Cloud Masking and Cloud Products
|
|
|
- Augustine Morgan
- 10 years ago
- Views:
Transcription
1 Cloud Masking and Cloud Products MODIS Operational Algorithm MOD35 Paul Menzel, Steve Ackerman, Richard Frey, Kathy Strabala, Chris Moeller, Liam Gumley, Bryan Baum
2 MODIS Cloud Masking Often done with thresholds (APOLLO, CLAVR, etc.) Based on expected differences from clear sky in various situations (day, night, land, water, desert, vegetation) Particularly difficult areas include clouds at night: night time over land polar regions in winter MODIS algorithm combines the results of many spectral tests.
3 Approach Provide a flag indicating confidence that each 1 km pixel is clear. Restrictions Real time execution (it must be efficient) Must allow user to diagnose problems in the data Computer storage Ease of understanding
4 MODIS Cloud mask 1 km nadir spatial resolution day & night, (250 m day) 17 spectral bands ( µm, incl µm) 11 spectral tests (function of 5 ecosystems) with fuzzy thresholds temporal consistency test over ocean, desert (nighttime); spatial variability test over ocean 48 bits per pixel including individual test results and processing path; generation of clear sky maps bits 1,2 give combined test results as: confident clear, probably clear, probably cloudy, obstructed/cloudy (clear sky conservative)
5 Cloud Mask Confidence Confidence 1 Clear Confidence intervals are based on closeness to a threshold Confidence tests are combined to arrive at a Quality Flag (2 bits) 0 Cloudy Individual Spectral Test
6 Confidence Level of Clear Confidence Level Threshold for pass or fail (Bit 13) High Confident Cloudy BT 11 Observation High Confident Clear Example thresholds for the simple IR window cold cloud test.
7 Combining tests Each of the tests above returns a confidence level ranging from 1 (high confidence that the pixel is clear) to 0 (high confidence that the pixel is cloudy). The individual confidence levels must be combined to determine a final decision on clear or cloudy. We shall denote the confidence level of an individual test as F i and the final quality flag as Q. Q N = N i= 1 F i
8 Detecting Clouds (IR) IR Window Brightness Temperature Threshold and Difference Tests IR tests sensitive to sfc emissivity and atm PW, dust, and aerosols BT11 < 270 BT11 + apw * (BT11 - BT12) < SST BT11 + bpw * (BT11 - BT8.6) < SST apw and bpw determined from lookup table as a function of PW BT3.9 - BT11 > 12 indicates daytime low cloud cover BT11 - BT12 < 2 (rel for scene temp) indicates high cloud BT11 - BT6.7 large neg diff for clr sky over Antarctic Plateau winter CO 2 Channel Test for High Clouds BT13.9 < threshold (problems at high scan angle or high terrain)
9
10 Detecting Clouds (vis) Reflectance Threshold Test r.87 > 5.5% over ocean indicates cloud r.66 > 18% over vegetated land indicates cloud Near IR Thin Cirrus Test r1.38 > threshold indicates presence of thin cirrus cloud ambiguity of high thin versus low thick cloud (resolved with BT13.9) problems in high terrain Reflectance Ratio Test r.87/r.66 between 0.9 and 1.1 for cloudy regions must be ecosystem specific Snow Test NDSI = [r.55-r1.6]/ [r.55+r1.6] > 0.4 and r.87 > 0.1 then snow
11
12 aa 1.6 µm image 0.86 µm image 11 µm image 3.9 µm image cloud mask Snow test (impacts choice of tests/thresholds) VIS test (over non-snow covered areas) BT test for low clouds BT test (primarily for high cloud) 13.9 µm high cloud test (sensitive in cold regions) MODIS cloud mask example (confident clear is green, probably clear is blue, uncertain is red, cloud is white)
13
14
15 Cloud
16
17
18 1.38 cld msk tri-spectral cld msk cld msk VIS 1.38 IRW 1.38 um test is finding high thin clouds not found in other tests
19 Is 3 K gradient SST or clouds?
20 µm BTD Test helping Cloud Mask in Polar Regions MODIS 11 µm image of Antarctic near the South Pole. Warmer temperatures are darker. Brightness temperatures vary from approximately 190K to 245K. Clear areas are lighter (colder). Operational MODIS cloud mask image. Clouds are indicated in white..
21 IRW-WV channels combine to detect polar inversions BT6.7 (sees mid-trop) is warmer than BT11 (sees sfc) BT11-BT6.7 (from HIRS) versus strength of temperature inversion (from raobs) Ackerman, 1996: Global satellite observations of negative brightness temperature differences between 11 and 6.7 um. JAM, 53,
22 Jun % time BT11-BT6.7 < -10C Jul Aug Sep
23 Algorithm changes Major changes were: * Added sun-glint test based on um difference in bit #26. In severe sun-glint, confidence of clear sky is uncertain if IR tests do not indicate cloud. * Over land, bit #26 helps find clear in daytime desert when no IR cloud test indicates cloud, and the 11 um brightness temperature is higher than a given threshold. * Added checks for cloudy pixels misidentified as snow. * Added 11 um variability (standard deviation over 3x3 pixel region) test to find warm low clouds over nighttime ocean in bit #27. * Added "suspended dust test over daytime land in bit #28 when is negative. * No shadow determinations are attempted in coastal regions. * Various cloud test thresholds were adjusted. Pending changes are: * Elevation check to assist in mountains * Expanding Antarctic cloud checks (too bright for current thresholds) * Mitigating striping problems (especially over Sahara)
24 MODIS 5-8 September 2000 Band 31 (11.0 µm) Daytime Clear sky Brightness Temperature
25 MODIS 5-8 September 2000 Band 1, 4, 3 (R/G/B) Daytime Clear sky Reflectance Composite
26 Cloud Shadow Detection Bryan Baum, Denis Grlujsich, Paul Menzel, Steve Ackerman
27 Goal: To use clear-sky reflectance maps to help filter clear-sky pixels that contain cloud shadows Note: Not trying to detect cloud shadows on clouds Approach: Comparison of measured to clear-sky weekly composite reflectances at 1.6 µm Data required: - MOD021km and MOD03 - MOD35 - Cloud mask - clear-sky weekly composite (25 km resolution, 8 bands, includes 1.6 µm)
28 Approach From Level1B data: filter out water pixels ( land-water mask in MOD03 ) filter out cloud pixels ( cloud mask MOD35 ) Clear-Sky Weekly Composite: creating subset of global 1.6 µm-daytime-reflectance composite map Algorithm: compare reflectance of clear-sky image and level1b image set threshold as percentage of clear-sky value (e.g. 80%) pixels with values lower than the threshold are flagged as shadow pixels
29 MODIS-RGB-Composite of Eastern Africa (29 June2002, 07:45 UTC) 1.6-µm reflectance with water pixels filtered out of image
30
31
32
33
34 Study area: West Africa Water pixels filtered using 1 km land-water database MODIS-RGB-Composite of Western Africa Clear-Sky Weekly Composite (28 June2002, 11:50 UTC) (25 km resolution)
35 Location of example areas
36 RGB-composite of area 1 Mauritania water clouds over desert surface has a very high reflectance little if any vegetation
37 0.65 µm-reflectance 1.6 µm-reflectance Clouds brighter than surface Surface brighter than clouds
38 0.65 µm-reflectance Shadow detection Shadows are red
39 0.65 µm-reflectance Shadow detection (combined with cloud mask) Shadows adjacent to clouds
40 Location of example areas
41 RGB-composite of area 2 Mauritania - Senegal desert-like area crossed by Senegal river mainly ice clouds
42 RGB - Composite 1.6 µm-reflectance shadows on eastern edge Senegal river not well detected by land-water mask
43 Shadow detection
44 Shadow detection (combined with cloud mask) not detected shadows are often already detected as cloud
45 1.6 µm-reflectance overview high diversity of soil types in the north (diverse reflectance)
46 1.6 µm-reflectance overview including detected cloud shadows darker parts detected as shadows
47 1.6 µm-reflectance overview including falsely detected cloud shadows and cloud mask Cloud mask indicates that shadows are falsely detected (possibly because of coarse resolution of clear-sky reflectance map)
48 Spatial resolution problem 25 km - resolution Clear-sky map 1 km - resolution MOD021km (1.6 µm)
49 Land-water mask Senegal river
50 Conclusion Initial attempt to detect cloud shadows by comparing images with clear-sky composites is encouraging Suggested improvements shadows should be next to clouds improve spatial resolution of clear-sky reflectance map can we find a higher resolution land/water mask? might improve detection of nondetected cloud shadows by checking nearest-neighbor pixels and relaxing threshold criteria
51 Problems: spatial resolution of clear-sky map setting threshold land-water mask cloud mask Suggested improvements shadows should be next to clouds finding missing cloud shadows by pixel walking
52 Preliminary indications seems that threshold could be set by use of histograms in this example it could be set higher than 0.8 but... the share of false shadows might be higher would help to have a clear-sky map with higher spatial resolution
DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team
DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team Steve Ackerman, Richard Frey, Kathleen Strabala, Yinghui Liu, Liam Gumley, Bryan Baum,
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Munn V. Shukla and P. K. Thapliyal Atmospheric Sciences Division Atmospheric and Oceanic Sciences Group Space Applications
Discriminating clear sky from clouds with MODIS
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 103, NO. D24, PAGES 32,141-32,157, DECEMBER 27, 1998 Discriminating clear sky from clouds with MODIS Steven A. Ackerman, Kathleen I. Strabala, 2 W. Paul Menzel, 3
DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team
DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team Steve Ackerman 1, Kathleen Strabala 1, Paul Menzel 1,2, Richard Frey 1, Chris Moeller 1,
3.4 Cryosphere-related Algorithms
3.4 Cryosphere-related Algorithms GLI Algorithm Description 3.4.-1 3.4.1 CTSK1 A. Algorithm Outline (1) Algorithm Code: CTSK1 (2) Product Code: CLFLG_p (3) PI Name: Dr. Knut Stamnes (4) Overview of Algorithm
Comparison of NOAA's Operational AVHRR Derived Cloud Amount to other Satellite Derived Cloud Climatologies.
Comparison of NOAA's Operational AVHRR Derived Cloud Amount to other Satellite Derived Cloud Climatologies. Sarah M. Thomas University of Wisconsin, Cooperative Institute for Meteorological Satellite Studies
SYNERGISTIC USE OF IMAGER WINDOW OBSERVATIONS FOR CLOUD- CLEARING OF SOUNDER OBSERVATION FOR INSAT-3D
SYNERGISTIC USE OF IMAGER WINDOW OBSERVATIONS FOR CLOUD- CLEARING OF SOUNDER OBSERVATION FOR INSAT-3D ABSTRACT: Jyotirmayee Satapathy*, P.K. Thapliyal, M.V. Shukla, C. M. Kishtawal Atmospheric and Oceanic
STAR Algorithm and Data Products (ADP) Beta Review. Suomi NPP Surface Reflectance IP ARP Product
STAR Algorithm and Data Products (ADP) Beta Review Suomi NPP Surface Reflectance IP ARP Product Alexei Lyapustin Surface Reflectance Cal Val Team 11/26/2012 STAR ADP Surface Reflectance ARP Team Member
clear sky from clouds with MODIS
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 103, NO. D24, PAGES 32,141-32,157, DECEMBER 27, 1998 Discriminating clear sky from clouds with MODIS Steven A. Ackerman, Kathleen I. Strabala,* W. Paul Menzel,3 Richard
Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon
Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational
GOES-R AWG Cloud Team: ABI Cloud Height
GOES-R AWG Cloud Team: ABI Cloud Height June 8, 2010 Presented By: Andrew Heidinger 1 1 NOAA/NESDIS/STAR 1 Outline Executive Summary Algorithm Description ADEB and IV&V Response Summary Requirements Specification
CERES Edition 2 & Edition 3 Cloud Cover, Cloud Altitude and Temperature
CERES Edition 2 & Edition 3 Cloud Cover, Cloud Altitude and Temperature S. Sun-Mack 1, P. Minnis 2, Y. Chen 1, R. Smith 1, Q. Z. Trepte 1, F. -L. Chang, D. Winker 2 (1) SSAI, Hampton, VA (2) NASA Langley
Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract
Clear Sky Radiance (CSR) Product from MTSAT-1R UESAWA Daisaku* Abstract The Meteorological Satellite Center (MSC) has developed a Clear Sky Radiance (CSR) product from MTSAT-1R and has been disseminating
Validating MOPITT Cloud Detection Techniques with MAS Images
Validating MOPITT Cloud Detection Techniques with MAS Images Daniel Ziskin, Juying Warner, Paul Bailey, John Gille National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 ABSTRACT The
AATSR Technical Note. Improvements to the AATSR IPF relating to Land Surface Temperature Retrieval and Cloud Clearing over Land
AATSR Technical Note Improvements to the AATSR IPF relating to Land Surface Temperature Retrieval and Cloud Clearing over Land Author: Andrew R. Birks RUTHERFORD APPLETON LABORATORY Chilton, Didcot, Oxfordshire
MOD09 (Surface Reflectance) User s Guide
MOD09 (Surface ) User s Guide MODIS Land Surface Science Computing Facility Principal Investigator: Dr. Eric F. Vermote Web site: http://modis-sr.ltdri.org Correspondence e-mail address: [email protected]
Night Microphysics RGB Nephanalysis in night time
Copyright, JMA Night Microphysics RGB Nephanalysis in night time Meteorological Satellite Center, JMA What s Night Microphysics RGB? R : B15(I2 12.3)-B13(IR 10.4) Range : -4 2 [K] Gamma : 1.0 G : B13(IR
Labs in Bologna & Potenza Menzel. Lab 3 Interrogating AIRS Data and Exploring Spectral Properties of Clouds and Moisture
Labs in Bologna & Potenza Menzel Lab 3 Interrogating AIRS Data and Exploring Spectral Properties of Clouds and Moisture Figure 1: High resolution atmospheric absorption spectrum and comparative blackbody
Cloud detection and clearing for the MOPITT instrument
Cloud detection and clearing for the MOPITT instrument Juying Warner, John Gille, David P. Edwards and Paul Bailey National Center for Atmospheric Research, Boulder, Colorado ABSTRACT The Measurement Of
Data processing (3) Cloud and Aerosol Imager (CAI)
Data processing (3) Cloud and Aerosol Imager (CAI) 1) Nobuyuki Kikuchi, 2) Haruma Ishida, 2) Takashi Nakajima, 3) Satoru Fukuda, 3) Nick Schutgens, 3) Teruyuki Nakajima 1) National Institute for Environmental
Comparison between current and future environmental satellite imagers on cloud classification using MODIS
Remote Sensing of Environment 108 (2007) 311 326 www.elsevier.com/locate/rse Comparison between current and future environmental satellite imagers on cloud classification using MODIS Zhenglong Li a,, Jun
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations 22 September 2011 Hervé LE GLEAU, Marcel DERRIEN Centre de météorologie Spatiale. Lannion Météo-France 1 Fog or low level clouds?
Overview of the IR channels and their applications
Ján Kaňák Slovak Hydrometeorological Institute [email protected] Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation
A comparison of NOAA/AVHRR derived cloud amount with MODIS and surface observation
A comparison of NOAA/AVHRR derived cloud amount with MODIS and surface observation LIU Jian YANG Xiaofeng and CUI Peng National Satellite Meteorological Center, CMA, CHINA outline 1. Introduction 2. Data
Received in revised form 24 March 2004; accepted 30 March 2004
Remote Sensing of Environment 91 (2004) 237 242 www.elsevier.com/locate/rse Cloud detection in Landsat imagery of ice sheets using shadow matching technique and automatic normalized difference snow index
Volcanic Ash Monitoring: Product Guide
Doc.No. Issue : : EUM/TSS/MAN/15/802120 v1a EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 2 June 2015 http://www.eumetsat.int WBS/DBS : EUMETSAT
Obtaining and Processing MODIS Data
Obtaining and Processing MODIS Data MODIS is an extensive program using sensors on two satellites that each provide complete daily coverage of the earth. The data have a variety of resolutions; spectral,
Outline of RGB Composite Imagery
Outline of RGB Composite Imagery Data Processing Division, Data Processing Department Meteorological Satellite Center (MSC) JMA Akihiro SHIMIZU 29 September, 2014 Updated 6 July, 2015 1 Contents What s
Data Processing Flow Chart
Legend Start V1 V2 V3 Completed Version 2 Completion date Data Processing Flow Chart Data: Download a) AVHRR: 1981-1999 b) MODIS:2000-2010 c) SPOT : 1998-2002 No Progressing Started Did not start 03/12/12
How to Use the NOAA Enterprise Cloud Mask (ECM) Andrew Heidinger, Tom Kopp, Denis Botambekov and William Straka JPSS Cloud Team August 29, 2015
How to Use the NOAA Enterprise Cloud Mask (ECM) Andrew Heidinger, Tom Kopp, Denis Botambekov and William Straka JPSS Cloud Team August 29, 2015 Outline Describe ECM and its differences to VCM Describe
REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL
REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL D. Santos (1), M. J. Costa (1,2), D. Bortoli (1,3) and A. M. Silva (1,2) (1) Évora Geophysics
Best practices for RGB compositing of multi-spectral imagery
Best practices for RGB compositing of multi-spectral imagery User Service Division, EUMETSAT Introduction Until recently imagers on geostationary satellites were limited to 2-3 spectral channels, i.e.
Active Fire Monitoring: Product Guide
Active Fire Monitoring: Product Guide Doc.No. Issue : : EUM/TSS/MAN/15/801989 v1c EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 14 April 2015 http://www.eumetsat.int
GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Low Cloud and Fog
NOAA NESDIS CENTER for SATELLITE APPLICATIONS and RESEARCH GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Low Cloud and Fog Corey Calvert, UW/CIMSS Mike Pavolonis, NOAA/NESDIS/STAR
The APOLLO cloud product statistics Web service
The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in
How To Understand Cloud Properties From Satellite Imagery
P1.70 NIGHTTIME RETRIEVAL OF CLOUD MICROPHYSICAL PROPERTIES FOR GOES-R Patrick W. Heck * Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison Madison, Wisconsin P.
Cloud Detection for Sentinel 2. Curtis Woodcock, Zhe Zhu, Shixiong Wang and Chris Holden
Cloud Detection for Sentinel 2 Curtis Woodcock, Zhe Zhu, Shixiong Wang and Chris Holden Background 3 primary spectral regions useful for cloud detection Optical Thermal Cirrus bands Legacy Landsats have
The APOLLO cloud product statistics Web service The APOLLO cloud product statistics Web service
The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in
NOAA NESDIS CENTER for SATELLITE APPLICATIONS and RESEARCH ALGORITHM THEORETICAL BASIS DOCUMENT. ABI Cloud Mask
NOAA NESDIS CENTER for SATELLITE APPLICATIONS and RESEARCH ALGORITHM THEORETICAL BASIS DOCUMENT ABI Cloud Mask Andrew Heidinger, NOAA/NESDIS/STAR William C. Straka III, SSEC/CIMSS Version 3.0 June 11,
Advances in Cloud Imager Remote Sensing
Advances in Cloud Imager Remote Sensing Andrew Heidinger NOAA/NESDIS/ORA Madison, Wisconsin With material from Mike Pavolonis, Robert Holz, Amato Evan and Fred Nagle STAR Science Symposium November 9,
Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP
Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008jd009837, 2008 Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation
Landsat 7 Automatic Cloud Cover Assessment
Landsat 7 Automatic Cloud Cover Assessment Richard R. Irish Science Systems and Applications, Inc. NASA s Goddard Space Flight Center, Greenbelt, Maryland ABSTRACT An automatic cloud cover assessment algorithm
CLOUD TOP PROPERTIES AND CLOUD PHASE ALGORITHM THEORETICAL BASIS DOCUMENT
CLOUD TOP PROPERTIES AND CLOUD PHASE ALGORITHM THEORETICAL BASIS DOCUMENT W. Paul Menzel Cooperative Institute for Meteorological Satellite Studies University of Wisconsin Madison Richard A. Frey Cooperative
A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009jd013422, 2010 A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS Roger Marchand, 1 Thomas Ackerman, 1 Mike
ECMWF Aerosol and Cloud Detection Software. User Guide. version 1.2 20/01/2015. Reima Eresmaa ECMWF
ECMWF Aerosol and Cloud User Guide version 1.2 20/01/2015 Reima Eresmaa ECMWF This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction
Satellite remote sensing using AVHRR, ATSR, MODIS, METEOSAT, MSG
Satellite remote sensing using AVHRR, ATSR, MODIS, METEOSAT, MSG Ralf Meerkötter, Luca Bugliaro, Knut Dammann, Gerhard Gesell, Christine König, Waldemar Krebs, Hermann Mannstein, Bernhard Mayer, presented
Moderate Resolution Imaging Spectroradiometer (MODIS) Cloud Fraction Technical Document
Moderate Resolution Imaging Spectroradiometer (MODIS) Cloud Fraction Technical Document 1. Intent of This Document This document is intended for users who wish to compare satellite-derived observations
Validation of SEVIRI cloud-top height retrievals from A-Train data
Validation of SEVIRI cloud-top height retrievals from A-Train data Chu-Yong Chung, Pete N Francis, and Roger Saunders Contents Introduction MO GeoCloud AVAC-S Long-term monitoring Comparison with OCA Summary
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University
Multiangle cloud remote sensing from
Multiangle cloud remote sensing from POLDER3/PARASOL Cloud phase, optical thickness and albedo F. Parol, J. Riedi, S. Zeng, C. Vanbauce, N. Ferlay, F. Thieuleux, L.C. Labonnote and C. Cornet Laboratoire
Generation of Cloud-free Imagery Using Landsat-8
Generation of Cloud-free Imagery Using Landsat-8 Byeonghee Kim 1, Youkyung Han 2, Yonghyun Kim 3, Yongil Kim 4 Department of Civil and Environmental Engineering, Seoul National University (SNU), Seoul,
Selecting the appropriate band combination for an RGB image using Landsat imagery
Selecting the appropriate band combination for an RGB image using Landsat imagery Ned Horning Version: 1.0 Creation Date: 2004-01-01 Revision Date: 2004-01-01 License: This document is licensed under a
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France
Satellite Remote Sensing of Volcanic Ash
Marco Fulle www.stromboli.net Satellite Remote Sensing of Volcanic Ash Michael Pavolonis NOAA/NESDIS/STAR SCOPE Nowcasting 1 Meeting November 19 22, 2013 1 Outline Getty Images Volcanic ash satellite remote
VIIRS-CrIS mapping. NWP SAF AAPP VIIRS-CrIS Mapping
NWP SAF AAPP VIIRS-CrIS Mapping This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement
Saharan Dust Aerosols Detection Over the Region of Puerto Rico
1 Saharan Dust Aerosols Detection Over the Region of Puerto Rico ARLENYS RAMÍREZ University of Puerto Rico at Mayagüez, P.R., 00683. Email:[email protected] ABSTRACT. Every year during the months
16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future
16 th IOCCG Committee annual meeting Plymouth, UK 15 17 February 2011 The Meteor 3M Mt satellite mission: Present status and near future plans MISSION AIMS Satellites of the series METEOR M M are purposed
Vulnerability assessment of ecosystem services for climate change impacts and adaptation (VACCIA)
Vulnerability assessment of ecosystem services for climate change impacts and adaptation (VACCIA) Action 2: Derivation of GMES-related remote sensing data Deliverable 1: Time-series of Earth Observation
Moderate- and high-resolution Earth Observation data based forest and agriculture monitoring in Russia using VEGA Web-Service
Moderate- and high-resolution Earth Observation data based forest and agriculture monitoring in Russia using VEGA Web-Service Sergey BARTALEV and Evgeny LOUPIAN Space Research Institute, Russian Academy
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect Tuuli Perttula, FMI + Thanks to: Nadia Fourrié, Lydie Lavanant, Florence Rabier and Vincent Guidard, Météo
THE USE OF THE HIGH RESOLUTION VISIBLE IN SAFNWC/MSG CLOUD MASK
THE USE OF THE HIGH RESOLUTION VISIBLE IN SAFNWC/MSG CLOUD MASK Marcel Derrien, Hervé Le Gléau, Marie-Paule Raoul METEO-FRANCE, Centre de Météorologie Spatiale, Avenue de Lorraine, BP 50547, Lannion, France
Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product
Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product Michael J. Lewis Ph.D. Student, Department of Earth and Environmental Science University of Texas at San Antonio ABSTRACT
Cloud Radiation and the Law of Attraction
Convec,on, cloud and radia,on Convection redistributes the thermal energy yielding (globally-averaged), a mean lapse rate of ~ -6.5 o C/km. Radiative processes tend to produce a more negative temperature
Technical note on MISR Cloud-Top-Height Optical-depth (CTH-OD) joint histogram product
Technical note on MISR Cloud-Top-Height Optical-depth (CTH-OD) joint histogram product 1. Intend of this document and POC 1.a) General purpose The MISR CTH-OD product contains 2D histograms (joint distributions)
USING THE GOES 3.9 µm SHORTWAVE INFRARED CHANNEL TO TRACK LOW-LEVEL CLOUD-DRIFT WINDS ABSTRACT
USING THE GOES 3.9 µm SHORTWAVE INFRARED CHANNEL TO TRACK LOW-LEVEL CLOUD-DRIFT WINDS Jason P. Dunion 1 and Christopher S. Velden 2 1 NOAA/AOML/Hurricane Research Division, 2 UW/CIMSS ABSTRACT Low-level
Remote sensing of precipitable water vapour and cloud cover for site selection of the European Extremely Large Telescope (E-ELT) using MERIS
Remote sensing of precipitable water vapour and cloud cover for site selection of the European Extremely Large Telescope (E-ELT) using MERIS H. Kurlandczyk 1 M.Sarazin 1 1 European Organisation for Astronomical
Landsat Monitoring our Earth s Condition for over 40 years
Landsat Monitoring our Earth s Condition for over 40 years Thomas Cecere Land Remote Sensing Program USGS ISPRS:Earth Observing Data and Tools for Health Studies Arlington, VA August 28, 2013 U.S. Department
2.3 Spatial Resolution, Pixel Size, and Scale
Section 2.3 Spatial Resolution, Pixel Size, and Scale Page 39 2.3 Spatial Resolution, Pixel Size, and Scale For some remote sensing instruments, the distance between the target being imaged and the platform,
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun
The Surface Energy Budget
The Surface Energy Budget The radiation (R) budget Shortwave (solar) Radiation Longwave Radiation R SW R SW α α = surface albedo R LW εσt 4 ε = emissivity σ = Stefan-Boltzman constant T = temperature Subsurface
SAMPLE MIDTERM QUESTIONS
Geography 309 Sample MidTerm Questions Page 1 SAMPLE MIDTERM QUESTIONS Textbook Questions Chapter 1 Questions 4, 5, 6, Chapter 2 Questions 4, 7, 10 Chapter 4 Questions 8, 9 Chapter 10 Questions 1, 4, 7
Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity
Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure
TerraColor White Paper
TerraColor White Paper TerraColor is a simulated true color digital earth imagery product developed by Earthstar Geographics LLC. This product was built from imagery captured by the US Landsat 7 (ETM+)
Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography
Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu
Evaluations of the CALIPSO Cloud Optical Depth Algorithm Through Comparisons with a GOES Derived Cloud Analysis
Generated using V3.0 of the official AMS LATEX template Evaluations of the CALIPSO Cloud Optical Depth Algorithm Through Comparisons with a GOES Derived Cloud Analysis Katie Carbonari, Heather Kiley, and
Remote Sensing of Contrails and Aircraft Altered Cirrus Clouds
Remote Sensing of Contrails and Aircraft Altered Cirrus Clouds R. Palikonda 1, P. Minnis 2, L. Nguyen 1, D. P. Garber 1, W. L. Smith, r. 1, D. F. Young 2 1 Analytical Services and Materials, Inc. Hampton,
Slide 1. Slide 2. Slide 3
Satellite Analysis of Sea Surface Temperatures in the Florida Keys to Monitor Coral Reef Health NASA Stennis Space Center Earthzine/DEVELOP Virtual Poster Session, Summer 2011 Video Transcript Slide 1
Remote Sensing of Clouds from Polarization
Remote Sensing of Clouds from Polarization What polarization can tell us about clouds... and what not? J. Riedi Laboratoire d'optique Atmosphérique University of Science and Technology Lille / CNRS FRANCE
Denis Botambekov 1, Andrew Heidinger 2, Andi Walther 1, and Nick Bearson 1
Denis Botambekov 1, Andrew Heidinger 2, Andi Walther 1, and Nick Bearson 1 1 - CIMSS / SSEC / University of Wisconsin Madison, WI, USA 2 NOAA / NESDIS / STAR @ University of Wisconsin Madison, WI, USA
Synoptic assessment of AMV errors
NWP SAF Satellite Application Facility for Numerical Weather Prediction Visiting Scientist mission report Document NWPSAF-MO-VS-038 Version 1.0 4 June 2009 Synoptic assessment of AMV errors Renato Galante
What Causes Climate? Use Target Reading Skills
Climate and Climate Change Name Date Class Climate and Climate Change Guided Reading and Study What Causes Climate? This section describes factors that determine climate, or the average weather conditions
ATM S 111, Global Warming: Understanding the Forecast
ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept
Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula
Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula Mansour Almazroui Center of Excellence for Climate Change Research (CECCR) King Abdulaziz University, Jeddah, Saudi Arabia E-mail:
MODIS Cloud Mask User s Guide. Written by Kathleen Strabala
MODIS loud Mask User s Guide Written by Kathleen Strabala TABLE OF ONTENTS. PURPOSE...3 2. WHAT IS MODIS?...3 3. WHAT IS THE MODIS LOUD MASK?...4 4. HOW DO I USE THE MODIS LOUD MASK?...7 4. HOW AN I DETERMINE
Introduction to Imagery and Raster Data in ArcGIS
Esri International User Conference San Diego, California Technical Workshops July 25, 2012 Introduction to Imagery and Raster Data in ArcGIS Simon Woo slides Cody Benkelman - demos Overview of Presentation
SATELLITE OBSERVATION OF THE DAILY VARIATION OF THIN CIRRUS
SATELLITE OBSERVATION OF THE DAILY VARIATION OF THIN CIRRUS Hermann Mannstein and Stephan Kox ATMOS 2012 Bruges, 2012-06-21 Folie 1 Why cirrus? Folie 2 Warum Eiswolken? Folie 3 Folie 4 Folie 5 Folie 6
Radiative effects of clouds, ice sheet and sea ice in the Antarctic
Snow and fee Covers: Interactions with the Atmosphere and Ecosystems (Proceedings of Yokohama Symposia J2 and J5, July 1993). IAHS Publ. no. 223, 1994. 29 Radiative effects of clouds, ice sheet and sea
