MA107 Precalculus Algebra Exam 2 Review Solutions


 Vincent Blankenship
 4 years ago
 Views:
Transcription
1 MA107 Precalculus Algebra Exam 2 Review Solutions February 24, The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p a. Please write a model expressing the revenue, R as a function of x. (*) Revenue is the product of price and units sold. Hence, R = xp. But we know x = 4p + 200, so I substitute 4p for x in the revenue equation. I get R = ( 4p + 200)p, or R = 4p p. b. What price should the company charge to maximize revenue? (*) Note that the formula for R is a quadratic. Hence, its graph is a parabola. A parabola has a vertex, which is either a min point (if the parabola opens up), or max (if the parabola opens down). The a coefficient of the quadratic (ax 2 + bx + c) is 4. means the parabola opens down, so the vertex is a max. That it is negative value The vertex is the point (p, R), where p is the price and R is the revenue at that price. The formula for the vertex is ( b 2a, f( b 2a ). So p = b 2a = = 25. This means the maximum revenue is obtained when p = 25. c. What is the maximum revenue? (*) We found the price, p, which generates maximum revenue. Revenue at any price is given by R = 4p p. So to find the maximum revenue, plug in the price which gives the maximum revenue. R(25) = 4(25) (25) =
2 d. What quantity x corresponds to the maximum revenue? (*) Recall that x = 4p Then when p = 25, x = 4(25) = 100. e. How do you know there is a maximum and not a minimum point on the graph of this function? (*) Because the a coefficient is negative, as explained in the solution to question b. 2. Write a polynomial f(x) which has the roots 2, 2, 4 and such that the graph of f(x) touches the x axis at 2 and 2, and crosses the x axis at 4, and has a degree of 9. (*) If f(x) has the roots 2, 2, and 4, then it has the factors (x+2), (x 2), (x 4) respectively. So start by letting f(x) be the producto of these factors. f(x) = (x + 2)(x 2)(x 4) Now the powers of the factors (x + 2) and (x 2) must be even, as f(x) touches the x axis at their respective roots. The power of the (x 4) factor must be odd, as f(x) crosses the x axis at its respective root. Also, the degree of the polynomial must be 9. This means the sum of the three powers must be 9. One possibility: f(x) = (x + 2) 2 (x 2) 2 (x 4) 5 3. Write a polynomial f(x) which has the roots 1, 1 and such that the graph of f(x) touches the x axis at both 1 and 1, and has a degree of 6. (*) One possibility: f(x) = (x 1) 4 (x + 1) What are the roots of the polynomial (2x 3)(x 3 + 7x 2 )? (*) I want to find the values of x such that (2x 3)(x 3 + 7x 2 ) = 0. (In other words, the xintercepts). So (2x 3) = 0 and (x 3 + 7x 2 ) = 0. If 2x 3 = 0, then 2x = 3 and so x = 3 2. There is one solution. To find the other solutions, solve (x 3 + 7x 2 ) = 0. I can factor out an x 2 from the LHS. Then I get x 2 (x + 7) = 0. So x 2 = 0 means x = 0. x + 7 = 0 means x = 7. 2
3 5. What is the domain of the rational function f(x) = x2 +5x+6 x 2 +6x+8? (*) The domain of a rational function is all real numbers except those values of x for which the denominator is 0. I solve x 2 + 6x + 8 = 0. x 2 + 6x + 8 = (x + 4)(x + 2), so x + 4 = 0 and x + 2 = 0. x = 2. Then x = 4 and So the denominator is all real numbers except x = 4 and x = 2. {x x 4, x 2}. 6. For the rational function above, please state the vertical asymptotes. (*) The locations of the vertical asymptotes are precisely the roots of the denominator which are not roots of the numerator. So there s two ways to go about this solution. We already know the roots of the denominator. So we can find the roots of the numerator, and compare the lists. We could also write f(x) in reduced form, and solve the denominator for zero. Looking at the next couple of questions, we ll need to know the roots of the numerator. So let s go that route. I solve x 2 + 5x + 6 = 0. x 2 + 5x + 6 = (x + 3)(x + 2), so x + 3 = 0 and x + 2 = 0. x = 2. Then x = 3 and The numerator has roots 3 and 2. The denominator has roots 4 and 2. 4 is the only root of the denominator which is not a root of the numerator. there is a vertical asymptote at x = 4. So 3
4 7. For the rational function above, please state the horizontal asymptotes. (*) Recall the rule for rational functions: 1. If the degree of the numerator is greater than the degree of the denominator, there is no horizontal asymptote. 2. If the degree of the numerator is less than the degree of the denominator, the line y = 0 is a horizontal asymptote. 3. If the degrees are the same, throw out all but the dominant term of the numerator and denominator. Simplify to get a real number L. Then the line y = L is the horizontal asymptote The degrees of the numerator and denominator are both 0. The dominant term of the numerator is x 2. The dominant term of the denominator is x 2. x 2 x 2 = 1. So y = 1 is the horizontal asymptote. 8. For the rational function above, please state the zeroes. (*) The roots of a rational function are the zeroes of the numerator which are not zeroes of the denominator. We found the roots of the numerator to be 2, 3. But 2 is a zero of the denominator. So the only remaining zero is 3. Hence, x = 3 is the zero of f(x). 9. Let p(x) = x 3 + x 2 6x. What is the degree of p(x)? (*) What are the roots of p(x)? What is the multiplicity of each root? (*) p(x) = x 3 + x 2 6x = x(x 2 + x 6) = x(x 2)(x + 3) The roots are 0, 2, 3. Each has multiplicity For each root, state if the graph of p(x) crosses or touches the xaxis at the intercept. (*) Because each root has multiplicity 1, the graph of p(x) crosses the xaxis at each one. 12. Please state the power function that the graph of f(x) resembles for large values of x. (*) Take the dominant term. The power function is x 3. 4
5 13. What is the remainder when p(x) is divided by (x 5)? (*) In general, if p(x) is divided by (x c), then the remainder is p(c). Take c = 5. Then the remainder is p(5) = = Consider q(x) = 7x x 4 22x 2 + 5x + 21 List all the possible rational roots. (*) Factors of the constant coefficient, p : ±1, ±3, ±7, ±21 Factors of the leading coefficient, q : ±1, ±7 All the possible ratios: p q : ±1, ±3, ±7, ±21, ± 1 7, ± Use the Intermediate Value Theorem to find an open interval which contains at least one real root of q(x). (*) q( 4) = 95. q( 3) = 456. Because the sign changes as x moves from 4 to 3, there must be a real root in the interval ( 4, 3). 16. Solve the rational inequality (x 4)(x+2)2 (x 3) > 0. (*) Let f(x) = LHS = (x 4)(x+2)2 (x 3). First I find the roots of the numerator. These are: 4, 2. Next I find the roots of the denominator. These is one: 3. These roots divide the real number line into four intervals. I have: (, 2), ( 2, 3), (3, 4), (4, ). I pick a value of x in the interval (, 2). Say, x = 3. f( 3) > 0, so for all x in this interval, f(x) > 0. I pick a value of x in the interval ( 2, 3). Say, x = 0. f(0) > 0, so for all x in this interval, f(x) > 0. I pick a value of x in the interval (3, 4). Say, x = 3.5. f(3.5) < 0, so for all x in this interval, f(x) < 0. I pick a value of x in the interval (4, ). Say, x = 5. f(5) > 0, so for all x in this interval, f(x) > 0. We wanted intervals for which f(x) > 0. criteria. They are: (, 2), ( 2, 3), (4, ) There are three intervals which satisfy this 5
6 17. Sketch the graph of f(x) = (x 2) 2 (x + 1) 3 x(x 1). (*) The important features are: The graph touches the x axis at x = 2. The graph crosses the x axis at x = 1. The graph crosses the x axis at x = 0. The graph crosses the x axis at x = 1. The yintercept is I wish to enclose a rectangular yard with a fence. I have 400 feet of fencing available. a. Express the area A of the yard as a function of w, the width of the rectangle. (*) I know: A = lw. I also know: 2l + 2w = 400. Solving for l, I have l = 200 w. Then A = w(200 w) = w w. b. Express the area A of the yard as a function of l, the length of the rectangle. (*) Instead of solving 2l + 2w = 400 for l, solve it for w. Then w = 200 l. So, I can get A = l l. c. Find the maximum area. Find the dimensions of the rectangle which give this area. (*) Given A = l l is a quadratic, its graph is a parabola. So it has a vertex. The parabola opens down because the leading coefficient is negative. So the vertex is a maximum. The vertex is the point (l, A), where l = b 2a = = 100. Knowing l = 100 and w = 200 l, then w = = 100. The dimensions are w = 100, l = 100. When l = 100, the area is l l = (100) (100) =
7 19. A cylindrical box is to the constructed such that the sum of the height and radius is 100 inches. Construct a function which states the volume of the box as a function of its radius. (*) Knowing the volume of a cylinder is V = πr 2 h, I have a model which takes r (radius) as input and gives me the volume. But what is h? This is an unknown. To eliminate it, I need more information. The sum of height and radius is 100. So h + r = 100. Solving for h, I get h = 100 r. So now I can substitute 100 r for h in my volume formula. V = πr 2 (100 r). Now I have a formula for volume whch is a function of r, as was requested. 20. Which polynomial below is that whose graph is depicted to the right? Choice A x2 (x 3)(x 5) 3 Choice B x3 (x 3)(x 5) 3 Choice C x2 (x + 3) 3 (x 5) 3 Choice D x3 (x 3) 2 (x 5) 2 Choice E x3 (x 3) 2 (x 5) 3 (*) The correct answer is A. The graph has roots 0, 3 and 5 (eliminating choice C). The graph crosses the x axis at x = 3 (eliminating choices D, E). The graph crosses the x axis at x = 5 (also eliminating choice D). Choice B is eliminated because the graph touches the x axis at x = 0, but the power of x is odd. 21. Which polynomial below is that whose graph is depicted to the right? Choice A. (x 1) 2 (x + 2) 3 Choice B. (x + 1) 2 (x + 2) 3 Choice C. (x 1) 2 (x 2) 4 Choice D. (x 1) 3 (x 2) 3 Choice E. (x 1) 2 (x 2) 3 (*) The correct answer is E. The graph has roots 1 and 2 (eliminating choices A, B). The graph touches the x axis at x = 1 (eliminating choice D). The graph crosses the x axis at x = 2 (eliminating choice C). 7
8 Polynomials Worksheet
8 Polynomials Worksheet Concepts: Quadratic Functions The Definition of a Quadratic Function Graphs of Quadratic Functions  Parabolas Vertex Absolute Maximum or Absolute Minimum Transforming the Graph
More informationMSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions
MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions The goal of this workshop is to familiarize you with similarities and differences in both the graphing and expression of polynomial
More informationa. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F
FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all
More informationPolynomial and Rational Functions
Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving
More informationWARM UP EXERCSE. 21 Polynomials and Rational Functions
WARM UP EXERCSE Roots, zeros, and xintercepts. x 2! 25 x 2 + 25 x 3! 25x polynomial, f (a) = 0! (x  a)g(x) 1 21 Polynomials and Rational Functions Students will learn about: Polynomial functions Behavior
More informationSection 3.1 Quadratic Functions and Models
Section 3.1 Quadratic Functions and Models DEFINITION: A quadratic function is a function f of the form fx) = ax 2 +bx+c where a,b, and c are real numbers and a 0. Graphing Quadratic Functions Using the
More informationExamples of Tasks from CCSS Edition Course 3, Unit 5
Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can
More informationFACTORING QUADRATICS 8.1.1 and 8.1.2
FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.
More informationMath 120 Final Exam Practice Problems, Form: A
Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,
More information7.1 Graphs of Quadratic Functions in Vertex Form
7.1 Graphs of Quadratic Functions in Vertex Form Quadratic Function in Vertex Form A quadratic function in vertex form is a function that can be written in the form f (x) = a(x! h) 2 + k where a is called
More informationALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola
More informationProcedure for Graphing Polynomial Functions
Procedure for Graphing Polynomial Functions P(x) = a n x n + a n1 x n1 + + a 1 x + a 0 To graph P(x): As an example, we will examine the following polynomial function: P(x) = 2x 3 3x 2 23x + 12 1. Determine
More informationEquations. #110 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0
College Algebra Review Problems for Final Exam Equations #110 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve
More information1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.
1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x and yintercepts of graphs of equations. Use symmetry to sketch graphs
More informationSection 3.2 Polynomial Functions and Their Graphs
Section 3.2 Polynomial Functions and Their Graphs EXAMPLES: P(x) = 3, Q(x) = 4x 7, R(x) = x 2 +x, S(x) = 2x 3 6x 2 10 QUESTION: Which of the following are polynomial functions? (a) f(x) = x 3 +2x+4 (b)
More informationQUADRATIC EQUATIONS AND FUNCTIONS
Douglas College Learning Centre QUADRATIC EQUATIONS AND FUNCTIONS Quadratic equations and functions are very important in Business Math. Questions related to quadratic equations and functions cover a wide
More informationChapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs
Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s
More informationPolynomials. Dr. philippe B. laval Kennesaw State University. April 3, 2005
Polynomials Dr. philippe B. laval Kennesaw State University April 3, 2005 Abstract Handout on polynomials. The following topics are covered: Polynomial Functions End behavior Extrema Polynomial Division
More informationWeek 1: Functions and Equations
Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.12.2, and Chapter
More information1.1 Practice Worksheet
Math 1 MPS Instructor: Cheryl Jaeger Balm 1 1.1 Practice Worksheet 1. Write each English phrase as a mathematical expression. (a) Three less than twice a number (b) Four more than half of a number (c)
More informationAnswer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
More informationMATH 21. College Algebra 1 Lecture Notes
MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a
More informationAlgebra II A Final Exam
Algebra II A Final Exam Multiple Choice Identify the choice that best completes the statement or answers the question. Evaluate the expression for the given value of the variable(s). 1. ; x = 4 a. 34 b.
More informationWhat are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
More informationIntroduction to Quadratic Functions
Introduction to Quadratic Functions The St. Louis Gateway Arch was constructed from 1963 to 1965. It cost 13 million dollars to build..1 Up and Down or Down and Up Exploring Quadratic Functions...617.2
More informationDefinition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
More informationAlgebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only
Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: AAPR.3: Identify zeros of polynomials
More information6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives
6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise
More informationSolving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
More informationHigher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
More informationPARABOLAS AND THEIR FEATURES
STANDARD FORM PARABOLAS AND THEIR FEATURES If a! 0, the equation y = ax 2 + bx + c is the standard form of a quadratic function and its graph is a parabola. If a > 0, the parabola opens upward and the
More informationAlgebra 2 Chapter 1 Vocabulary. identity  A statement that equates two equivalent expressions.
Chapter 1 Vocabulary identity  A statement that equates two equivalent expressions. verbal model A word equation that represents a reallife problem. algebraic expression  An expression with variables.
More informationAlgebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
More informationPOLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
More informationMAT12X Intermediate Algebra
MAT12X Intermediate Algebra Workshop I  Exponential Functions LEARNING CENTER Overview Workshop I Exponential Functions of the form y = ab x Properties of the increasing and decreasing exponential functions
More informationis the degree of the polynomial and is the leading coefficient.
Property: T. HrubikVulanovic email: thrubik@kent.edu Content (in order sections were covered from the book): Chapter 6 HigherDegree Polynomial Functions... 1 Section 6.1 HigherDegree Polynomial Functions...
More informationZero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
More informationLecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20
Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding
More informationSection 1.1 Linear Equations: Slope and Equations of Lines
Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of
More informationAlgebra and Geometry Review (61 topics, no due date)
Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties
More information2.5 Transformations of Functions
2.5 Transformations of Functions Section 2.5 Notes Page 1 We will first look at the major graphs you should know how to sketch: Square Root Function Absolute Value Function Identity Function Domain: [
More informationMATH 095, College Prep Mathematics: Unit Coverage Prealgebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Prealgebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
More informationMATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
More informationPower functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n even n odd
5.1 Polynomial Functions A polynomial unctions is a unction o the orm = a n n + a n1 n1 + + a 1 + a 0 Eample: = 3 3 + 5  The domain o a polynomial unction is the set o all real numbers. The intercepts
More informationBEST METHODS FOR SOLVING QUADRATIC INEQUALITIES.
BEST METHODS FOR SOLVING QUADRATIC INEQUALITIES. I. GENERALITIES There are 3 common methods to solve quadratic inequalities. Therefore, students sometimes are confused to select the fastest and the best
More informationJUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
More informationZeros of Polynomial Functions
Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n1 x n1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of
More informationFactoring Polynomials
UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can
More informationCONVERT QUADRATIC FUNCTIONS FROM ONE FORM TO ANOTHER (Standard Form <==> Intercept Form <==> Vertex Form) (By Nghi H Nguyen Dec 08, 2014)
CONVERT QUADRATIC FUNCTIONS FROM ONE FORM TO ANOTHER (Standard Form Intercept Form Vertex Form) (By Nghi H Nguyen Dec 08, 2014) 1. THE QUADRATIC FUNCTION IN INTERCEPT FORM The graph of the quadratic
More informationWarmUp Oct. 22. Daily Agenda:
Evaluate y = 2x 3x + 5 when x = 1, 0, and 2. Daily Agenda: Grade Assignment Go over Ch 3 Test; Retakes must be done by next Tuesday 5.1 notes / assignment Graphing Quadratic Functions 5.2 notes / assignment
More informationUnderstanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
More information3.2 The Factor Theorem and The Remainder Theorem
3. The Factor Theorem and The Remainder Theorem 57 3. The Factor Theorem and The Remainder Theorem Suppose we wish to find the zeros of f(x) = x 3 + 4x 5x 4. Setting f(x) = 0 results in the polynomial
More information3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
More informationAlgebra Practice Problems for Precalculus and Calculus
Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials
More informationZeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
More informationThis unit has primarily been about quadratics, and parabolas. Answer the following questions to aid yourselves in creating your own study guide.
COLLEGE ALGEBRA UNIT 2 WRITING ASSIGNMENT This unit has primarily been about quadratics, and parabolas. Answer the following questions to aid yourselves in creating your own study guide. 1) What is the
More informationZeros of Polynomial Functions
Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate
More informationSimplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.
MAC 1105 Final Review Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. 1) 8x 249x + 6 x  6 A) 1, x 6 B) 8x  1, x 6 x 
More informationCollege Algebra  MAT 161 Page: 1 Copyright 2009 Killoran
College Algebra  MAT 6 Page: Copyright 2009 Killoran Zeros and Roots of Polynomial Functions Finding a Root (zero or xintercept) of a polynomial is identical to the process of factoring a polynomial.
More informationMTH 100 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created June 6, 2011
MTH 00 College Algebra Essex County College Division of Mathematics Sample Review Questions Created June 6, 0 Math 00, Introductory College Mathematics, covers the mathematical content listed below. In
More informationApplication. Outline. 31 Polynomial Functions 32 Finding Rational Zeros of. Polynomial. 33 Approximating Real Zeros of.
Polynomial and Rational Functions Outline 31 Polynomial Functions 32 Finding Rational Zeros of Polynomials 33 Approximating Real Zeros of Polynomials 34 Rational Functions Chapter 3 Group Activity:
More informationAlgebra 2: Q1 & Q2 Review
Name: Class: Date: ID: A Algebra 2: Q1 & Q2 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which is the graph of y = 2(x 2) 2 4? a. c. b. d. Short
More information3.3 Real Zeros of Polynomials
3.3 Real Zeros of Polynomials 69 3.3 Real Zeros of Polynomials In Section 3., we found that we can use synthetic division to determine if a given real number is a zero of a polynomial function. This section
More informationUnit 7 Quadratic Relations of the Form y = ax 2 + bx + c
Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Lesson Outline BIG PICTURE Students will: manipulate algebraic expressions, as needed to understand quadratic relations; identify characteristics
More information6.1 Add & Subtract Polynomial Expression & Functions
6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic
More informationThe Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
More informationFlorida Algebra 1 EndofCourse Assessment Item Bank, Polk County School District
Benchmark: MA.912.A.2.3; Describe the concept of a function, use function notation, determine whether a given relation is a function, and link equations to functions. Also assesses MA.912.A.2.13; Solve
More informationSECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS
SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31
More information1.3. Maximum or Minimum of a Quadratic Function. Investigate A
< P16 photo of a large arched bridge, similar to the one on page 292 or p 360361of the fish book> Maximum or Minimum of a Quadratic Function 1.3 Some bridge arches are defined by quadratic functions.
More informationAlgebra 2 YearataGlance Leander ISD 200708. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks
Algebra 2 YearataGlance Leander ISD 200708 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks
More informationThe degree of a polynomial function is equal to the highest exponent found on the independent variables.
DETAILED SOLUTIONS AND CONCEPTS  POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE
More informationBiggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress
Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation
More informationMath 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
More informationVocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
More information3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.
More information53 Polynomial Functions. not in one variable because there are two variables, x. and y
y. 53 Polynomial Functions State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why. 1. 11x 6 5x 5 + 4x 2 coefficient of the
More informationEL9650/9600c/9450/9400 Handbook Vol. 1
Graphing Calculator EL9650/9600c/9450/9400 Handbook Vol. Algebra EL9650 EL9450 Contents. Linear Equations  Slope and Intercept of Linear Equations 2 Parallel and Perpendicular Lines 2. Quadratic Equations
More informationALGEBRA 2 CRA 2 REVIEW  Chapters 16 Answer Section
ALGEBRA 2 CRA 2 REVIEW  Chapters 16 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 53.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 64.2 Solving Equations by
More informationTI83/84 Plus Graphing Calculator Worksheet #2
TI83/8 Plus Graphing Calculator Worksheet #2 The graphing calculator is set in the following, MODE, and Y, settings. Resetting your calculator brings it back to these original settings. MODE Y Note that
More informationSome Lecture Notes and InClass Examples for PreCalculus:
Some Lecture Notes and InClass Examples for PreCalculus: Section.7 Definition of a Quadratic Inequality A quadratic inequality is any inequality that can be put in one of the forms ax + bx + c < 0 ax
More informationAlgebra 1 Course Title
Algebra 1 Course Title Course wide 1. What patterns and methods are being used? Course wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
More informationLinear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (1,3), (3,3), (2,3)}
Linear Equations Domain and Range Domain refers to the set of possible values of the xcomponent of a point in the form (x,y). Range refers to the set of possible values of the ycomponent of a point in
More information1 Shapes of Cubic Functions
MA 1165  Lecture 05 1 1/26/09 1 Shapes of Cubic Functions A cubic function (a.k.a. a thirddegree polynomial function) is one that can be written in the form f(x) = ax 3 + bx 2 + cx + d. (1) Quadratic
More informationGraphing Quadratic Functions
Problem 1 The Parabola Examine the data in L 1 and L to the right. Let L 1 be the x value and L be the yvalues for a graph. 1. How are the x and yvalues related? What pattern do you see? To enter the
More informationZeros of Polynomial Functions
Review: Synthetic Division Find (x 25x  5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 35x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 35x 2 + x + 2. Zeros of Polynomial Functions Introduction
More informationAlgebraic Concepts Algebraic Concepts Writing
Curriculum Guide: Algebra 2/Trig (AR) 2 nd Quarter 8/7/2013 2 nd Quarter, Grade 912 GRADE 912 Unit of Study: Matrices Resources: Textbook: Algebra 2 (Holt, Rinehart & Winston), Ch. 4 Length of Study:
More informationwww.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates
Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c
More information1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
More informationPRECALCULUS GRADE 12
PRECALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.
More informationExpression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds
Isosceles Triangle Congruent Leg Side Expression Equation Polynomial Monomial Radical Square Root Check Times Itself Function Relation One Domain Range Area Volume Surface Space Length Width Quantitative
More informationMore Quadratic Equations
More Quadratic Equations Math 99 N1 Chapter 8 1 Quadratic Equations We won t discuss quadratic inequalities. Quadratic equations are equations where the unknown appears raised to second power, and, possibly
More informationGraphing Linear Equations
Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope
More informationReview of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decisionmaking tools
More informationSolving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form
SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving
More informationof surface, 569571, 576577, 578581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433
Absolute Value and arithmetic, 730733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property
More informationCORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
More informationAlgebra 2: Themes for the Big Final Exam
Algebra : Themes for the Big Final Exam Final will cover the whole year, focusing on the big main ideas. Graphing: Overall: x and y intercepts, fct vs relation, fct vs inverse, x, y and origin symmetries,
More informationis identically equal to x 2 +3x +2
Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3
More informationMATH 10034 Fundamental Mathematics IV
MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.
More informationSAT Math Facts & Formulas Review Quiz
Test your knowledge of SAT math facts, formulas, and vocabulary with the following quiz. Some questions are more challenging, just like a few of the questions that you ll encounter on the SAT; these questions
More information