Sub-grid cloud parametrization issues in Met Office Unified Model
|
|
|
- Gavin Armstrong
- 9 years ago
- Views:
Transcription
1 Sub-grid cloud parametrization issues in Met Office Unified Model Cyril Morcrette Workshop on Parametrization of clouds and precipitation across model resolutions, ECMWF, Reading, November 2012
2 Table of Contents A tale of several grey zones Sub-grid variability of condensate and its impact on microphysical process rates
3 Operational Models North Atlantic and Europe 12 km Uses a convection scheme UK4 Model (4 km) Convection scheme has CAPE-dependent CAPEclosure time-scale. UK1.5 Model 1.5 km No convection scheme. Global model ~25 km Uses a convection scheme HadGEM climate model ~ km Uses a convection scheme
4 Cloud cover 1.0 Relative Humidity Now consider a smaller grid-box A simple cloud scheme Cloud cover first rises above 0 when RH exceeds a critical relative humidity (RHcrit). Overcast conditions reached when RH=2.0-RHcrit. RHt=(qv+qcl)/qsat An example where RHcrit= Cloud cover Relative Humidity RHt=(qv+qcl)/qsat An example where RHcrit=0.9
5 So expect RH crit to tend to 1.0 as grid-box gets smaller RH crit=0.80 Use aircraft data from many flights in different synoptic conditions. Consider flights legs of different lengths Look at local variability and mean conditions and hence infer RH crit Would be nice to look at sensitivity to changes in dz as well as dx. Could we use data from tethered balloons? Figure and analysis by Ian Boutle. Extrapolation gives RHcrit=0.95 at dx=1 km RHcrit=1.00 at dx=180 m RH crit=0.85 RH crit=0.90 RH crit=0.95 RH crit=1.00
6 Smith (1990) cloud scheme T q T p Currently, all operational limited area models still use the Smith (1990) cloud scheme. q v q c C Then forget everything and start again next timestep However observations suggest that the same thermodynamic state (T,q,p) can be associated with different cloud cover and condensate amounts. So need to have a system where the clouds at a given point is the result of lots of different processes acting on the cloud and modifying it through-out its lifetime. Allows same thermodynamic state to have different cloud in it, depending on what has happened before.
7 PC2 cloud scheme prognostic cloud, prognostic condensate Wilson et al.(2008a) doi: /qj.333 similar in concept to Tiedtke (1993) scheme. T q v q c p C Short-Wave Boundary-Layer Convection Erosion Long-Wave MicroPhys Large-scale Ascent System has memory Σ Update the cloud fields then advect with the wind, ready for use next timestep. PC2 cloud scheme is now used for: global deterministic NWP global EPS global climate-simulations (e.g. next IPCC).
8 What physical processes affect liquid water path in PC2? Liquid Water Path (LWP) Zonal-mean, annual-mean from 10-year simulation of present-day climate. Microphysics Convection Erosion Large-scale ascent Initialization Long-wave Boundary-layer Advection Short-wave Numerical checks Sources of Liquid Water Path The Convection scheme is the dominant source of LWP in PC2. Numerical checks i.e. checking that CF>0 if LWC>0 CF>0 of IWC>0 LWC+IWC>0 if CF>0 If this term is large then there is probably a bug! Sinks of Liquid Water Path Morcrette (2012) DOI: /asl.380
9 Grey Zones Black: process should be parametrized White: process should be done explicitly 1000 km 100 km 10 km 1 km 100 m 10 m 1m Need cloud scheme to determine fractional cloud cover. Cloud scheme grey zone All-or-nothing. Each grid-box is either cloudy or clear km 100 km 10 km 1 km 100 m 10 m 1m Need convection scheme to represent stabilization of profile by sub-grid convective motions. Convection scheme grey zone In order to get through the cloud grey zone, one must also get through the convection grey zone. Convective motions are resolved by the grid.
10 Yes we can, model will run. But need to consider: Re-tuning cloud erosion rate RH crit (can we use value derived from aircraft obs?) Missing process: Given that convection scheme is main source of cloud in PC2: Can we use PC2 in a model without a convection scheme? UK1.5 model also uses sub-grid turbulence scheme (in horizontal) which is not used in coarser-resolution models This diffuses T and q, But does not currently consider the direct impact on LWC and CF. This is all work in progress
11 Evaluation of cloud forecasts Imagine you have 2 sets of cloud forecasts Which one is better? Better one has smaller errors. But there are different types of cloud errors
12 Cloud errors can be: Obs Model Obs Model Obs Model
13 Large-scale errors in T and q Errors in cloud parametrization scheme Error in cloud forecast is combination of all 3 types Errors in other parametrization schemes
14 Large-scale errors in T and q Errors in cloud parametrization scheme Need to continue with ARM, Cloud-Net and CloudSat that provide detailed observations of clouds in the vertical. Error in cloud forecast is Need to evaluate the cloud forecast when the model has got good forecast of T and q. So need observations of T and q profiles. Use process diagnostics to find out what each scheme is doing and how that is affecting the cloud forecast. Errors in other parametrization schemes
15 What do we really want from a cloud scheme? Climate Average impact of cloud Radiative impact of clouds depends on FOO, AWP, LWC & IWC (can be nonlinear). Willing to accept some error in average cloud properties if it makes climatological radiative balance better. Do not really care about timing. Weather Forecasting Correct FOO Correct AWP Timing is crucial Not too worried if radiative balance is out on long timescale. But how do we score ourselves?
16 NWP index (global) The global index is compiled from the following parameters: mean sea-level pressure 500 hpa height 850 hpa wind 250 hpa wind Verified over the following areas: Northern Hemisphere Tropics Southern Hemisphere At the following forecast ranges: T+24 T+48 T+72 T+96 T+120 nothing about cloud!
17 NWP index (UK) The UK index is compiled from the following parameters: Temperature (surface) Wind (surface) Rainfall (6 hour accumulation) Visibility Total Cloud Amount (TCA) Cloud base height (CBH) Verified over the UK area 6-hourly out to T+48
18 A tale of several grey zones Cloud scheme grey zone Cloud EVALUATION grey zone Clouds do not form explicit part of evaluation of model performance. Assess things influenced by clouds but not clouds themselves: [e.g. LS flow, LS T,q, T(surf), surf(precip)] Clouds are explicitly considered when evaluating model performance. Assess: cloud cover, cloud-base-height. How does relative model performance differ simply by changing how 2 models are assessed. How does this depend on current compensating errors in: cloud cover, condensate amount, radiative properties, microphysics scheme and diurnal cycle of convection
19 Sub-grid variability of condensate and impact on microphysical process rates
20 Consider a microphysics process rate: Because of: sub-grid variability non-linearity the TRUE grid-box mean value of the process rate IS NOT the value calculated from the grid-box mean properties. Following Morrison and Gettelman (2008) and Larson and Griffin (2012), the subgrid variability in q can be written as a PDF (e.g. Gamma or log-normal) defined using the grid-box mean q and f, the fractional standard deviation of q. e.g. gamma distribution: The unbiased process rate can then be calculated from the grid-box mean q and a correction factor, E: where All we now need is f, the fractional standard deviation of the liquid water content.
21 Fractional standard deviation of liquid water content This f can also be used in the cloud-generator used by McICA for doing radiation. [Hill et al (2012) DOI: /qj.1893] Further details in: Boutle et al. (submitted to QJRMS) or from Ian Boutle.
22 Questions and discussion
Overview and Cloud Cover Parameterization
Overview and Cloud Cover Parameterization Bob Plant With thanks to: C. Morcrette, A. Tompkins, E. Machulskaya and D. Mironov NWP Physics Lecture 1 Nanjing Summer School July 2014 Outline Introduction and
Towards an NWP-testbed
Towards an NWP-testbed Ewan O Connor and Robin Hogan University of Reading, UK Overview Cloud schemes in NWP models are basically the same as in climate models, but easier to evaluate using ARM because:
Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models
Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models S. A. Klein National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Kate Thayer-Calder and Dave Randall Colorado State University October 24, 2012 NOAA's 37th Climate Diagnostics and Prediction Workshop Convective
Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux
Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux Cloud-resolving modelling : perspectives Improvement of models, new ways of using them, renewed views And
An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models
An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models Steven Krueger1 and Peter Bogenschutz2 1University of Utah, 2National
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency In Sik Kang Seoul National University Young Min Yang (UH) and Wei Kuo Tao (GSFC) Content 1. Conventional
Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model
Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model H. Guo, J. E. Penner, M. Herzog, and X. Liu Department of Atmospheric,
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low
Improving Low-Cloud Simulation with an Upgraded Multiscale Modeling Framework
Improving Low-Cloud Simulation with an Upgraded Multiscale Modeling Framework Kuan-Man Xu and Anning Cheng NASA Langley Research Center Hampton, Virginia Motivation and outline of this talk From Teixeira
Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model simulations of TWP ICE
Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 734 754, April 2012 A Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM Hugh Morrison and Wojciech Grabowski NCAR* (MMM Division, NESL) Marat Khairoutdinov Stony Brook University
1D shallow convective case studies and comparisons with LES
1D shallow convective case studies and comparisons with CNRM/GMME/Méso-NH 24 novembre 2005 1 / 17 Contents 1 5h-6h time average vertical profils 2 2 / 17 Case description 5h-6h time average vertical profils
Application of Numerical Weather Prediction Models for Drought Monitoring. Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia
Application of Numerical Weather Prediction Models for Drought Monitoring Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia Contents 1. Introduction 2. Numerical Weather Prediction Models -
Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches Joao Teixeira
MOGREPS status and activities
MOGREPS status and activities by Warren Tennant with contributions from Rob Neal, Sarah Beare, Neill Bowler & Richard Swinbank Crown copyright Met Office 32 nd EWGLAM and 17 th SRNWP meetings 1 Contents
Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models Yefim L. Kogan Cooperative Institute
SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment
SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment Mark Webb, Adrian Lock (Met Office), Sandrine Bony (IPSL), Chris Bretherton (UW), Tsuyoshi Koshiro, Hideaki Kawai (MRI), Thorsten Mauritsen
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang
Description of zero-buoyancy entraining plume model
Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium Supplementary information Martin S. Singh & Paul A. O Gorman S1 CRM simulations Here we give more
How To Find Out How Much Cloud Fraction Is Underestimated
2248 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 62 Parameterizing the Difference in Cloud Fraction Defined by Area and by Volume as Observed with Radar and Lidar MALCOLM E. BROOKS,*
Cloud verification: a review of methodologies and recent developments
Cloud verification: a review of methodologies and recent developments Anna Ghelli ECMWF Slide 1 Thanks to: Maike Ahlgrimm Martin Kohler, Richard Forbes Slide 1 Outline Cloud properties Data availability
How To Model An Ac Cloud
Development of an Elevated Mixed Layer Model for Parameterizing Altocumulus Cloud Layers S. Liu and S. K. Krueger Department of Meteorology University of Utah, Salt Lake City, Utah Introduction Altocumulus
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility Arunchandra S. Chandra Pavlos Kollias Department of Atmospheric
Cloud-Resolving Simulations of Convection during DYNAMO
Cloud-Resolving Simulations of Convection during DYNAMO Matthew A. Janiga and Chidong Zhang University of Miami, RSMAS 2013 Fall ASR Workshop Outline Overview of observations. Methodology. Simulation results.
How To Find Out How Much Cloud Fraction Is Underestimated
Parameterizing the difference in cloud fraction defined by area and by volume as observed with radar and lidar MALCOLM E. BROOKS 1 2, ROBIN J. HOGAN, AND ANTHONY J. ILLINGWORTH Department of Meteorology,
Nowcasting: analysis and up to 6 hours forecast
Nowcasting: analysis and up to 6 hours forecast Very high resoultion in time and space Better than NWP Rapid update Application oriented NWP problems for 0 6 forecast: Incomplete physics Resolution space
Convective Clouds. Convective clouds 1
Convective clouds 1 Convective Clouds Introduction Convective clouds are formed in vertical motions that result from the instability of the atmosphere. This instability can be caused by: a. heating at
Atmospheric kinetic energy spectra from high-resolution GEM models
Atmospheric kinetic energy spectra from high-resolution GEM models Bertrand Denis NWP Section Canadian Meteorological Centre Environment Canada SRNWP 2009 Bad Orb, Germany Outline Introduction What we
Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A.
376 THE SIMULATION OF TROPICAL CONVECTIVE SYSTEMS William M. Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A. ABSTRACT IN NUMERICAL
How To Understand And Understand The Physics Of Clouds And Precipitation
Deutscher Wetterdienst Research and Development Physical Parameterizations: Cloud Microphysics and Subgrid-Scale Cloudiness Axel Seifert Deutscher Wetterdienst, Offenbach Deutscher Wetterdienst Research
Partnership to Improve Solar Power Forecasting
Partnership to Improve Solar Power Forecasting Venue: EUPVSEC, Paris France Presenter: Dr. Manajit Sengupta Date: October 1 st 2013 NREL is a national laboratory of the U.S. Department of Energy, Office
Climate Models: Uncertainties due to Clouds. Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography
Climate Models: Uncertainties due to Clouds Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography Global mean radiative forcing of the climate system for
Clouds and Convection
Max-Planck-Institut Clouds and Convection Cathy Hohenegger, Axel Seifert, Bjorn Stevens, Verena Grützun, Thijs Heus, Linda Schlemmer, Malte Rieck Max-Planck-Institut Shallow convection Deep convection
Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS
Introduction Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS Zhanqing Li and Seoung-Soo Lee University of Maryland NOAA/NCEP/EMC Collaborators
Limitations of Equilibrium Or: What if τ LS τ adj?
Limitations of Equilibrium Or: What if τ LS τ adj? Bob Plant, Laura Davies Department of Meteorology, University of Reading, UK With thanks to: Steve Derbyshire, Alan Grant, Steve Woolnough and Jeff Chagnon
Guy Carpenter Asia-Pacific Climate Impact Centre, School of energy and Environment, City University of Hong Kong
Diurnal and Semi-diurnal Variations of Rainfall in Southeast China Judy Huang and Johnny Chan Guy Carpenter Asia-Pacific Climate Impact Centre School of Energy and Environment City University of Hong Kong
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations 22 September 2011 Hervé LE GLEAU, Marcel DERRIEN Centre de météorologie Spatiale. Lannion Météo-France 1 Fog or low level clouds?
Mixed-phase layer clouds
Mixed-phase layer clouds Chris Westbrook and Andrew Barrett Thanks to Anthony Illingworth, Robin Hogan, Andrew Heymsfield and all at the Chilbolton Observatory What is a mixed-phase cloud? Cloud below
MSG-SEVIRI cloud physical properties for model evaluations
Rob Roebeling Weather Research Thanks to: Hartwig Deneke, Bastiaan Jonkheid, Wouter Greuell, Jan Fokke Meirink and Erwin Wolters (KNMI) MSG-SEVIRI cloud physical properties for model evaluations Cloud
Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium
GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L08802, doi:10.1029/2007gl033029, 2008 Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium D. J. Posselt, 1 S. C. van
IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS
IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS M. J. Mueller, R. W. Pasken, W. Dannevik, T. P. Eichler Saint Louis University Department of Earth and
Improving Hydrological Predictions
Improving Hydrological Predictions Catherine Senior MOSAC, November 10th, 2011 How well do we simulate the water cycle? GPCP 10 years of Day 1 forecast Equatorial Variability on Synoptic scales (2-6 days)
Investigations on COSMO 2.8Km precipitation forecast
Investigations on COSMO 2.8Km precipitation forecast Federico Grazzini, ARPA-SIMC Emilia-Romagna Coordinator of physical aspects group of COSMO Outline Brief description of the COSMO-HR operational suites
The APOLLO cloud product statistics Web service The APOLLO cloud product statistics Web service
The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota Outline 1) Statistical results from SGP and AZORES 2) Challenge and Difficult
Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2) CGILS-S11 results
Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2) CGILS-S11 results Stephan de Roode Delft University of Technology (TUD), Delft, Netherlands Mixed-layer model analysis: Melchior van Wessem (student,
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates C. N. Long Pacific Northwest National Laboratory Richland, Washington
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP X. Wu Department of Geological and Atmospheric Sciences Iowa State University Ames, Iowa X.-Z.
Chapter 6 - Cloud Development and Forms. Interesting Cloud
Chapter 6 - Cloud Development and Forms Understanding Weather and Climate Aguado and Burt Interesting Cloud 1 Mechanisms that Lift Air Orographic lifting Frontal Lifting Convergence Localized convective
Stability and Cloud Development. Stability in the atmosphere AT350. Why did this cloud form, whereas the sky was clear 4 hours ago?
Stability and Cloud Development AT350 Why did this cloud form, whereas the sky was clear 4 hours ago? Stability in the atmosphere An Initial Perturbation Stable Unstable Neutral If an air parcel is displaced
TOPIC: CLOUD CLASSIFICATION
INDIAN INSTITUTE OF TECHNOLOGY, DELHI DEPARTMENT OF ATMOSPHERIC SCIENCE ASL720: Satellite Meteorology and Remote Sensing TERM PAPER TOPIC: CLOUD CLASSIFICATION Group Members: Anil Kumar (2010ME10649) Mayank
SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY
SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY Wolfgang Traunmüller 1 * and Gerald Steinmaurer 2 1 BLUE SKY Wetteranalysen, 4800 Attnang-Puchheim,
Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition
Thirteenth ARM Science Team Meeting Proceedings, Broomfield, Colorado, March 31-April 4, 23 Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective
The APOLLO cloud product statistics Web service
The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in
The impact of parametrized convection on cloud feedback.
The impact of parametrized convection on cloud feedback. Mark Webb, Adrian Lock (Met Office) Thanks also to Chris Bretherton (UW), Sandrine Bony (IPSL),Jason Cole (CCCma), Abderrahmane Idelkadi (IPSL),
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary
Performance Metrics for Climate Models: WDAC advancements towards routine modeling benchmarks
Performance Metrics for Climate Models: WDAC advancements towards routine modeling benchmarks Peter Gleckler* Program for Climate Model Diagnosis and Intercomparison () LLNL, USA * Representing WDAC and
All-sky assimilation of microwave imager observations sensitive to water vapour, cloud and rain
All-sky assimilation of microwave imager observations sensitive to water vapour, cloud and rain A.J. Geer, P. Bauer, P. Lopez and D. Salmond European Centre for Medium-Range Weather Forecasts, Reading,
A Review on the Uses of Cloud-(System-)Resolving Models
A Review on the Uses of Cloud-(System-)Resolving Models Jeffrey D. Duda Since their advent into the meteorological modeling world, cloud-(system)-resolving models (CRMs or CSRMs) have become very important
Climatology of aerosol and cloud properties at the ARM sites:
Climatology of aerosol and cloud properties at the ARM sites: MFRSR combined with other measurements Qilong Min ASRC, SUNY at Albany MFRSR: Spectral irradiances at 6 six wavelength passbands: 415, 500,
Nowcasting of significant convection by application of cloud tracking algorithm to satellite and radar images
Nowcasting of significant convection by application of cloud tracking algorithm to satellite and radar images Ng Ka Ho, Hong Kong Observatory, Hong Kong Abstract Automated forecast of significant convection
Meteorological Forecasting of DNI, clouds and aerosols
Meteorological Forecasting of DNI, clouds and aerosols DNICast 1st End-User Workshop, Madrid, 2014-05-07 Heiner Körnich (SMHI), Jan Remund (Meteotest), Marion Schroedter-Homscheidt (DLR) Overview What
RAPIDS Operational Blending of Nowcasting and NWP QPF
RAPIDS Operational Blending of Nowcasting and NWP QPF Wai-kin Wong and Edwin ST Lai Hong Kong Observatory The Second International Symposium on Quantitative Precipitation Forecasting and Hydrology 5-8
Evaluation of precipitation simulated over mid-latitude land by CPTEC AGCM single-column model
Evaluation of precipitation simulated over mid-latitude land by CPTEC AGCM single-column model Enver Ramírez Gutiérrez 1, Silvio Nilo Figueroa 2, Paulo Kubota 2 1 CCST, 2 CPTEC INPE Cachoeira Paulista,
Assimilation of cloudy infrared satellite observations: The Met Office perspective
Assimilation of cloudy infrared satellite observations: The Met Office perspective Ed Pavelin, Met Office International Symposium on Data Assimilation 2014, Munich Contents This presentation covers the
Stratosphere-Troposphere Exchange in the Tropics. Masatomo Fujiwara Hokkaido University, Japan (14 March 2006)
Stratosphere-Troposphere Exchange in the Tropics Masatomo Fujiwara Hokkaido University, Japan (14 March 2006) Contents 1. Structure of Tropical Atmosphere 2. Water Vapor in the Stratosphere 3. General
Cloud Development and Forms. LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection. Orographic Cloud. The Orographic Cloud
Introduction to Climatology GEOGRAPHY 300 Cloud Development and Forms Tom Giambelluca University of Hawai i at Mānoa LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection Cloud Development
Physical properties of mesoscale high-level cloud systems in relation to their atmospheric environment deduced from Sounders
Physical properties of mesoscale high-level cloud systems in relation to their atmospheric environment deduced from Sounders Claudia Stubenrauch, Sofia Protopapadaki, Artem Feofilov, Theodore Nicolas &
Combining Satellite High Frequency Microwave Radiometer & Surface Cloud Radar Data for Determination of Large Scale 3 D Cloud IWC 서은경
11/21/2008 제9회 기상레이더 워크숍 Combining Satellite High Frequency Microwave Radiometer & Surface Cloud Radar Data for Determination of Large Scale 3 D Cloud IWC 서은경 공주대학교 지구과학교육과 Objective: To retrieve large
