To differentiate logarithmic functions with bases other than e, use

Size: px
Start display at page:

Download "To differentiate logarithmic functions with bases other than e, use"

Transcription

1 To ifferentiate logarithmic functions with bases other than e, use 1

2 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b

3 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b Example Fin the erivative of y = log 2 (5x 3 ).

4 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b Example Fin the erivative of y = log 2 (5x 3 ). Solution y x = x ( ) ln 5x 3 ln 2

5 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b Example Fin the erivative of y = log 2 (5x 3 ). Solution y x = x ( ) ln 5x 3 ln 2 = x ( 1 ln 2 ln 5x3 )

6 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b Example Fin the erivative of y = log 2 (5x 3 ). Solution y x = x ( ) ln 5x 3 ln 2 = x ( 1 ln 2 ln 5x3 ) = 1 ln 2 (ln ln x) x properties of log

7 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b Example Fin the erivative of y = log 2 (5x 3 ). Solution y x = x ( ) ln 5x 3 ln 2 = x ( 1 ln 2 ln 5x3 ) = = 1 ln 2 1 ln 2 (ln ln x) x ( ) x properties of log

8 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b Example Fin the erivative of y = log 2 (5x 3 ). Solution y x = x ( ) ln 5x 3 ln 2 = x ( 1 ln 2 ln 5x3 ) = = 1 ln 2 1 ln 2 (ln ln x) x ( ) x properties of log = 3 x ln 2

9 2 Exponential functions of other bases To ifferentiate f (x) = b x where b e

10 2 Exponential functions of other bases To ifferentiate f (x) = b x where b e Metho 1 Express b x using exponential with base e. Metho 2 Use a technique calle logarithmic ifferentiation.

11 2 Exponential functions of other bases To ifferentiate f (x) = b x where b e Metho 1 Express b x using exponential with base e. y = b x Metho 2 Use a technique calle logarithmic ifferentiation.

12 2 Exponential functions of other bases To ifferentiate f (x) = b x where b e Metho 1 Express b x using exponential with base e. y = b x ln y = ln b x = x ln b Metho 2 Use a technique calle logarithmic ifferentiation.

13 2 Exponential functions of other bases To ifferentiate f (x) = b x where b e Metho 1 Express b x using exponential with base e. y = b x ln y = ln b x = x ln b (ln b)x y = e Metho 2 Use a technique calle logarithmic ifferentiation.

14 2 Exponential functions of other bases To ifferentiate f (x) = b x where b e Metho 1 Express b x using exponential with base e. y = b x ln y = ln b x = x ln b (ln b)x y = e Metho 2 Use a technique calle logarithmic ifferentiation. Both methos nee chain rule.

15 3 Chapter 9: More Differentiation Chain Rule Implicit Differentiation More Curve Sketching More Extremum Problems Objectives To use Chain Rule to o ifferentiation. To use Implicit Differentiation to fin y x. To apply ifferentiation.

16 4 Up to this moment, can ifferentiate simple functions like (1) f (x) = x (2) f (x) = x 1 x + 1 (3) f (x) = sin x (4) f (x) = e x + 2 tan x (5) f (x) = ln x cos x ex x using simple rules an formulas erive in the last few chapters.

17 5 How about (1) g(x) = sin(x 2 )? (2) g(x) = e x2 +1? (3) g(x) = ln(1 + 2x)?

18 5 How about (1) g(x) = sin(x 2 )? (2) g(x) = e x2 +1? (3) g(x) = ln(1 + 2x)? Nee the chain rule most important rule for fining erivatives, use for ifferentiating composite functions.

19 5 How about (1) g(x) = sin(x 2 )? g(x) = sin f (x) where f (x) = x 2 (2) g(x) = e x2 +1? (3) g(x) = ln(1 + 2x)? Nee the chain rule most important rule for fining erivatives, use for ifferentiating composite functions.

20 5 How about (1) g(x) = sin(x 2 )? g(x) = sin f (x) where f (x) = x 2 (2) g(x) = e x2 +1? g(x) = e f (x) where f (x) = x (3) g(x) = ln(1 + 2x)? Nee the chain rule most important rule for fining erivatives, use for ifferentiating composite functions.

21 5 How about (1) g(x) = sin(x 2 )? g(x) = sin f (x) where f (x) = x 2 (2) g(x) = e x2 +1? g(x) = e f (x) where f (x) = x (3) g(x) = ln(1 + 2x)? g(x) = ln f (x) where f (x) = 1 + 2x Nee the chain rule most important rule for fining erivatives, use for ifferentiating composite functions.

22 Composition of Functions Recall (g f )(x) = g ( f (x) ) 6

23 6 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Let f (x) = sin x an g(x) = x 2. Fin (1) ( f g)(x) (2) (g f )(x)

24 6 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Let f (x) = sin x an g(x) = x 2. Fin (1) ( f g)(x) Solution ( f g)(x) = f ( g(x) ) (2) (g f )(x)

25 6 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Let f (x) = sin x an g(x) = x 2. Fin (1) ( f g)(x) Solution ( f g)(x) = f ( g(x) ) = f (x 2 ) (2) (g f )(x)

26 6 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Let f (x) = sin x an g(x) = x 2. Fin (1) ( f g)(x) Solution ( f g)(x) = f ( g(x) ) = f (x 2 ) = sin(x 2 ) = sin x 2 (2) (g f )(x)

27 6 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Let f (x) = sin x an g(x) = x 2. Fin (1) ( f g)(x) Solution ( f g)(x) = f ( g(x) ) = f (x 2 ) = sin(x 2 ) = sin x 2 (2) (g f )(x) Solution (g f )(x) = g ( f (x) )

28 6 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Let f (x) = sin x an g(x) = x 2. Fin (1) ( f g)(x) Solution ( f g)(x) = f ( g(x) ) = f (x 2 ) = sin(x 2 ) = sin x 2 (2) (g f )(x) Solution (g f )(x) = g ( f (x) ) = g(sin x)

29 6 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Let f (x) = sin x an g(x) = x 2. Fin (1) ( f g)(x) Solution ( f g)(x) = f ( g(x) ) = f (x 2 ) = sin(x 2 ) = sin x 2 (2) (g f )(x) Solution (g f )(x) = g ( f (x) ) = g(sin x) = (sin x) 2 = sin 2 x

30 7 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Express e x2 +1 as composition of two functions.

31 7 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Express e x2 +1 as composition of two functions. Solution Let f (x) = x an

32 7 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Express e x2 +1 as composition of two functions. Solution Let f (x) = x an e x2 +1 = e f (x)

33 7 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Express e x2 +1 as composition of two functions. Solution Let f (x) = x an g(x) = e x. Then e x2 +1 = e f (x)

34 7 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Express e x2 +1 as composition of two functions. Solution Let f (x) = x an g(x) = e x. Then e x2 +1 = e f (x) = g ( f (x) )

35 8 Chain Rule If y is a ifferentiable function of u an u is a ifferentiable function of x, then y is a ifferentiable function of x an

36 8 Chain Rule If y is a ifferentiable function of u an u is a ifferentiable function of x, then y is a ifferentiable function of x an y x = y u u x

37 8 Chain Rule If y is a ifferentiable function of u an u is a ifferentiable function of x, then y is a ifferentiable function of x an y x = y u u x Iea of proof y x = lim x 0 y x lim h 0 f (x + h) f (x) h

38 8 Chain Rule If y is a ifferentiable function of u an u is a ifferentiable function of x, then y is a ifferentiable function of x an y x = y u u x Iea of proof y x = lim x 0 y x lim h 0 f (x + h) f (x) h ( y = lim x 0 u u ) x

39 8 Chain Rule If y is a ifferentiable function of u an u is a ifferentiable function of x, then y is a ifferentiable function of x an y x = y u u x Iea of proof y x = lim x 0 y x lim h 0 f (x + h) f (x) h ( y = lim x 0 u u ) x = lim u 0 y u lim x 0 u x

40 8 Chain Rule If y is a ifferentiable function of u an u is a ifferentiable function of x, then y is a ifferentiable function of x an y x = y u u x Iea of proof y x = lim x 0 y x lim h 0 f (x + h) f (x) h ( y = lim x 0 u u ) x = lim u 0 = y u u x y u lim x 0 u x

41 9 Chain Rule in alternative form Put y = f (u) an u = g(x).

42 9 Chain Rule in alternative form Put y = f (u) an u = g(x). Then y = ( f g)(x) (composition of functions)

43 9 Chain Rule in alternative form Put y = f (u) an u = g(x). Then y = ( f g)(x) (composition of functions) ( f g) (x) = y x

44 9 Chain Rule in alternative form Put y = f (u) an u = g(x). Then y = ( f g)(x) (composition of functions) ( f g) (x) = y x = y u u x

45 9 Chain Rule in alternative form Put y = f (u) an u = g(x). Then y = ( f g)(x) (composition of functions) ( f g) (x) = y x = y u u x = f (u) g (x)

46 9 Chain Rule in alternative form Put y = f (u) an u = g(x). Then y = ( f g)(x) (composition of functions) ( f g) (x) = y x = y u u x = f (u) g (x) ( f g) (x) = f ( g(x) ) g (x)

47 10 Example Fin x (x2 + 5) 3 (1) without using chain rule; (2) using chain rule.

48 10 Example Fin x (x2 + 5) 3 (1) without using chain rule; (2) using chain rule. Solution (1) (without chain rule) Expaning (x 2 + 5) 3 = (x 2 ) 3 + 3(x 2 ) 2 (5) + 3(x 2 )(5 2 ) = x x x

49 10 Example Fin x (x2 + 5) 3 (1) without using chain rule; (2) using chain rule. Solution (1) (without chain rule) Expaning (x 2 + 5) 3 = (x 2 ) 3 + 3(x 2 ) 2 (5) + 3(x 2 )(5 2 ) Differentiating term by term: = x x x x (x2 + 5) 3 = x (x6 + 15x x ) = 6x x x = 6x x x

50 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule)

51 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule) Put u = x 2 + 5

52 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule) Put u = x an y = u 3.

53 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule) Put u = x an y = u 3. Then y = (x 2 + 5) 3.

54 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule) Put u = x an y = u 3. Then y = (x 2 + 5) 3. x (x2 + 5) 3 = y x

55 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule) Put u = x an y = u 3. Then y = (x 2 + 5) 3. x (x2 + 5) 3 = y x = y u u x chain rule

56 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule) Put u = x an y = u 3. Then y = (x 2 + 5) 3. x (x2 + 5) 3 = y x = y u u x = u u3 x (x2 + 5) chain rule

57 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule) Put u = x an y = u 3. Then y = (x 2 + 5) 3. x (x2 + 5) 3 = y x = y u u x = u u3 = 3u 2 2x x (x2 + 5) chain rule

58 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule) Put u = x an y = u 3. Then y = (x 2 + 5) 3. x (x2 + 5) 3 = y x = y u u x = u u3 = 3u 2 2x x (x2 + 5) = 3(x 2 + 5) 2 (2x) chain rule

59 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule) Put u = x an y = u 3. Then y = (x 2 + 5) 3. x (x2 + 5) 3 = y x = y u u x = u u3 = 3u 2 2x x (x2 + 5) = 3(x 2 + 5) 2 (2x) = 6x(x 2 + 5) 2 chain rule

60 Metho 1 Answer is 6x x x Metho 2 Answer is 6x(x 2 + 5) 2 12 Remark 1 The above two results are the same.

61 Metho 1 Answer is 6x x x Metho 2 Answer is 6x(x 2 + 5) 2 12 Remark 1 The above two results are the same. Remark 2 If change the function to y = (x 2 + 5) 1 3, first metho can t be applie.

62 Metho 1 Answer is 6x x x Metho 2 Answer is 6x(x 2 + 5) 2 12 Remark 1 The above two results are the same. Remark 2 If change the function to y = (x 2 + 5) 1 3, first metho can t be applie. Metho 1 (x 2 + 5) 3 = (x 2 ) 3 + 3(x 2 ) 2 (5) + 3(x 2 )(5 2 ) + 5 3

63 Metho 1 Answer is 6x x x Metho 2 Answer is 6x(x 2 + 5) 2 12 Remark 1 The above two results are the same. Remark 2 If change the function to y = (x 2 + 5) 3, 1 first metho can t be applie. Metho 1 (x 2 + 5) 3 = (x 2 ) 3 + 3(x 2 ) 2 (5) + 3(x 2 )(5 2 ) (x 2 + 5) 1 3 no way to expan

64 Metho 1 Answer is 6x x x Metho 2 Answer is 6x(x 2 + 5) 2 12 Remark 1 The above two results are the same. Remark 2 If change the function to y = (x 2 + 5) 3, 1 first metho can t be applie. Metho 1 (x 2 + 5) 3 = (x 2 ) 3 + 3(x 2 ) 2 (5) + 3(x 2 )(5 2 ) (x 2 + 5) 1 3 no way to expan Metho 2 Put u = x an y = u 3. Then y = (x 2 + 5) 3.

65 Metho 1 Answer is 6x x x Metho 2 Answer is 6x(x 2 + 5) 2 12 Remark 1 The above two results are the same. Remark 2 If change the function to y = (x 2 + 5) 3, 1 first metho can t be applie. Metho 1 (x 2 + 5) 3 = (x 2 ) 3 + 3(x 2 ) 2 (5) + 3(x 2 )(5 2 ) (x 2 + 5) 1 3 no way to expan Metho 2 Put u = x an y = u 3. Then y = (x 2 + 5) 3. Put u = x an y = u 1 3. Then y = (x 2 + 5) 3. 1

66 Metho 1 Answer is 6x x x 12 Metho 2 Answer is 6x(x 2 + 5) 2 Remark 1 The above two results are the same. Remark 2 If change the function to y = (x 2 + 5) 3, 1 first metho can t be applie. Metho 1 (x 2 + 5) 3 = (x 2 ) 3 + 3(x 2 ) 2 (5) + 3(x 2 )(5 2 ) (x 2 + 5) 1 3 no way to expan Metho 2 Put u = x an y = u 3. Then y = (x 2 + 5) 3. Put u = x an y = u 1 3. Then y = (x 2 + 5) 3. 1 Secon metho makes use of the chain rule together with the power rule.

67 13 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x x ex = e x x ln x = 1 x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x) x tan[ f (x)] = sec2 [ f (x)] x x e f (x) = e f (x) ln[ f (x)] = 1 f (x) x f (x) x f (x) x f (x)

68 14 (3) x cos[ f (x)] = sin[ f (x)] x f (x) Proof

69 14 (3) x cos[ f (x)] = sin[ f (x)] x f (x) Proof Put u = f (x) an y = cos u.

70 14 (3) Proof x cos[ f (x)] = sin[ f (x)] x f (x) Put u = f (x) an y = cos u. Then y = cos f (x) an so

71 14 (3) Proof x cos[ f (x)] = sin[ f (x)] x f (x) Put u = f (x) an y = cos u. Then y = cos f (x) an so y cos[ f (x)] = x x

72 14 (3) Proof x cos[ f (x)] = sin[ f (x)] x f (x) Put u = f (x) an y = cos u. Then y = cos f (x) an so y cos[ f (x)] = x x = y u u x chain rule

73 14 (3) Proof x cos[ f (x)] = sin[ f (x)] x f (x) Put u = f (x) an y = cos u. Then y = cos f (x) an so y cos[ f (x)] = x x = y u u x = u cos u u x chain rule

74 14 (3) Proof x cos[ f (x)] = sin[ f (x)] x f (x) Put u = f (x) an y = cos u. Then y = cos f (x) an so y cos[ f (x)] = x x = y u u x = u cos u u x = sin u u x chain rule

75 14 (3) Proof x cos[ f (x)] = sin[ f (x)] x f (x) Put u = f (x) an y = cos u. Then y = cos f (x) an so y cos[ f (x)] = x x = y u u x = u cos u u x = sin u u x = sin[ f (x)] chain rule x f (x)

76 15 (6) x ln[ f (x)] = 1 f (x) x f (x) Proof

77 15 (6) x ln[ f (x)] = 1 f (x) x f (x) Proof Put u = f (x) an y = ln u.

78 15 (6) x ln[ f (x)] = 1 f (x) x f (x) Proof Put u = f (x) an y = ln u. Then y = ln f (x) an so

79 15 (6) x ln[ f (x)] = 1 f (x) x f (x) Proof Put u = f (x) an y = ln u. Then y = ln f (x) an so y ln[ f (x)] = x x

80 15 (6) x ln[ f (x)] = 1 f (x) x f (x) Proof Put u = f (x) an y = ln u. Then y = ln f (x) an so y ln[ f (x)] = x x = y u u x chain rule

81 15 (6) x ln[ f (x)] = 1 f (x) x f (x) Proof Put u = f (x) an y = ln u. Then y = ln f (x) an so y ln[ f (x)] = x x = y u u x = u ln u u x chain rule

82 15 (6) x ln[ f (x)] = 1 f (x) x f (x) Proof Put u = f (x) an y = ln u. Then y = ln f (x) an so y ln[ f (x)] = x x = y u u x = u = 1 u u x ln u u x chain rule

83 15 (6) x ln[ f (x)] = 1 f (x) x f (x) Proof Put u = f (x) an y = ln u. Then y = ln f (x) an so y ln[ f (x)] = x x = y u u x = u = 1 u u x = 1 f (x) ln u u x x f (x) chain rule

84 16 Simple Form General Form x xr = rx r 1

85 16 Simple Form x xr = rx r 1 General Form x [ f (x)]r = r[ f (x)] r 1 x f (x)

86 16 Simple Form x xr = rx r 1 x sin x = cos x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x)

87 16 Simple Form x xr = rx r 1 x sin x = cos x General Form x [ f (x)]r = r[ f (x)] r 1 x sin[ f (x)] = x f (x)

88 16 Simple Form x xr = rx r 1 x sin x = cos x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x)

89 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x)

90 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] =

91 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x)

92 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x)

93 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x) x tan[ f (x)] =

94 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x) x tan[ f (x)] = sec2 [ f (x)] x f (x)

95 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x x ex = e x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x) x tan[ f (x)] = sec2 [ f (x)] x f (x)

96 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x x ex = e x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x) x tan[ f (x)] = sec2 [ f (x)] x e f (x) = x f (x)

97 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x x ex = e x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x) x tan[ f (x)] = sec2 [ f (x)] x e f (x) = e f (x) x f (x) x f (x)

98 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x x ex = e x x ln x = 1 x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x) x tan[ f (x)] = sec2 [ f (x)] x e f (x) = e f (x) x f (x) x f (x)

99 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x x ex = e x x ln x = 1 x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x) x tan[ f (x)] = sec2 [ f (x)] x x e f (x) = e f (x) ln[ f (x)] = x f (x) x f (x)

100 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x x ex = e x x ln x = 1 x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x) x tan[ f (x)] = sec2 [ f (x)] x x e f (x) = e f (x) ln[ f (x)] = 1 f (x) x f (x) x f (x) x f (x)

101 17 Example Fin y x for the following: (1) y = sin(x 2 + 1) (2) y = e x3 +2 (3) y = ln(x 4 3x + 2) (4) y = e x5 +tan x 5 (5) y = ln[sin 2 (2x + 3)] (6) y = 1 (x 2 3e4x+1 + 3) 40 (7) y = e x+1 ln(x 2 + 1)

102 18 Example Fin y x for the following: (1) y = sin(x 2 + 1)

103 18 Example Fin y x for the following: (1) y = sin(x 2 + 1) Solution y x = x sin(x2 + 1)

104 18 Example Fin y x for the following: (1) y = sin(x 2 + 1) Solution y x = x sin(x2 + 1) = cos(x 2 + 1) x (x2 + 1)

105 18 Example Fin y x for the following: (1) y = sin(x 2 + 1) Solution y x = x sin(x2 + 1) = cos(x 2 + 1) = 2x cos(x 2 + 1) x (x2 + 1)

106 18 Example Fin y x for the following: (1) y = sin(x 2 + 1) Solution (2) y = e x3 +2 y x = x sin(x2 + 1) = cos(x 2 + 1) = 2x cos(x 2 + 1) x (x2 + 1)

107 18 Example Fin y x for the following: (1) y = sin(x 2 + 1) Solution (2) y = e x3 +2 Solution y x y x = x sin(x2 + 1) = cos(x 2 + 1) = 2x cos(x 2 + 1) = x ex3 +2 x (x2 + 1)

108 18 Example Fin y x for the following: (1) y = sin(x 2 + 1) Solution (2) y = e x3 +2 Solution y x y x = x sin(x2 + 1) = cos(x 2 + 1) = 2x cos(x 2 + 1) = x ex3 +2 = e x3 +2 x (x3 + 2) x (x2 + 1)

109 18 Example Fin y x for the following: (1) y = sin(x 2 + 1) Solution (2) y = e x3 +2 Solution y x y x = x sin(x2 + 1) = cos(x 2 + 1) = 2x cos(x 2 + 1) = x ex3 +2 = e x3 +2 = 3x 2 e x3 +2 x (x3 + 2) x (x2 + 1)

110 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2)

111 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2)

112 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2) = 1 x 4 3x + 2 x (x4 3x + 2)

113 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2) = 1 x 4 3x + 2 x (x4 3x + 2) = 4x 3 3 x 4 3x + 2

114 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2) = 1 x 4 3x + 2 x (x4 3x + 2) = 4x 3 3 x 4 3x + 2 (4) y = e x5 +tan x 5

115 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2) = 1 x 4 3x + 2 x (x4 3x + 2) = 4x 3 3 x 4 3x + 2 (4) y = e x5 +tan x 5 Solution y x = x ex5 +tan x 5

116 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2) = 1 x 4 3x + 2 x (x4 3x + 2) = 4x 3 3 x 4 3x + 2 (4) y = e x5 +tan x 5 Solution y x = x ex5 +tan x 5 = e x5 +tan x 5 x (x5 + tan x 5 )

117 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2) = 1 x 4 3x + 2 x (x4 3x + 2) = 4x 3 3 x 4 3x + 2 (4) y = e x5 +tan x 5 Solution y x = x ex5 +tan x 5 = e x5 +tan x 5 x (x5 + tan x 5 ) = e x5 +tan x 5 (5x 4 + x tan (x5 ) o in your hea)

118 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2) = 1 x 4 3x + 2 x (x4 3x + 2) = 4x 3 3 x 4 3x + 2 (4) y = e x5 +tan x 5 Solution y x = x ex5 +tan x 5 = e x5 +tan x 5 x (x5 + tan x 5 ) = e x5 +tan x 5 (5x 4 + x tan (x5 ) o in your hea) = e x5 +tan x 5 (5x 4 + sec 2 x 5 x x5 )

119 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2) = 1 x 4 3x + 2 x (x4 3x + 2) = 4x 3 3 x 4 3x + 2 (4) y = e x5 +tan x 5 Solution y x = x ex5 +tan x 5 = e x5 +tan x 5 x (x5 + tan x 5 ) = e x5 +tan x 5 (5x 4 + x tan (x5 ) o in your hea) = e x5 +tan x 5 (5x 4 + sec 2 x 5 x x5 ) = e x5 +tan x 5 (5x 4 + 5x 4 sec 2 x 5 )

120 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2) = 1 x 4 3x + 2 x (x4 3x + 2) = 4x 3 3 x 4 3x + 2 (4) y = e x5 +tan x 5 Solution y x = x ex5 +tan x 5 = e x5 +tan x 5 x (x5 + tan x 5 ) = e x5 +tan x 5 (5x 4 + x tan (x5 ) o in your hea) = e x5 +tan x 5 (5x 4 + sec 2 x 5 x x5 ) = e x5 +tan x 5 (5x 4 + 5x 4 sec 2 x 5 ) = 5x 4 (1 + sec 2 x 5 )e x5 +tan x 5

20. Product rule, Quotient rule

20. Product rule, Quotient rule 20. Prouct rule, 20.1. Prouct rule Prouct rule, Prouct rule We have seen that the erivative of a sum is the sum of the erivatives: [f(x) + g(x)] = x x [f(x)] + x [(g(x)]. One might expect from this that

More information

2 Integrating Both Sides

2 Integrating Both Sides 2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

More information

Using a table of derivatives

Using a table of derivatives Using a table of derivatives In this unit we construct a Table of Derivatives of commonly occurring functions. This is done using the knowledge gained in previous units on differentiation from first principles.

More information

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

Inverse Functions and Logarithms

Inverse Functions and Logarithms Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a one-to-one function if it never takes on the same value twice; that

More information

Calculus 1: Sample Questions, Final Exam, Solutions

Calculus 1: Sample Questions, Final Exam, Solutions Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions

More information

Math 113 HW #7 Solutions

Math 113 HW #7 Solutions Math 3 HW #7 Solutions 35 0 Given find /dx by implicit differentiation y 5 + x 2 y 3 = + ye x2 Answer: Differentiating both sides with respect to x yields 5y 4 dx + 2xy3 + x 2 3y 2 ) dx = dx ex2 + y2x)e

More information

f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1

f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1 Exponential Functions an their Derivatives Exponential functions are functions of the form f(x) = a x, where a is a positive constant referre to as the base. The functions f(x) = x, g(x) = e x, an h(x)

More information

Lecture 3: Derivatives and extremes of functions

Lecture 3: Derivatives and extremes of functions Lecture 3: Derivatives and extremes of functions Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2011 Lejla Batina Version: spring 2011 Wiskunde 1 1 / 16

More information

INTEGRATING FACTOR METHOD

INTEGRATING FACTOR METHOD Differential Equations INTEGRATING FACTOR METHOD Graham S McDonald A Tutorial Module for learning to solve 1st order linear differential equations Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk

More information

Homework # 3 Solutions

Homework # 3 Solutions Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8

More information

The Derivative. Philippe B. Laval Kennesaw State University

The Derivative. Philippe B. Laval Kennesaw State University The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition

More information

Nonhomogeneous Linear Equations

Nonhomogeneous Linear Equations Nonhomogeneous Linear Equations In this section we learn how to solve second-order nonhomogeneous linear differential equations with constant coefficients, that is, equations of the form ay by cy G x where

More information

Differentiation and Integration

Differentiation and Integration This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

100. In general, we can define this as if b x = a then x = log b

100. In general, we can define this as if b x = a then x = log b Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,

More information

Second-Order Linear Differential Equations

Second-Order Linear Differential Equations Second-Order Linear Differential Equations A second-order linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1

More information

Chapter 7 Outline Math 236 Spring 2001

Chapter 7 Outline Math 236 Spring 2001 Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that

More information

CHAPTER 8: DIFFERENTIAL CALCULUS

CHAPTER 8: DIFFERENTIAL CALCULUS CHAPTER 8: DIFFERENTIAL CALCULUS 1. Rules of Differentiation As we ave seen, calculating erivatives from first principles can be laborious an ifficult even for some relatively simple functions. It is clearly

More information

Answers to the Practice Problems for Test 2

Answers to the Practice Problems for Test 2 Answers to the Practice Problems for Test 2 Davi Murphy. Fin f (x) if it is known that x [f(2x)] = x2. By the chain rule, x [f(2x)] = f (2x) 2, so 2f (2x) = x 2. Hence f (2x) = x 2 /2, but the lefthan

More information

INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y).

INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 =0, x 1 = π 4, x

More information

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y) Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is one-to-one, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function

More information

Course outline, MA 113, Spring 2014 Part A, Functions and limits. 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems)

Course outline, MA 113, Spring 2014 Part A, Functions and limits. 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems) Course outline, MA 113, Spring 2014 Part A, Functions and limits 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems) Functions, domain and range Domain and range of rational and algebraic

More information

Calculus. Contents. Paul Sutcliffe. Office: CM212a.

Calculus. Contents. Paul Sutcliffe. Office: CM212a. Calculus Paul Sutcliffe Office: CM212a. www.maths.dur.ac.uk/~dma0pms/calc/calc.html Books One and several variables calculus, Salas, Hille & Etgen. Calculus, Spivak. Mathematical methods in the physical

More information

Integration by substitution

Integration by substitution Integration by substitution There are occasions when it is possible to perform an apparently difficult piece of integration by first making a substitution. This has the effect of changing the variable

More information

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

5.1 Derivatives and Graphs

5.1 Derivatives and Graphs 5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has

More information

15.2. First-Order Linear Differential Equations. First-Order Linear Differential Equations Bernoulli Equations Applications

15.2. First-Order Linear Differential Equations. First-Order Linear Differential Equations Bernoulli Equations Applications 00 CHAPTER 5 Differential Equations SECTION 5. First-Orer Linear Differential Equations First-Orer Linear Differential Equations Bernoulli Equations Applications First-Orer Linear Differential Equations

More information

Section 12.6: Directional Derivatives and the Gradient Vector

Section 12.6: Directional Derivatives and the Gradient Vector Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

More information

Introduction to Integration Part 1: Anti-Differentiation

Introduction to Integration Part 1: Anti-Differentiation Mathematics Learning Centre Introuction to Integration Part : Anti-Differentiation Mary Barnes c 999 University of Syney Contents For Reference. Table of erivatives......2 New notation.... 2 Introuction

More information

Objective: Use calculator to comprehend transformations.

Objective: Use calculator to comprehend transformations. math111 (Bradford) Worksheet #1 Due Date: Objective: Use calculator to comprehend transformations. Here is a warm up for exploring manipulations of functions. specific formula for a function, say, Given

More information

Homework #1 Solutions

Homework #1 Solutions MAT 303 Spring 203 Homework # Solutions Problems Section.:, 4, 6, 34, 40 Section.2:, 4, 8, 30, 42 Section.4:, 2, 3, 4, 8, 22, 24, 46... Verify that y = x 3 + 7 is a solution to y = 3x 2. Solution: From

More information

Lectures 5-6: Taylor Series

Lectures 5-6: Taylor Series Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

More information

Section 2.7 One-to-One Functions and Their Inverses

Section 2.7 One-to-One Functions and Their Inverses Section. One-to-One Functions and Their Inverses One-to-One Functions HORIZONTAL LINE TEST: A function is one-to-one if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.

More information

x 2 if 2 x < 0 4 x if 2 x 6

x 2 if 2 x < 0 4 x if 2 x 6 Piecewise-defined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < 4 x if x 6 Piecewise-defined Functions Example Consider the function f defined by x if x < 0 f (x) =

More information

An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate.

An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate. Chapter 10 Series and Approximations An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate 1 0 e x2 dx, you could set

More information

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x

More information

Introduction to Differential Calculus. Christopher Thomas

Introduction to Differential Calculus. Christopher Thomas Mathematics Learning Centre Introduction to Differential Calculus Christopher Thomas c 1997 University of Sydney Acknowledgements Some parts of this booklet appeared in a similar form in the booklet Review

More information

Exponential Functions: Differentiation and Integration. The Natural Exponential Function

Exponential Functions: Differentiation and Integration. The Natural Exponential Function 46_54.q //4 :59 PM Page 5 5 CHAPTER 5 Logarithmic, Eponential, an Other Transcenental Functions Section 5.4 f () = e f() = ln The inverse function of the natural logarithmic function is the natural eponential

More information

Elementary Functions

Elementary Functions Chapter Three Elementary Functions 31 Introduction Complex functions are, of course, quite easy to come by they are simply ordered pairs of real-valued functions of two variables We have, however, already

More information

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of

More information

Notes and questions to aid A-level Mathematics revision

Notes and questions to aid A-level Mathematics revision Notes and questions to aid A-level Mathematics revision Robert Bowles University College London October 4, 5 Introduction Introduction There are some students who find the first year s study at UCL and

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

New Higher-Proposed Order-Combined Approach. Block 1. Lines 1.1 App. Vectors 1.4 EF. Quadratics 1.1 RC. Polynomials 1.1 RC

New Higher-Proposed Order-Combined Approach. Block 1. Lines 1.1 App. Vectors 1.4 EF. Quadratics 1.1 RC. Polynomials 1.1 RC New Higher-Proposed Order-Combined Approach Block 1 Lines 1.1 App Vectors 1.4 EF Quadratics 1.1 RC Polynomials 1.1 RC Differentiation-but not optimisation 1.3 RC Block 2 Functions and graphs 1.3 EF Logs

More information

Limits and Continuity

Limits and Continuity Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function

More information

Techniques of Integration

Techniques of Integration CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration

More information

12.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following:

12.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Section 1.6 Logarithmic and Exponential Equations 811 1.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Solve Quadratic Equations (Section

More information

1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives

1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives TRIGONOMETRY Chapter Trigonometry Objectives After studying this chapter you should be able to handle with confidence a wide range of trigonometric identities; be able to express linear combinations of

More information

Differentiability of Exponential Functions

Differentiability of Exponential Functions Differentiability of Exponential Functions Philip M. Anselone an John W. Lee Philip Anselone (panselone@actionnet.net) receive his Ph.D. from Oregon State in 1957. After a few years at Johns Hopkins an

More information

Here the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and

Here the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and Lecture 9 : Derivatives of Trigonometric Functions (Please review Trigonometry uner Algebra/Precalculus Review on the class webpage.) In this section we will look at the erivatives of the trigonometric

More information

MATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1

MATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1 MATH 3B: MIDTERM REVIEW JOE HUGHES. Inverses. Let f() = 3. Find the inverse g() for f. Solution: Setting y = ( 3) and solving for gives and g() = +3. y 3y = = + 3y y. Let f() = 4 + 3. Find a domain on

More information

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS A second-order linear differential equation has the form 1 Px d y dx dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. Equations of this type arise

More information

CS 261 Fall 2011 Solutions to Assignment #4

CS 261 Fall 2011 Solutions to Assignment #4 CS 61 Fall 011 Solutions to Assignment #4 The following four algorithms are used to implement the bisection method, Newton s method, the secant method, and the method of false position, respectively. In

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper. FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is

More information

Review of Matlab for Differential Equations. Lia Vas

Review of Matlab for Differential Equations. Lia Vas Review of Matlab for Differential Equations Lia Vas 1. Basic arithmetic (Practice problems 1) 2. Solving equations with solve (Practice problems 2) 3. Representing functions 4. Graphics 5. Parametric Plots

More information

y or f (x) to determine their nature.

y or f (x) to determine their nature. Level C5 of challenge: D C5 Fining stationar points of cubic functions functions Mathematical goals Starting points Materials require Time neee To enable learners to: fin the stationar points of a cubic

More information

Rules for Finding Derivatives

Rules for Finding Derivatives 3 Rules for Fining Derivatives It is teious to compute a limit every time we nee to know the erivative of a function. Fortunately, we can evelop a small collection of examples an rules that allow us to

More information

6.4 Logarithmic Equations and Inequalities

6.4 Logarithmic Equations and Inequalities 6.4 Logarithmic Equations and Inequalities 459 6.4 Logarithmic Equations and Inequalities In Section 6.3 we solved equations and inequalities involving exponential functions using one of two basic strategies.

More information

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of

More information

G.A. Pavliotis. Department of Mathematics. Imperial College London

G.A. Pavliotis. Department of Mathematics. Imperial College London EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

Find all of the real numbers x that satisfy the algebraic equation:

Find all of the real numbers x that satisfy the algebraic equation: Appendix C: Factoring Algebraic Expressions Factoring algebraic equations is the reverse of expanding algebraic expressions discussed in Appendix B. Factoring algebraic equations can be a great help when

More information

Section 1. Logarithms

Section 1. Logarithms Worksheet 2.7 Logarithms and Exponentials Section 1 Logarithms The mathematics of logarithms and exponentials occurs naturally in many branches of science. It is very important in solving problems related

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

Chapter 7. Continuity

Chapter 7. Continuity Chapter 7 Continuity There are many processes and eects that depends on certain set of variables in such a way that a small change in these variables acts as small change in the process. Changes of this

More information

The Mathematics Diagnostic Test

The Mathematics Diagnostic Test The Mathematics iagnostic Test Mock Test and Further Information 010 In welcome week, students will be asked to sit a short test in order to determine the appropriate lecture course, tutorial group, whether

More information

Math 229 Lecture Notes: Product and Quotient Rules Professor Richard Blecksmith richard@math.niu.edu

Math 229 Lecture Notes: Product and Quotient Rules Professor Richard Blecksmith richard@math.niu.edu Mat 229 Lecture Notes: Prouct an Quotient Rules Professor Ricar Blecksmit ricar@mat.niu.eu 1. Time Out for Notation Upate It is awkwar to say te erivative of x n is nx n 1 Using te prime notation for erivatives,

More information

Math 230.01, Fall 2012: HW 1 Solutions

Math 230.01, Fall 2012: HW 1 Solutions Math 3., Fall : HW Solutions Problem (p.9 #). Suppose a wor is picke at ranom from this sentence. Fin: a) the chance the wor has at least letters; SOLUTION: All wors are equally likely to be chosen. The

More information

REVIEW EXERCISES DAVID J LOWRY

REVIEW EXERCISES DAVID J LOWRY REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and

More information

How To Understand The Theory Of Algebraic Functions

How To Understand The Theory Of Algebraic Functions Homework 4 3.4,. Show that x x cos x x holds for x 0. Solution: Since cos x, multiply all three parts by x > 0, we get: x x cos x x, and since x 0 x x 0 ( x ) = 0, then by Sandwich theorem, we get: x 0

More information

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9. .(6pts Find symmetric equations of the line L passing through the point (, 5, and perpendicular to the plane x + 3y z = 9. (a x = y + 5 3 = z (b x (c (x = ( 5(y 3 = z + (d x (e (x + 3(y 3 (z = 9 = y 3

More information

x 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y

x 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y MA7 - Calculus I for thelife Sciences Final Exam Solutions Spring -May-. Consider the function defined implicitly near (,) byx y +xy =y. (a) [7 points] Use implicit differentiation to find the derivative

More information

6. Differentiating the exponential and logarithm functions

6. Differentiating the exponential and logarithm functions 1 6. Differentiating te exponential and logaritm functions We wis to find and use derivatives for functions of te form f(x) = a x, were a is a constant. By far te most convenient suc function for tis purpose

More information

3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS. Copyright Cengage Learning. All rights reserved.

3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS. Copyright Cengage Learning. All rights reserved. 3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS Copyright Cengage Learning. All rights reserved. What You Should Learn Recognize and evaluate logarithmic functions with base a. Graph logarithmic functions.

More information

ALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals

ALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals ALGEBRA REVIEW LEARNING SKILLS CENTER The "Review Series in Algebra" is taught at the beginning of each quarter by the staff of the Learning Skills Center at UC Davis. This workshop is intended to be an

More information

Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.

Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. MAC 1105 Final Review Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. 1) 8x 2-49x + 6 x - 6 A) 1, x 6 B) 8x - 1, x 6 x -

More information

Approximating functions by Taylor Polynomials.

Approximating functions by Taylor Polynomials. Chapter 4 Approximating functions by Taylor Polynomials. 4.1 Linear Approximations We have already seen how to approximate a function using its tangent line. This was the key idea in Euler s method. If

More information

MATH 381 HOMEWORK 2 SOLUTIONS

MATH 381 HOMEWORK 2 SOLUTIONS MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e

More information

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors SECTION 5. Eact First-Order Equations 09 SECTION 5. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential

More information

WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS.

WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS. WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS. DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE Contributor: U.N.Iyer Department of Mathematics and Computer Science, CP 315, Bronx Community College, University

More information

6 Further differentiation and integration techniques

6 Further differentiation and integration techniques 56 6 Further differentiation and integration techniques Here are three more rules for differentiation and two more integration techniques. 6.1 The product rule for differentiation Textbook: Section 2.7

More information

Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015

Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015 Harold s s Cheat Sheet 8 December 05 Algebra Constant Linear Identity f(x) c f(x) x Range: [c, c] Undefined (asymptote) Restrictions: c is a real number Ay + B 0 g(x) x Restrictions: m 0 General Fms: Ax

More information

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5 1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,

More information

Section 4.5 Exponential and Logarithmic Equations

Section 4.5 Exponential and Logarithmic Equations Section 4.5 Exponential and Logarithmic Equations Exponential Equations An exponential equation is one in which the variable occurs in the exponent. EXAMPLE: Solve the equation x = 7. Solution 1: We have

More information

Average rate of change of y = f(x) with respect to x as x changes from a to a + h:

Average rate of change of y = f(x) with respect to x as x changes from a to a + h: L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,

More information

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:

More information

PRE-CALCULUS GRADE 12

PRE-CALCULUS GRADE 12 PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.

More information

Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round to two decimal places.

Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round to two decimal places. SECTION.1 Simplify. 1. 7π π. 5π 6 + π Find the measure of the angle in degrees between the hour hand and the minute hand of a clock at the time shown. Measure the angle in the clockwise direction.. 1:0.

More information

Chapter 11. Techniques of Integration

Chapter 11. Techniques of Integration Chapter Techniques of Integration Chapter 6 introduced the integral. There it was defined numerically, as the limit of approximating Riemann sums. Evaluating integrals by applying this basic definition

More information

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3 CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms

More information

Techniques of Integration

Techniques of Integration 8 Techniques of Integration Over the next few sections we examine some techniques that are frequently successful when seeking antiderivatives of functions. Sometimes this is a simple problem, since it

More information

x), etc. In general, we have

x), etc. In general, we have BASIC CALCULUS REFRESHER. Introduction. Ismor Fischer, Ph.D. Dept. of Statistics UW-Madison This is a very condensed and simplified version of basic calculus, which is a prerequisite for many courses in

More information

Analysis of errors in derivatives of trigonometric functions

Analysis of errors in derivatives of trigonometric functions Siyepu International Journal of STEM Education (2015) 2:16 DOI 10.1186/s40594-015-0029-5 SHORT REPORT Open Access Analysis of errors in derivatives of trigonometric functions Sibawu Witness Siyepu Abstract

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics D.G. Simpson, Ph.D. Department of Physical Sciences an Engineering Prince George s Community College December 5, 007 Introuction In this course we have been stuying

More information