# Section 2.7 One-to-One Functions and Their Inverses

Size: px
Start display at page:

Transcription

1 Section. One-to-One Functions and Their Inverses One-to-One Functions HORIZONTAL LINE TEST: A function is one-to-one if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1. Functions x, x 3, x 5, 1/x, etc. are one-to-one, since if x 1 x, then x 1 x, x 3 1 x 3, x 5 1 x 5, 1 x 1 1 x. The function f(x) = 4x 3 is one-to-one. In fact, suppose x 1 and x are real numbers such that f(x 1 ) = f(x ). Then 4x 1 3 = 4x 3 4x 1 = 4x x 1 = x Therefore, f is one-to-one. 5 x 3. The function f(x) = +1 is one-to-one. In fact, suppose x 1 and x are real numbers such that f(x 1 ) = f(x ). Then 5 x1 +1 = 5 x +1 5 x1 = 5 x 5 x1 = 5 x x 1 = x Therefore, f is one-to-one. 4. Functions x, x 4, sinx, etc. are not one-to-one, since ( 1) = 1, ( 1) 4 = 1 4, sin0 = sinπ 1

2 DEFINITION: Let f be a one-to-one function with domain A and range B. Then its inverse function f 1 has domain B and range A and is defined by for any y in B. So, we can reformulate ( ) as f 1 (y) = x f(x) = y (f 1 f)(x) = f 1 (f(x)) = x for every x in the domain of f (f f 1 )(x) = f(f 1 (x)) = x for every x in the domain of f 1 IMPORTANT: Do not confuse f 1 with 1 f. EXAMPLES: 1. Let f(x) = x 3, then f 1 (x) = 3 x, since f 1 (f(x)) = f 1 (x 3 ) = 3 x 3 = x and f(f 1 (x)) = f( 3 x) = ( 3 x) 3 = x. Let f(x) = x 3 +1, then f 1 (x) = 3 x 1, since f 1 (f(x)) = f 1 (x 3 +1) = 3 (x 3 +1) 1 = x and f(f 1 (x)) = f( 3 x 1) = ( 3 x 1) 3 +1 = x ( ) 3. Let f(x) = x, then f 1 (x) = 1 x, since f 1 (f(x)) = f 1 (x) = 1 (x) = x and f(f 1 (x)) = f 4. Let f(x) = x, then f 1 (x) = x, since f 1 (f(x)) = f 1 (x) = x and f(f 1 (x)) = f(x) = x 5. Let f(x) = x+, then f 1 (x) = x, since f 1 (f(x)) = f 1 (x+) = (x+) ( ) ( ) 1 1 x = x = x ( ) ( x x = x and f(f 1 (x)) = f = ) + = x Step : Solve for x: y = x+ y = x+ = y = x = y f 1 (x) = x = x 6. Let f(x) = (3x ) 5 +. Find f 1 (x).

3 6. Let f(x) = (3x ) 5 +. Find f 1 (x). Step : Solve for x: y = (3x ) 5 + y = (3x ) 5 + = y = (3x ) 5 = 5 y = 3x = 5 y + = 3x 5 y + x = 3. Let f(x) = 3x 5 4 x. Find f 1 (x). f 1 (x) = 5 x Let f(x) = x. Find f 1 (x). 3

4 . Let f(x) = 3x 5 4 x, then f 1 (x) = 4x+5 3+x. Step : Solve for x: y = 3x 5 4 x y = 3x 5 4 x = y(4 x) = 3x 5 = 4y xy = 3x 5 = 4y+5 = 3x+xy 4y +5 = x(3+y) = 8. Let f(x) = x, then f 1 (x) = x, x 0. IMPORTANT: f 1 (x) = 4x+5 3+x domain of f 1 = range of f range of f 1 = domain of f 4y +5 3+y = x 9. Let f(x) = 3 x, then f 1 (x) = 3 x, x 0. Step : Solve for x: y = 3 x y = 3 x = y = 3 x = x = 3 y f 1 (x) = 3 x Since the range of f(x) is all nonnegative numbers, it follows that the domain of f 1 (x) is x 0. So, f 1 (x) = 3 x, x 0 4

5 10. Let f(x) = 3x, then f 1 (x) = 1 3 (x +), x 0 (see Appendix, page ). 11. Let f(x) = 4 x 1, then f 1 (x) = x 4 +1, x 0 (see Appendix, page ). 1. Let f(x) = x+5+1, then f 1 (x) = (x 1) 5, x 1 (see Appendix, page 8). 13. Let f(x) = 4 x +5, then f 1 (x) = (x 5)4 +, x 5 (see Appendix, page 8). 14. The function f(x) = x is not invertible, since it is not a one-to-one function. REMARK: Similarly, are not invertable functions. x 4, x 10, sinx, cosx, etc. 15. The function f(x) = (x+1) is not invertible. 16. Let f(x) = x,x 0, then f 1 (x) = x,x Let f(x) = x,x, then f 1 (x) = x,x Let f(x) = x,x < 3, then f 1 (x) = x,x > The function f(x) = x,x > 1 is not invertible. 0. Let f(x) = (x+1),x > 3. Find f 1 (x). 1. Let f(x) = (1+x),x 1. Find f 1 (x). 5

6 0. Let f(x) = (x+1),x > 3, then f 1 (x) = x 1,x > 16 (see Appendix, page 9). x+1 1. Let f(x) = (1+x),x 1, then f 1 (x) =,x 1 (see Appendix, page 9). THEOREM: If f has an inverse function f 1, then the graphs of y = f(x) and y = f 1 (x) are reflections of one another about the line y = x; that is, each is the mirror image of the other with respect to that line. EXAMPLE: The graph of a function f is given. Sketch the graph of f 1. 6

7 Appendix 10. Let f(x) = 3x, then f 1 (x) = 1 3 (x +), x 0. Step : Solve for x: y = 3x y = 3x = y = 3x = y + = 3x x = 1 3 (y +) f 1 (x) = 1 3 (x +) Finally, since the range of f is all nonnegative numbers, it follows that the domain of f 1 is x Let f(x) = 4 x 1, then f 1 (x) = x 4 +1, x 0. Step : Solve for x: y = 4 x 1 y = 4 x 1 = y 4 = x 1 x = y 4 +1 f 1 (x) = x 4 +1 Finally, since the range of f is all nonnegative numbers, it follows that the domain of f 1 is x 0.

8 1. Let f(x) = x+5+1, then f 1 (x) = (x 1) 5, x 1. Step : Solve for x: y = x+5+1 y = x+5+1 = y 1 = x+5 = (y 1) = x+5 x = (y 1) 5 f 1 (x) = (x 1) 5 Finally, since the range of f is all numbers 1, it follows that the domain of f 1 is x Let f(x) = 4 x +5, then f 1 (x) = (x 5)4 +, x 5. Step : Solve for x: y = 4 x +5 y = 4 x +5 = y 5 = 4 x = (y 5) 4 = x = (y 5) 4 + = x x = (y 5)4 + f 1 (x) = (x 5)4 + Finally, since the range of f is all numbers 5, it follows that the domain of f 1 is x 5. 8

9 0. Let f(x) = (x+1),x > 3, then f 1 (x) = x 1,x > 16. Step : Solve for x: y = (x+1) y = (x+1) = ± y = x+1 Since x is positive, it follows that y = x+1, x = y 1 f 1 (x) = x 1 To find the domain of f 1 we note that the range of f is all numbers > 16. Indeed, since x > 3, we have f(x) = (x+1) > (3+1) = 4 = 16 From this it follows that the domain of f 1 is x > 16. x+1 1. Let f(x) = (1+x),x 1, then f 1 (x) =,x 1. Step : Solve for x: y = (1+x) y = (1+x) = ± y = 1+x Since x 1, it follows that y = 1+x, hence y +1 y 1 = x = x+1 f 1 (x) = To find the domain of f 1 we note that the range of f is all numbers 1. Indeed, since x 1, we have f(x) = (1+x) (1+ ( 1)) = (1 ) = ( 1) = 1 From this it follows that the domain of f 1 is x 1. = x 9

### Inverse Functions and Logarithms

Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a one-to-one function if it never takes on the same value twice; that

### Continuity. DEFINITION 1: A function f is continuous at a number a if. lim

Continuity DEFINITION : A function f is continuous at a number a if f(x) = f(a) REMARK: It follows from the definition that f is continuous at a if and only if. f(a) is defined. 2. f(x) and +f(x) exist.

### x 2 if 2 x < 0 4 x if 2 x 6

Piecewise-defined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < 4 x if x 6 Piecewise-defined Functions Example Consider the function f defined by x if x < 0 f (x) =

### List the elements of the given set that are natural numbers, integers, rational numbers, and irrational numbers. (Enter your answers as commaseparated

MATH 142 Review #1 (4717995) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Description This is the review for Exam #1. Please work as many problems as possible

### Section 12.6: Directional Derivatives and the Gradient Vector

Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

### Homework # 3 Solutions

Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8

### Calculus with Parametric Curves

Calculus with Parametric Curves Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x f(t), y g(t) where y is also a differentiable function

### GRE Prep: Precalculus

GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach

### Objective: Use calculator to comprehend transformations.

math111 (Bradford) Worksheet #1 Due Date: Objective: Use calculator to comprehend transformations. Here is a warm up for exploring manipulations of functions. specific formula for a function, say, Given

### Math 241, Exam 1 Information.

Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

### Section 8.4 - Composite and Inverse Functions

Math 127 - Section 8.4 - Page 1 Section 8.4 - Composite and Inverse Functions I. Composition of Functions A. If f and g are functions, then the composite function of f and g (written f g) is: (f g)( =

### I. Pointwise convergence

MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.

### Practice with Proofs

Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

### Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

### LIMITS AND CONTINUITY

LIMITS AND CONTINUITY 1 The concept of it Eample 11 Let f() = 2 4 Eamine the behavior of f() as approaches 2 2 Solution Let us compute some values of f() for close to 2, as in the tables below We see from

### 6.4 Logarithmic Equations and Inequalities

6.4 Logarithmic Equations and Inequalities 459 6.4 Logarithmic Equations and Inequalities In Section 6.3 we solved equations and inequalities involving exponential functions using one of two basic strategies.

### Limits and Continuity

Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function

### The Mean Value Theorem

The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers

### x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

### Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is one-to-one, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function

### Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s

### I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

### H/wk 13, Solutions to selected problems

H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.

### 1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some

Section 3.1: First Derivative Test Definition. Let f be a function with domain D. 1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some open interval containing c. The number

### MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x

### Calculus 1: Sample Questions, Final Exam, Solutions

Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.

### 5.1 Derivatives and Graphs

5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has

### MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

### G.A. Pavliotis. Department of Mathematics. Imperial College London

EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.

### 2.5 Transformations of Functions

2.5 Transformations of Functions Section 2.5 Notes Page 1 We will first look at the major graphs you should know how to sketch: Square Root Function Absolute Value Function Identity Function Domain: [

### Inverse Trig Functions

Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that

### 2.2 Separable Equations

2.2 Separable Equations 73 2.2 Separable Equations An equation y = f(x, y) is called separable provided algebraic operations, usually multiplication, division and factorization, allow it to be written

### Math 265 (Butler) Practice Midterm II B (Solutions)

Math 265 (Butler) Practice Midterm II B (Solutions) 1. Find (x 0, y 0 ) so that the plane tangent to the surface z f(x, y) x 2 + 3xy y 2 at ( x 0, y 0, f(x 0, y 0 ) ) is parallel to the plane 16x 2y 2z

### PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

### TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

### FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x

### Lecture 3: Derivatives and extremes of functions

Lecture 3: Derivatives and extremes of functions Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2011 Lejla Batina Version: spring 2011 Wiskunde 1 1 / 16

### Lectures 5-6: Taylor Series

Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

### x a x 2 (1 + x 2 ) n.

Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

### Notes for EER #4 Graph transformations (vertical & horizontal shifts, vertical stretching & compression, and reflections) of basic functions.

Notes for EER #4 Graph transformations (vertical & horizontal shifts, vertical stretching & compression, and reflections) of basic functions. Basic Functions In several sections you will be applying shifts

### 1 if 1 x 0 1 if 0 x 1

Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

### Taylor and Maclaurin Series

Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions

### 36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?

36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this

### MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

### Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

### CS 261 Fall 2011 Solutions to Assignment #4

CS 61 Fall 011 Solutions to Assignment #4 The following four algorithms are used to implement the bisection method, Newton s method, the secant method, and the method of false position, respectively. In

### 4.3 Lagrange Approximation

206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

### Chapter 8 - Power Density Spectrum

EE385 Class Notes 8/8/03 John Stensby Chapter 8 - Power Density Spectrum Let X(t) be a WSS random process. X(t) has an average power, given in watts, of E[X(t) ], a constant. his total average power is

### Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.

MAC 1105 Final Review Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. 1) 8x 2-49x + 6 x - 6 A) 1, x 6 B) 8x - 1, x 6 x -

### Chapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation

Chapter 6 Linear Transformation 6 Intro to Linear Transformation Homework: Textbook, 6 Ex, 5, 9,, 5,, 7, 9,5, 55, 57, 6(a,b), 6; page 7- In this section, we discuss linear transformations 89 9 CHAPTER

### Exponential and Logarithmic Functions

Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

### Factorization in Polynomial Rings

Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important

### Review of Matlab for Differential Equations. Lia Vas

Review of Matlab for Differential Equations Lia Vas 1. Basic arithmetic (Practice problems 1) 2. Solving equations with solve (Practice problems 2) 3. Representing functions 4. Graphics 5. Parametric Plots

### www.pioneermathematics.com

Problems and Solutions: INMO-2012 1. Let ABCD be a quadrilateral inscribed in a circle. Suppose AB = 2+ 2 and AB subtends 135 at the centre of the circle. Find the maximum possible area of ABCD. Solution:

### a cos x + b sin x = R cos(x α)

a cos x + b sin x = R cos(x α) In this unit we explore how the sum of two trigonometric functions, e.g. cos x + 4 sin x, can be expressed as a single trigonometric function. Having the ability to do this

### *X100/12/02* X100/12/02. MATHEMATICS HIGHER Paper 1 (Non-calculator) MONDAY, 21 MAY 1.00 PM 2.30 PM NATIONAL QUALIFICATIONS 2012

X00//0 NTIONL QULIFITIONS 0 MONY, MY.00 PM.0 PM MTHEMTIS HIGHER Paper (Non-calculator) Read carefully alculators may NOT be used in this paper. Section Questions 0 (40 marks) Instructions for completion

### 1 The Concept of a Mapping

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 1 The Concept of a Mapping The concept of a mapping (aka function) is important throughout mathematics. We have been dealing

### Algebra 2: Themes for the Big Final Exam

Algebra : Themes for the Big Final Exam Final will cover the whole year, focusing on the big main ideas. Graphing: Overall: x and y intercepts, fct vs relation, fct vs inverse, x, y and origin symmetries,

### PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS

PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

### MATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1

MATH 3B: MIDTERM REVIEW JOE HUGHES. Inverses. Let f() = 3. Find the inverse g() for f. Solution: Setting y = ( 3) and solving for gives and g() = +3. y 3y = = + 3y y. Let f() = 4 + 3. Find a domain on

### Solutions to Practice Problems for Test 4

olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,

### Separable First Order Differential Equations

Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously

### MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform

MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish

### Implicit Differentiation

Implicit Differentiation Sometimes functions are given not in the form y = f(x) but in a more complicated form in which it is difficult or impossible to express y explicitly in terms of x. Such functions

### To differentiate logarithmic functions with bases other than e, use

To ifferentiate logarithmic functions with bases other than e, use 1 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b 1 To ifferentiate logarithmic functions with

### Using a table of derivatives

Using a table of derivatives In this unit we construct a Table of Derivatives of commonly occurring functions. This is done using the knowledge gained in previous units on differentiation from first principles.

### FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.

FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is

### ALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals

ALGEBRA REVIEW LEARNING SKILLS CENTER The "Review Series in Algebra" is taught at the beginning of each quarter by the staff of the Learning Skills Center at UC Davis. This workshop is intended to be an

### Vector Spaces. Chapter 2. 2.1 R 2 through R n

Chapter 2 Vector Spaces One of my favorite dictionaries (the one from Oxford) defines a vector as A quantity having direction as well as magnitude, denoted by a line drawn from its original to its final

### L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

### Homework #1 Solutions

MAT 303 Spring 203 Homework # Solutions Problems Section.:, 4, 6, 34, 40 Section.2:, 4, 8, 30, 42 Section.4:, 2, 3, 4, 8, 22, 24, 46... Verify that y = x 3 + 7 is a solution to y = 3x 2. Solution: From

### Scalar Valued Functions of Several Variables; the Gradient Vector

Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,

### MULTIPLE INTEGRALS. h 2 (y) are continuous functions on [c, d] and let f(x, y) be a function defined on R. Then

MULTIPLE INTEGALS 1. ouble Integrals Let be a simple region defined by a x b and g 1 (x) y g 2 (x), where g 1 (x) and g 2 (x) are continuous functions on [a, b] and let f(x, y) be a function defined on.

### Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0

College Algebra Review Problems for Final Exam Equations #1-10 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve

### INVERSE TRIGONOMETRIC FUNCTIONS. Colin Cox

INVERSE TRIGONOMETRIC FUNCTIONS Colin Cox WHAT IS AN INVERSE TRIG FUNCTION? Used to solve for the angle when you know two sides of a right triangle. For example if a ramp is resting against a trailer,

### www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

### 3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

### 88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

### x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3

CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -

### BEST METHODS FOR SOLVING QUADRATIC INEQUALITIES.

BEST METHODS FOR SOLVING QUADRATIC INEQUALITIES. I. GENERALITIES There are 3 common methods to solve quadratic inequalities. Therefore, students sometimes are confused to select the fastest and the best

### Review of Fundamental Mathematics

Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

### WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS.

WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS. DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE Contributor: U.N.Iyer Department of Mathematics and Computer Science, CP 315, Bronx Community College, University

### 5.2 Inverse Functions

78 Further Topics in Functions. Inverse Functions Thinking of a function as a process like we did in Section., in this section we seek another function which might reverse that process. As in real life,

### The Derivative. Philippe B. Laval Kennesaw State University

The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition

### v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.

3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

### 8 Hyperbolic Systems of First-Order Equations

8 Hyperbolic Systems of First-Order Equations Ref: Evans, Sec 73 8 Definitions and Examples Let U : R n (, ) R m Let A i (x, t) beanm m matrix for i,,n Let F : R n (, ) R m Consider the system U t + A

### 10 Polar Coordinates, Parametric Equations

Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates

### Pre-Session Review. Part 2: Mathematics of Finance

Pre-Session Review Part 2: Mathematics of Finance For this section you will need a calculator with logarithmic and exponential function keys (such as log, ln, and x y ) D. Exponential and Logarithmic Functions

### a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F

FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all

### COMPONENTS OF VECTORS

COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two

### Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd

5.1 Polynomial Functions A polynomial unctions is a unction o the orm = a n n + a n-1 n-1 + + a 1 + a 0 Eample: = 3 3 + 5 - The domain o a polynomial unction is the set o all real numbers. The -intercepts

### DERIVATIVES AS MATRICES; CHAIN RULE

DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we

### Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

### Math Placement Test Practice Problems

Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211

### Solutions Manual for How to Read and Do Proofs

Solutions Manual for How to Read and Do Proofs An Introduction to Mathematical Thought Processes Sixth Edition Daniel Solow Department of Operations Weatherhead School of Management Case Western Reserve

### x 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y

MA7 - Calculus I for thelife Sciences Final Exam Solutions Spring -May-. Consider the function defined implicitly near (,) byx y +xy =y. (a) [7 points] Use implicit differentiation to find the derivative

### Cartesian Products and Relations

Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special