Homework # 3 Solutions
|
|
|
- Oswald Little
- 9 years ago
- Views:
Transcription
1 Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8 x 8 x 8 by Equation (2.3.) = 2 6 x 2 + x 3 x 8 x 8 x 8 by Equation (2.3.3) =2 6(8 2 ) by Equations (2.3.7) and (2.3.0) =30 (this could also have been accomplished using the Direct Substitution Property ) we find that ( + 3 x)(2 6x 2 + x 3 ) x 8 = ( + 3 x) (2 x 8 x 8 6x2 + x 3 ) =330 = 390. by Equation (2.3.4) Solution (2.3.7). Noting that ( + 3x) = + 3x by Equation (2.3.) = + 3 x by Equation (2.3.3) = + 3() by Equations (2.3.7) and (2.3.8) =4
2 and 4x2 + 3x 4 ) = + 4x 2 + 3x 4 by Equation (2.3.) = x x 4 by Equation (2.3.3) = + 4( 2 ) + 3( 4 ) by Equations (2.3.7) and (2.3.0) =8 (both of these could also have been accomplished using the Direct Substitution Property ) we find that + 3x + 4x 2 + 3x 4 ( + 3x) = ( + 4x 2 + 3x 4 ) = 4 8 = 2. Solution (2.3.5). t 3 Solution (2.3.9). t 2 9 2t 2 + 7t + 3 = t 3 x + 2 x = Solution (2.3.23). x x 7 x 7 Solution (2.3.25). = x x x x = x 4 (t 3)(t + 3) (t + 3)(2t + ) = t 3 x + 2 (x + 2)(x 2 2x + 4) = x x 7 = x 7 x 7 (x 7)( x ) = x 7 ( x+4 ) 4x 4 + x = x 4 Solution (2.3.37). First note that cos by Equation (2.3.5) (t 3) (2t + ) = 6 5 = 6 5. (x 2 2x + 4) = 2. x (x + 2) 9 = x x 7 (x 7)( x ) ( ) x + 4 4x ( ) 2. x x = = 4 + x x = 6. 4x = 6. Since x 4 0, by multiplying each part of the above inequality with x 4, we obtain ( ) 2 x 4 x 4 cos x 4. x Since x 0 x 4 = 0 and x 0 x 4 = 0, we conclude that ( ) 2 x 0 x4 cos = 0 x by the Squeeze Theorem. 2
3 Figure : Graph of g(x) for problem (b). Solution (2.3.48). (a) (i) (ii) Note that g(x) = x =. g(x) = x2 = 2 () 2 =. Since the left and right its are equal, we conclude that (iii) g() = 3. (iv) (v) g(x) =. g(x) = 2 x 2 x 2 x2 = 2 (2) 2 = 2. g(x) = x 3 = 2 3 =. x 2+ x 2+ (vi) Since the left and right its are not equal, we conclude that g(x) x 2 does not exist. (b) See Fig.(). Solution (2.3.50). (a) See Fig.(2). (b) 3
4 Figure 2: Graph of f(x) for problem (a). (i) (ii) (iii) f(x) = 0. x 0 f(x) = 0 x π/2 f(x) = x π/2+ (iv) f(x) x π/2 does not exist. (c) The it x a f(x) exists for all values π a π except for π/2 and π/2. Solution (2.3.55). We have that Therefore f(x) 8 = = (f(x) 8) x x (x ) Solution (2.3.6). Suppose that = = 0 0 = 0. f(x) 8 x f(x) = 8 + (f(x) 8) = = 8. 3x 2 + ax + a + 3 x 2 = C + x 2 (x ) f(x) 8 x 4
5 for some constant C. Then (3x2 + ax + a + 3) = Moreover, since = = (3x 2 + ax + a + 3) x2 + x 2 x 2 + x 2 (x 2 + x 2) 3x2 + ax + a + 3 (x2 + x 2) = 0 C = 0. x 2 + x 2 3x 2 + ax + a + 3 x 2 + x 2 (3x2 + ax + a + 3) = 3( 2) 2 + a( 2) + a + 3 = 2 2a + a + 3 = 5 a, we must have that 5 a = 0, and therefore a = 5. Hence 3x 2 + ax + a + 3 3x 2 + 5x + 8 3(x + 2)(x + 3) x 2 = + x 2 x 2 = + x 2 (x + 2)(x ) 3(x + 3) 3( 2 + 3) = = (x ) ( 2 ) = 3 3 =. Solution (2.4.3). Choose δ min{4.6 2, } = min{.44,.76} =.44. Solution (2.4.5). Choose δ min{arctan(.2) π/2, π/2 arctan(0.8)} = Solution (2.4.9). Let ϵ > 0 and choose δ = 5ϵ. Then if x 3 < δ, we have that x = 5 x 3 < 5 δ = (5ϵ) = ϵ. 5 Solution (2.4.2). Let ϵ > 0 and choose δ = ϵ. Then if x 2 < δ, we have that x 2 + x 6 5 x 2 = (x + 3)(x 2) 5 x 2 = (x + 3) 5 = x 2 < δ = ϵ. Solution (2.4.29). Let ϵ > 0 and choose δ = ϵ. Then if x 2 < δ, we have that x 2 4x + 5 = x 2 4x + 4 = (x 2) 2 = x 2 2 < δ 2 = ϵ. Solution (2.4.39). Let ϵ =. Then for any δ > 0, let N be an integer with N > 2/δ. Set x = 2/N. Then x is irrational, x < δ, and f(x) f(0) = 0 =. Thus the it does not exist. Solution (2.4.43). Let > 0 and choose δ = e. Then since ln(x) is strictly increasing, 0 < x < δ implies that ln(x) < ln(δ) = ln(e ) =. Thus x 0+ ln(x) =. 5
6 Figure 3: Graph of f(x) for problem Solution (2.5.9). Since f and g are continuous, 2f(x) g(x) = 2f(x) + g(x) = 2 f(x) g(x) x 3 x 3 x 3 x 3 x 3 = 2f(3) g(3) = 2 5 g(3) = 0 g(3) Thus 0 g(3) = 4, from which it follows that g(3) = 6. Solution (2.5.). To show that f(x) is continuous at x =, we must show that x f(x) = f( ). The properties of its tell us that 4 4 (x + x 2x3 ) 4 = (x + x 2x3 ) = x + x x 2x3 4 = x + 2 x x x3 = ( ) + 2( ) 3 4 = f( ). Thus f(x) is continuous at x =. Solution (2.5.5). The function f(x) is discontinuous at x = 2, since f(2) = ln(0) is not defined. For a graph of the function, see Fig.(3). Solution (2.5.9). The function f(x) is discontinuous at x = 0 because f(x) =, x 0 but f(0) = 0. For a graph of the function, see Fig.(4). Solution (2.5.27). The domain of the function G(t) is every value of t for which t 4 > 0. Equivalently, this is when t 4 > or more simply t >. The polynomial t 4, and the logarithm ln(x) are continuous by Theorem Since G is the composition of these two functions, it is continuous everywhere in its domain by Theorem
7 Figure 4: Graph of f(x) for problem Figure 5: Graph of y for problem
8 Figure 6: Graph of y for problem Solution (2.5.29). There is a discontinuity at x = 0. function, see Fig.(5). For a graph of the Solution (2.5.33). Since the exponential function e x and the polynomial x 2 x are continuous for all values of x, their composition e x2 x is continuous. It follows that x = e ex2 ()2 () = e 0 =. Solution (2.5.39). The function f(x) is discontinuous at 0 and. It is continuous from the right at 0 and continuous from the left at. For a graph of the function, see Fig.(6). Solution (2.5.4). If f(x) is to be continuous for all x, then in particular, we will require that the left and right its of f(x) at x = 2 are both equal to f(2) = (2) 3 c(2) = 8 2c. Since and f(x) = x 2 x 2 cx2 + 2x = c(2) 2 + 2(2) = 4c + 4, f(x) = x 2+ x 2+ x3 cx = (2) 3 c(2) = 8 2c, this tell us that 8 2c = 4c + 4. This means that 4 = 6c, and therefore c = 2/3. For this value of c, f(x) is continuous, since it is continuous at 2, and continuous everywhere else because it is defined to be polynomials elsewhere. Solution (2.5.45). To solve this problem, we apply the intermediate value theorem. The function f(x) is the sum of the continuous functions x 2 and 0 sin(x), and is therefore continuous. Moreover f(0) = 0, f(00π) = 0000π 2, and 0 < 000 < 0000π 2. Thus by the intermediate value theorem, there is a value of c with 0 < c < 00π such that f(c) =
9 Solution (2.5.49). Define f(x) = cos(x) x. Since f(x) is the difference of the continuous functions cos(x) and x, it is continuous. Moreover f(π/6) = cos(π/6) π/6 = 3 2 π/6 > 0 and f(π/4) = cos(π/4) π/4 = 2 2 π/2 < 0. Thus by the intermediate value theorem, there is a c with π/6 < c < π/4 such that f(c) = 0. In particular, this shows that the equation cos(x) = x has a root in the interval (0, ). Solution (2.5.59). If is not continuous at any value of x. In fact, x a f(x) does not exist for any a. Solution (2.5.6). The answer is yes. To see this, define f(x) = x 3 + x. Then f is a polynomial, and is therefore continuous. Moreover f(0) = and f( 3) = ( 3) 3 + ( 3) = = 23. Thus by the intermediate value theorem, there is a c with 3 < c < 0 such that f(c) = 0. In particular, this means that c 3 + c = 0, or rather c 3 + = c. Thus c is exactly more than its cube. Solution (2.5.63). For values of x 0, the function /x is continuous. Moreover sin(x) is continuous for all values of x, so the composition sin(/x) must be continuous for all values of x 0. Lastly x 4 is continuous for all values of x, so the product x 4 sin(/x) must be continuous for all values of x 0. Thus to prove that f(x) is continuous for all x, it remains only to show that it is continuous at 0. We note that sin(/x) and x 4 0, so therefore Since x 4 x 4 sin(/x) x 4. x 0 x4 = x 4 = 0, x 0 the Squeeze theorem tells us that x 0 x 4 sin(/x) = 0. Moreover, f(0) = 0 by definition. Thus f(x) is continuous at x = 0. 9
Continuity. DEFINITION 1: A function f is continuous at a number a if. lim
Continuity DEFINITION : A function f is continuous at a number a if f(x) = f(a) REMARK: It follows from the definition that f is continuous at a if and only if. f(a) is defined. 2. f(x) and +f(x) exist.
The Mean Value Theorem
The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers
36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?
36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this
x a x 2 (1 + x 2 ) n.
Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number
TOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
I. Pointwise convergence
MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.
Practice with Proofs
Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using
PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x
Inverse Functions and Logarithms
Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a one-to-one function if it never takes on the same value twice; that
1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
Calculus 1: Sample Questions, Final Exam, Solutions
Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.
6.4 Logarithmic Equations and Inequalities
6.4 Logarithmic Equations and Inequalities 459 6.4 Logarithmic Equations and Inequalities In Section 6.3 we solved equations and inequalities involving exponential functions using one of two basic strategies.
The Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)
Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is one-to-one, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function
1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
Taylor and Maclaurin Series
Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions
Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.
FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is
Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem
Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem February 21, 214 In many problems, you are asked to show that something exists, but are not required to give a specific example or formula
correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
LIMITS AND CONTINUITY
LIMITS AND CONTINUITY 1 The concept of it Eample 11 Let f() = 2 4 Eamine the behavior of f() as approaches 2 2 Solution Let us compute some values of f() for close to 2, as in the tables below We see from
GRE Prep: Precalculus
GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach
Math 120 Final Exam Practice Problems, Form: A
Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,
1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some
Section 3.1: First Derivative Test Definition. Let f be a function with domain D. 1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some open interval containing c. The number
5.1 Derivatives and Graphs
5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has
SOLVING TRIGONOMETRIC INEQUALITIES (CONCEPT, METHODS, AND STEPS) By Nghi H. Nguyen
SOLVING TRIGONOMETRIC INEQUALITIES (CONCEPT, METHODS, AND STEPS) By Nghi H. Nguyen DEFINITION. A trig inequality is an inequality in standard form: R(x) > 0 (or < 0) that contains one or a few trig functions
H/wk 13, Solutions to selected problems
H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.
Section 2.7 One-to-One Functions and Their Inverses
Section. One-to-One Functions and Their Inverses One-to-One Functions HORIZONTAL LINE TEST: A function is one-to-one if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.
ALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals
ALGEBRA REVIEW LEARNING SKILLS CENTER The "Review Series in Algebra" is taught at the beginning of each quarter by the staff of the Learning Skills Center at UC Davis. This workshop is intended to be an
MATH 381 HOMEWORK 2 SOLUTIONS
MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e
Differentiation and Integration
This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have
Zeros of Polynomial Functions
Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of
4.3 Lagrange Approximation
206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average
HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
Nonhomogeneous Linear Equations
Nonhomogeneous Linear Equations In this section we learn how to solve second-order nonhomogeneous linear differential equations with constant coefficients, that is, equations of the form ay by cy G x where
Limits and Continuity
Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function
Vieta s Formulas and the Identity Theorem
Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion
Rolle s Theorem. q( x) = 1
Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question
Lectures 5-6: Taylor Series
Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,
100. In general, we can define this as if b x = a then x = log b
Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,
Chapter 7. Continuity
Chapter 7 Continuity There are many processes and eects that depends on certain set of variables in such a way that a small change in these variables acts as small change in the process. Changes of this
MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity
MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x
Partial Fractions. p(x) q(x)
Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break
Objective: Use calculator to comprehend transformations.
math111 (Bradford) Worksheet #1 Due Date: Objective: Use calculator to comprehend transformations. Here is a warm up for exploring manipulations of functions. specific formula for a function, say, Given
Zeros of Polynomial Functions
Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction
Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88
Nonlinear Algebraic Equations Lectures INF2320 p. 1/88 Lectures INF2320 p. 2/88 Nonlinear algebraic equations When solving the system u (t) = g(u), u(0) = u 0, (1) with an implicit Euler scheme we have
3.3 Real Zeros of Polynomials
3.3 Real Zeros of Polynomials 69 3.3 Real Zeros of Polynomials In Section 3., we found that we can use synthetic division to determine if a given real number is a zero of a polynomial function. This section
Integration by substitution
Integration by substitution There are occasions when it is possible to perform an apparently difficult piece of integration by first making a substitution. This has the effect of changing the variable
Microeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
minimal polyonomial Example
Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We
MA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
2.2 Separable Equations
2.2 Separable Equations 73 2.2 Separable Equations An equation y = f(x, y) is called separable provided algebraic operations, usually multiplication, division and factorization, allow it to be written
Zeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
ON THE EXPONENTIAL FUNCTION
ON THE EXPONENTIAL FUNCTION ROBERT GOVE AND JAN RYCHTÁŘ Abstract. The natural exponential function is one of the most important functions students should learn in calculus classes. The applications range
4.5 Chebyshev Polynomials
230 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION 4.5 Chebyshev Polynomials We now turn our attention to polynomial interpolation for f (x) over [ 1, 1] based on the nodes 1 x 0 < x 1 < < x N 1. Both
SMT 2014 Algebra Test Solutions February 15, 2014
1. Alice and Bob are painting a house. If Alice and Bob do not take any breaks, they will finish painting the house in 20 hours. If, however, Bob stops painting once the house is half-finished, then the
The Derivative. Philippe B. Laval Kennesaw State University
The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition
Examples of Functions
Examples of Functions In this document is provided examples of a variety of functions. The purpose is to convince the beginning student that functions are something quite different than polynomial equations.
Lecture Notes on Analysis II MA131. Xue-Mei Li
Lecture Notes on Analysis II MA131 Xue-Mei Li March 8, 2013 The lecture notes are based on this and previous years lectures by myself and by the previous lecturers. I would like to thank David Mond, who
Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.
MAC 1105 Final Review Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. 1) 8x 2-49x + 6 x - 6 A) 1, x 6 B) 8x - 1, x 6 x -
Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.
Review Solutions MAT V. (a) If u 4 x, then du dx. Hence, substitution implies dx du u + C 4 x + C. 4 x u (b) If u e t + e t, then du (e t e t )dt. Thus, by substitution, we have e t e t dt e t + e t u
Math Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran
College Algebra - MAT 6 Page: Copyright 2009 Killoran Zeros and Roots of Polynomial Functions Finding a Root (zero or x-intercept) of a polynomial is identical to the process of factoring a polynomial.
Notes for EER #4 Graph transformations (vertical & horizontal shifts, vertical stretching & compression, and reflections) of basic functions.
Notes for EER #4 Graph transformations (vertical & horizontal shifts, vertical stretching & compression, and reflections) of basic functions. Basic Functions In several sections you will be applying shifts
CS 261 Fall 2011 Solutions to Assignment #4
CS 61 Fall 011 Solutions to Assignment #4 The following four algorithms are used to implement the bisection method, Newton s method, the secant method, and the method of false position, respectively. In
To differentiate logarithmic functions with bases other than e, use
To ifferentiate logarithmic functions with bases other than e, use 1 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b 1 To ifferentiate logarithmic functions with
SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve
SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives
Domain of a Composition
Domain of a Composition Definition Given the function f and g, the composition of f with g is a function defined as (f g)() f(g()). The domain of f g is the set of all real numbers in the domain of g such
Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10
Dirk Bergemann Department of Economics Yale University s by Olga Timoshenko Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10 This problem set is due on Wednesday, 1/27/10. Preliminary
CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises
CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =
Cubic Functions: Global Analysis
Chapter 14 Cubic Functions: Global Analysis The Essential Question, 231 Concavity-sign, 232 Slope-sign, 234 Extremum, 235 Height-sign, 236 0-Concavity Location, 237 0-Slope Location, 239 Extremum Location,
Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics
Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights
MAT12X Intermediate Algebra
MAT12X Intermediate Algebra Workshop I - Exponential Functions LEARNING CENTER Overview Workshop I Exponential Functions of the form y = ab x Properties of the increasing and decreasing exponential functions
Algebra 2: Themes for the Big Final Exam
Algebra : Themes for the Big Final Exam Final will cover the whole year, focusing on the big main ideas. Graphing: Overall: x and y intercepts, fct vs relation, fct vs inverse, x, y and origin symmetries,
Real Roots of Univariate Polynomials with Real Coefficients
Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials
Exercises and Problems in Calculus. John M. Erdman Portland State University. Version August 1, 2013
Exercises and Problems in Calculus John M. Erdman Portland State University Version August 1, 2013 c 2010 John M. Erdman E-mail address: [email protected] Contents Preface ix Part 1. PRELIMINARY MATERIAL
Method To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.
Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method
f(x) = g(x), if x A h(x), if x B.
1. Piecewise Functions By Bryan Carrillo, University of California, Riverside We can create more complicated functions by considering Piece-wise functions. Definition: Piecewise-function. A piecewise-function
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x
Techniques of Integration
CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration
Metric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial
6. Differentiating the exponential and logarithm functions
1 6. Differentiating te exponential and logaritm functions We wis to find and use derivatives for functions of te form f(x) = a x, were a is a constant. By far te most convenient suc function for tis purpose
This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.
Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course
More Quadratic Equations
More Quadratic Equations Math 99 N1 Chapter 8 1 Quadratic Equations We won t discuss quadratic inequalities. Quadratic equations are equations where the unknown appears raised to second power, and, possibly
Integrals of Rational Functions
Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t
Linear Programming Notes V Problem Transformations
Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material
Solving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
Discrete Mathematics: Homework 7 solution. Due: 2011.6.03
EE 2060 Discrete Mathematics spring 2011 Discrete Mathematics: Homework 7 solution Due: 2011.6.03 1. Let a n = 2 n + 5 3 n for n = 0, 1, 2,... (a) (2%) Find a 0, a 1, a 2, a 3 and a 4. (b) (2%) Show that
5.3 Improper Integrals Involving Rational and Exponential Functions
Section 5.3 Improper Integrals Involving Rational and Exponential Functions 99.. 3. 4. dθ +a cos θ =, < a
SOLVING EQUATIONS WITH EXCEL
SOLVING EQUATIONS WITH EXCEL Excel and Lotus software are equipped with functions that allow the user to identify the root of an equation. By root, we mean the values of x such that a given equation cancels
12.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following:
Section 1.6 Logarithmic and Exponential Equations 811 1.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Solve Quadratic Equations (Section
Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date
Leaving Certificate Honours Maths - Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many
ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section
ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 5-3.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 6-4.2 Solving Equations by
Chapter 11. Techniques of Integration
Chapter Techniques of Integration Chapter 6 introduced the integral. There it was defined numerically, as the limit of approximating Riemann sums. Evaluating integrals by applying this basic definition
