC Tokyo - Typhoon Center Kenji Kishimoto, Masaru Sasaki and Masashi Kunitsugu Forecast Division, Forecast Department Japan Meteorological
Statistical Learning for Short-Term Photovoltaic Power Predictions
Statistical Learning for Short-Term Photovoltaic Power Predictions Björn Wolff 1, Elke Lorenz 2, Oliver Kramer 1 1 Department of Computing Science 2 Institute of Physics, Energy and Semiconductor Research
GOES-R AWG Cloud Team: ABI Cloud Height
GOES-R AWG Cloud Team: ABI Cloud Height June 8, 2010 Presented By: Andrew Heidinger 1 1 NOAA/NESDIS/STAR 1 Outline Executive Summary Algorithm Description ADEB and IV&V Response Summary Requirements Specification
MSG MPEF Products focus on GII Simon Elliott Meteorological Operations Division [email protected]
MSG MPEF focus on GII Simon Elliott Meteorological Operations Division [email protected] MSG Application Workshop, 15-19 March 2010, Alanya, Türkiye Slide: 1 1. What is the MPEF? Meteorological
IRS Level 2 Processing Concept Status
IRS Level 2 Processing Concept Status Stephen Tjemkes, Jochen Grandell and Xavier Calbet 6th MTG Mission Team Meeting 17 18 June 2008, Estec, Noordwijk Page 1 Content Introduction Level 2 Processing Concept
Predicting daily incoming solar energy from weather data
Predicting daily incoming solar energy from weather data ROMAIN JUBAN, PATRICK QUACH Stanford University - CS229 Machine Learning December 12, 2013 Being able to accurately predict the solar power hitting
ASSESSMENT OF THE CAPABILITY OF WRF MODEL TO ESTIMATE CLOUDS AT DIFFERENT TEMPORAL AND SPATIAL SCALES
16TH WRF USER WORKSHOP, BOULDER, JUNE 2015 ASSESSMENT OF THE CAPABILITY OF WRF MODEL TO ESTIMATE CLOUDS AT DIFFERENT TEMPORAL AND SPATIAL SCALES Clara Arbizu-Barrena, David Pozo-Vázquez, José A. Ruiz-Arias,
UNIVERSITY OF CALGARY. Forecasting Photo-Voltaic Solar Power in Electricity Systems. Yue Zhang A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
UNIVERSITY OF CALGARY Forecasting Photo-Voltaic Solar Power in Electricity Systems by Yue Zhang A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
CALIFORNIA PERSPECTIVE ON HIGH PENETRATION PV
CALIFORNIA PERSPECTIVE ON HIGH PENETRATION PV MELICIA CHARLES ENERGY DIVISION - CPUC Feb 13-14, San Diego, CA Overview of Customer-Side Solar Solar in California: 1,400+ MW installed PV at 130,000+ locations
The Copernicus Atmosphere Monitoring Service (CAMS)
The Copernicus Atmosphere Monitoring Service (CAMS) Products, services and opportunities Vincent Henri Peuch Head of CAMS Vincent [email protected] Funded by the European Union Implemented by Atmospheric
Predicting Flight Delays
Predicting Flight Delays Dieterich Lawson [email protected] William Castillo [email protected] Introduction Every year approximately 20% of airline flights are delayed or cancelled, costing
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates C. N. Long Pacific Northwest National Laboratory Richland, Washington
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility Arunchandra S. Chandra Pavlos Kollias Department of Atmospheric
Renewable Energy Programs at Florida Gulf Coast University
Renewable Energy Programs at Florida Gulf Coast University Joseph H. Simmons, Backe Chair Director of the FGCU Renewable Energy Institute Florida Gulf Coast University Fort Myers, Florida [email protected]
Limitations of Equilibrium Or: What if τ LS τ adj?
Limitations of Equilibrium Or: What if τ LS τ adj? Bob Plant, Laura Davies Department of Meteorology, University of Reading, UK With thanks to: Steve Derbyshire, Alan Grant, Steve Woolnough and Jeff Chagnon
Huai-Min Zhang & NOAAGlobalTemp Team
Improving Global Observations for Climate Change Monitoring using Global Surface Temperature (& beyond) Huai-Min Zhang & NOAAGlobalTemp Team NOAA National Centers for Environmental Information (NCEI) [formerly:
Solar Resource Measurement Importance. Wil Grady P.E. Southern California Edison Power Supply NREL PV Solar Resource Workshop Denver 2015
Solar Resource Measurement Importance Wil Grady P.E. Southern California Edison Power Supply NREL PV Solar Resource Workshop Denver 2015 1 Overview of SCE Large service territory 14 million residents 4.9
Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements
Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements Z. Li, M. C. Cribb, and F.-L. Chang Earth System Science Interdisciplinary Center University of Maryland College
