5.1 Derivatives and Graphs
|
|
|
- Cecilia Phelps
- 9 years ago
- Views:
Transcription
1 5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has a LOCAL MAXIMUM at x = a if f(a) f(x) for all x near a. If the derivative changes from positive to negative at x = a, then there is a local maximum at a (provided f is continuous at a). A function has a LOCAL MINIMUM at x = a if f(a) f(x) for all x near a. If the derivative changes from negative to positive at x = a, then there is a local minimum at a (provided f is continuous at a). Given the graph of f below, find the following: (a) The places where f has a horizontal tangent line. (b) The intervals on which f is increasing and decreasing. (c) The values of x at which f has a local maximum or minimum. 1
2 What does f say about f? If f (x) > 0 on an interval, then f is increasing (slopes are becoming bigger), which means f is CONCAVE UP. If f (x) < 0 on an interval, then f is decreasing (slopes are becoming smaller), which means f is CONCAVE DOWN. If a function changes concavity at x = a, then f has an INFLECTION POINT at x = a (provided x = a is in the domain of f.) Given the graph of f below, find the following. Then, sketch a possible graph of f. (a) Intervals where f is increasing or decreasing. (b) Values of x where f has a local maximum or minimum. (c) Intervals where f is concave up or concave down. (d) Values of x where f has an inflection point. 2
3 Sketch a possible graph of a continuous function f that satisfies the following properties: f( 4) = 0 and f(3) = 4 f has y-intercept (0, 2) f (x) > 0 on the intervals (, 2) and (3, ) f (x) < 0 on the interval ( 2,3) f (x) > 0 on the interval (, 4) f (x) < 0 on the interval ( 4,3) (3, ) lim f(x) = 5 x lim x f(x) = 4 Suppose for a graph f that f (5) = 0 and f (5) = 3. What can be said about the graph of f at x = 5? 3
4 5.2 Maximum and Minimum Values A function f has an absolute maximum at c if f(c) f(x) for all x in the domain of f. The function value f(c) is the maximum value. A function f has an absolute minimum at c if f(c) f(x) for all x in the domain of f. The function value f(c) is the minimum value. The absolute maximum and minimum values are called the extreme values of f. Example: Find the absolute and local extrema for the following functions. f(x) = { (x+1) 2 if 1.5 < x 0 x 2 1 if 0 < x 2 If a function has an absolute max or min, they will occur at either a local max/min or at an endpoint of a given interval. So, how do we find the local extrema of a function (without a graph)? ALL local extrema of a function f will occur at places where the derivative is 0 or the derivative is undefined! HOWEVER, if f (c) = 0 or if f (c) does not exist, this does not necessarily mean that there is a local max/min at c. These places are just the candidates for where there might be a local max/min. 4
5 Definition: A critical number of a function f is a number c in the domain of f such that either f (c) = 0 or f (c) does not exist. Every local max/min will occur at a critical number, but again, not every critical number gives rise to local extrema. Example: Find the critical numbers of the function f(x) = 3 x 2 x. Example: Find the critical numbers of the function f(x) = 9 x 2. Example: Find the critical numbers of the function f(x) = x 2/5 (x+2) 3. 5
6 Extreme Value Theorem: If a function f is continuous on a closed interval [a,b], then f attains both an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers c and d in [a,b]. The absolute max/min of a continuous function on a closed interval [a, b] will occur at either a local extremum or at an endpoint. To find the absolute max/min, find all critical values, then evaluate the function at the critical values that lie in the interval and at the endpoints of the interval. The max/min of these values IS the absolute max/min. Example: Find the absolute maximum and minimum values of f(x) = x 3 12x+1 on the interval [ 3,5]. Example: Find the absolute maximum and minimum values of g(x) = ex2 2x+1 about on the interval [ 1,3]? on the interval [0,3]? What 6
7 Example: Find the absolute maximum and minimum values of g(x) = x+2sinx on the interval [0,π]. 5.3 Derivatives and the Shapes of Curves Mean Value Theorem: If f is a differentiable function on the interval [a,b], then there exists a number c between a and b such that f (c) = f(b) f(a) b a Meaning: There is at least one value c where the tangent line at c is parallel to the secant line between (a,f(a)) and (b,f(b)). Given f(x) = x 3 1 on the interval [ 1,2], show that f satisfies the Mean Value Theorem. 7
8 Recall: If f > 0, then f is. If f < 0, then f is. The First Derivative Test: Suppose c is a critical number of a continuous function f. (a) If f changes from positive to negative at c, then f has a local maximum at c. (b) If f changes from negative to positive at c, then f has a local minimum at c. (c) If f does not change sign at c, then f has no local maximum or minimum at c. Recall: If f > 0, then f is and f is. If f < 0, then f is and f is. An inflection point occurs where there is a change in concavity, ie, f changes sign. Given the function f(x) = x 4 12x 3 + 1, find any asymptotes, the intervals where f is increasing and decreasing, identify all local extrema, and identify intervals of concavity and inflection points. 8
9 Given the function below and its derivatives, find the domain, any asymptotes, the intervals where f is increasing and decreasing, identify all local extrema, and identify intervals of concavity and inflection points. Sketch a graph. f(x) = 2x+3 (x 1) 2, f (x) = 2(x+4) (x 1) 3, f (x) = 2(2x+13) (x 1) 4 [Verify these on your own.] 9
10 Given f(x) = (2 + 3lnx) 2, find the intervals where f is increasing and decreasing and identify any local extrema. Given f(x) = x 2 x+3, find the intervals where f is increasing and decreasing and identify any local extrema. 10
11 Suppose that f is continuous and has a domain all real numbers except x = 2. Given f (x) below, find all inflection points. f (x) = e x (x 1) 2 (x+9) (x+2) 3 (5 x)e 3x The Second Derivative Test: Suppose f is continuous near c. (a) If f (c) = 0 and f (c) > 0, then f has a local minimum at c. (b) If f (c) = 0 and f (c) < 0, then f has a local maximum at c. If f (c) = 0 and f (c) = 0, the test is inconclusive, so you would need to use the First Derivative Test. Given f(x) = x 3 x 2, classify any local extrema using the Second Derivative Test. 11
1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some
Section 3.1: First Derivative Test Definition. Let f be a function with domain D. 1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some open interval containing c. The number
The Mean Value Theorem
The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers
Average rate of change of y = f(x) with respect to x as x changes from a to a + h:
L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,
TOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
AP CALCULUS AB 2007 SCORING GUIDELINES (Form B)
AP CALCULUS AB 2007 SCORING GUIDELINES (Form B) Question 4 Let f be a function defined on the closed interval 5 x 5 with f ( 1) = 3. The graph of f, the derivative of f, consists of two semicircles and
correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
Math 120 Final Exam Practice Problems, Form: A
Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,
MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity
MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x
100. In general, we can define this as if b x = a then x = log b
Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,
Rolle s Theorem. q( x) = 1
Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question
Lecture 3: Derivatives and extremes of functions
Lecture 3: Derivatives and extremes of functions Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2011 Lejla Batina Version: spring 2011 Wiskunde 1 1 / 16
Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
Calculus 1st Semester Final Review
Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ) R S T, c /, > 0 Find the limit: lim
Continuity. DEFINITION 1: A function f is continuous at a number a if. lim
Continuity DEFINITION : A function f is continuous at a number a if f(x) = f(a) REMARK: It follows from the definition that f is continuous at a if and only if. f(a) is defined. 2. f(x) and +f(x) exist.
PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2
MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we
Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.
Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =
Calculus with Parametric Curves
Calculus with Parametric Curves Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x f(t), y g(t) where y is also a differentiable function
Practice with Proofs
Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using
Average rate of change
Average rate of change 1 1 Average rate of change A fundamental philosophical truth is that everything changes. 1 Average rate of change A fundamental philosophical truth is that everything changes. In
2.2 Derivative as a Function
2.2 Derivative as a Function Recall that we defined the derivative as f (a) = lim h 0 f(a + h) f(a) h But since a is really just an arbitrary number that represents an x-value, why don t we just use x
Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)
Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is one-to-one, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function
AP CALCULUS AB 2009 SCORING GUIDELINES
AP CALCULUS AB 2009 SCORING GUIDELINES Question 5 x 2 5 8 f ( x ) 1 4 2 6 Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points in
Section 3.2 Polynomial Functions and Their Graphs
Section 3.2 Polynomial Functions and Their Graphs EXAMPLES: P(x) = 3, Q(x) = 4x 7, R(x) = x 2 +x, S(x) = 2x 3 6x 2 10 QUESTION: Which of the following are polynomial functions? (a) f(x) = x 3 +2x+4 (b)
2008 AP Calculus AB Multiple Choice Exam
008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus
Section 12.6: Directional Derivatives and the Gradient Vector
Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate
Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10
Dirk Bergemann Department of Economics Yale University s by Olga Timoshenko Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10 This problem set is due on Wednesday, 1/27/10. Preliminary
Homework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x
x), etc. In general, we have
BASIC CALCULUS REFRESHER. Introduction. Ismor Fischer, Ph.D. Dept. of Statistics UW-Madison This is a very condensed and simplified version of basic calculus, which is a prerequisite for many courses in
LIMITS AND CONTINUITY
LIMITS AND CONTINUITY 1 The concept of it Eample 11 Let f() = 2 4 Eamine the behavior of f() as approaches 2 2 Solution Let us compute some values of f() for close to 2, as in the tables below We see from
Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs
Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s
Calculus 1: Sample Questions, Final Exam, Solutions
Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.
f(x) = g(x), if x A h(x), if x B.
1. Piecewise Functions By Bryan Carrillo, University of California, Riverside We can create more complicated functions by considering Piece-wise functions. Definition: Piecewise-function. A piecewise-function
MA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
AP Calculus AB 2007 Scoring Guidelines Form B
AP Calculus AB 7 Scoring Guidelines Form B The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to
AP Calculus AB 2004 Scoring Guidelines
AP Calculus AB 4 Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and eam preparation; permission for any other use must be sought from
x a x 2 (1 + x 2 ) n.
Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number
Mark Howell Gonzaga High School, Washington, D.C.
Be Prepared for the Calculus Eam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice eam contributors: Benita Albert Oak Ridge High School,
Two Fundamental Theorems about the Definite Integral
Two Fundamental Theorems about the Definite Integral These lecture notes develop the theorem Stewart calls The Fundamental Theorem of Calculus in section 5.3. The approach I use is slightly different than
1.7 Graphs of Functions
64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most
x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization
Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued
CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises
CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =
Math 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
AP Calculus AB 2011 Scoring Guidelines
AP Calculus AB Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 9, the
MATH 121 FINAL EXAM FALL 2010-2011. December 6, 2010
MATH 11 FINAL EXAM FALL 010-011 December 6, 010 NAME: SECTION: Instructions: Show all work and mark your answers clearly to receive full credit. This is a closed notes, closed book exam. No electronic
FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.
FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is
Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88
Nonlinear Algebraic Equations Lectures INF2320 p. 1/88 Lectures INF2320 p. 2/88 Nonlinear algebraic equations When solving the system u (t) = g(u), u(0) = u 0, (1) with an implicit Euler scheme we have
Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation
Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here
MAT12X Intermediate Algebra
MAT12X Intermediate Algebra Workshop I - Exponential Functions LEARNING CENTER Overview Workshop I Exponential Functions of the form y = ab x Properties of the increasing and decreasing exponential functions
36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?
36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this
Answer Key for the Review Packet for Exam #3
Answer Key for the Review Packet for Eam # Professor Danielle Benedetto Math Ma-Min Problems. Show that of all rectangles with a given area, the one with the smallest perimeter is a square. Diagram: y
DERIVATIVES AS MATRICES; CHAIN RULE
DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we
MATH 221 FIRST SEMESTER CALCULUS. fall 2009
MATH 22 FIRST SEMESTER CALCULUS fall 2009 Typeset:June 8, 200 MATH 22 st SEMESTER CALCULUS LECTURE NOTES VERSION 2.0 (fall 2009) This is a self contained set of lecture notes for Math 22. The notes were
Calculus AB 2014 Scoring Guidelines
P Calculus B 014 Scoring Guidelines 014 The College Board. College Board, dvanced Placement Program, P, P Central, and the acorn logo are registered trademarks of the College Board. P Central is the official
6. Differentiating the exponential and logarithm functions
1 6. Differentiating te exponential and logaritm functions We wis to find and use derivatives for functions of te form f(x) = a x, were a is a constant. By far te most convenient suc function for tis purpose
1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
Section 2.7 One-to-One Functions and Their Inverses
Section. One-to-One Functions and Their Inverses One-to-One Functions HORIZONTAL LINE TEST: A function is one-to-one if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.
AP Calculus AB 2005 Free-Response Questions
AP Calculus AB 25 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to
Good Questions. Answer: (a). Both f and g are given by the same rule, and are defined on the same domain, hence they are the same function.
Good Questions Limits 1. [Q] Let f be the function defined by f(x) = sin x + cos x and let g be the function defined by g(u) = sin u + cos u, for all real numbers x and u. Then, (a) f and g are exactly
Trees Saved: 5 Air Emissions Eliminated: 1,104 pounds Water Saved: 1,082 gallons Solid Waste Eliminated: 326 pounds
Planet Friendly Publishing Made in the United States Printed on Recycled Paper Text: 10% Cover: 10% Learn more: www.greenedition.org At REA we re committed to producing books in an earth-friendly manner
Analyzing Piecewise Functions
Connecting Geometry to Advanced Placement* Mathematics A Resource and Strategy Guide Updated: 04/9/09 Analyzing Piecewise Functions Objective: Students will analyze attributes of a piecewise function including
f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1
Exponential Functions an their Derivatives Exponential functions are functions of the form f(x) = a x, where a is a positive constant referre to as the base. The functions f(x) = x, g(x) = e x, an h(x)
Coordinate Plane, Slope, and Lines Long-Term Memory Review Review 1
Review. What does slope of a line mean?. How do you find the slope of a line? 4. Plot and label the points A (3, ) and B (, ). a. From point B to point A, by how much does the y-value change? b. From point
2.5 Transformations of Functions
2.5 Transformations of Functions Section 2.5 Notes Page 1 We will first look at the major graphs you should know how to sketch: Square Root Function Absolute Value Function Identity Function Domain: [
Examples of Tasks from CCSS Edition Course 3, Unit 5
Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can
List the elements of the given set that are natural numbers, integers, rational numbers, and irrational numbers. (Enter your answers as commaseparated
MATH 142 Review #1 (4717995) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Description This is the review for Exam #1. Please work as many problems as possible
The Derivative. Philippe B. Laval Kennesaw State University
The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition
Week 2: Exponential Functions
Week 2: Exponential Functions Goals: Introduce exponential functions Study the compounded interest and introduce the number e Suggested Textbook Readings: Chapter 4: 4.1, and Chapter 5: 5.1. Practice Problems:
Review of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools
Inverse Functions and Logarithms
Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a one-to-one function if it never takes on the same value twice; that
Understanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
Polynomials. Dr. philippe B. laval Kennesaw State University. April 3, 2005
Polynomials Dr. philippe B. laval Kennesaw State University April 3, 2005 Abstract Handout on polynomials. The following topics are covered: Polynomial Functions End behavior Extrema Polynomial Division
WARM UP EXERCSE. 2-1 Polynomials and Rational Functions
WARM UP EXERCSE Roots, zeros, and x-intercepts. x 2! 25 x 2 + 25 x 3! 25x polynomial, f (a) = 0! (x - a)g(x) 1 2-1 Polynomials and Rational Functions Students will learn about: Polynomial functions Behavior
Chapter 11. Techniques of Integration
Chapter Techniques of Integration Chapter 6 introduced the integral. There it was defined numerically, as the limit of approximating Riemann sums. Evaluating integrals by applying this basic definition
CS 261 Fall 2011 Solutions to Assignment #4
CS 61 Fall 011 Solutions to Assignment #4 The following four algorithms are used to implement the bisection method, Newton s method, the secant method, and the method of false position, respectively. In
2.1 Increasing, Decreasing, and Piecewise Functions; Applications
2.1 Increasing, Decreasing, and Piecewise Functions; Applications Graph functions, looking for intervals on which the function is increasing, decreasing, or constant, and estimate relative maxima and minima.
Section 1: Instantaneous Rate of Change and Tangent Lines Instantaneous Velocity
Chapter 2 The Derivative Business Calculus 74 Section 1: Instantaneous Rate of Change and Tangent Lines Instantaneous Velocity Suppose we drop a tomato from the top of a 100 foot building and time its
AP Calculus BC 2008 Scoring Guidelines
AP Calculus BC 8 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college
6.4 Logarithmic Equations and Inequalities
6.4 Logarithmic Equations and Inequalities 459 6.4 Logarithmic Equations and Inequalities In Section 6.3 we solved equations and inequalities involving exponential functions using one of two basic strategies.
Microeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
Kevin James. MTHSC 102 Section 1.5 Exponential Functions and Models
MTHSC 102 Section 1.5 Exponential Functions and Models Exponential Functions and Models Definition Algebraically An exponential function has an equation of the form f (x) = ab x. The constant a is called
Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd
5.1 Polynomial Functions A polynomial unctions is a unction o the orm = a n n + a n-1 n-1 + + a 1 + a 0 Eample: = 3 3 + 5 - The domain o a polynomial unction is the set o all real numbers. The -intercepts
AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period:
AP Calculus AB First Semester Final Eam Practice Test Content covers chapters 1- Name: Date: Period: This is a big tamale review for the final eam. Of the 69 questions on this review, questions will be
Math 104A - Homework 2
Math 04A - Homework Due 6/0 Section. -, 7a, 7d, Section. - 6, 8, 0 Section. - 5, 8, 4 Section. - 5,..a Use three-digit chopping arithmetic to compute the sum 0 i= first by i + + +, and then by + + +. Which
Don't Forget the Differential Equations: Finishing 2005 BC4
connect to college success Don't Forget the Differential Equations: Finishing 005 BC4 Steve Greenfield available on apcentral.collegeboard.com connect to college success www.collegeboard.com The College
An Introduction to Calculus. Jackie Nicholas
Mathematics Learning Centre An Introduction to Calculus Jackie Nicholas c 2004 University of Sydney Mathematics Learning Centre, University of Sydney 1 Some rules of differentiation and how to use them
AP Calculus AB 2006 Scoring Guidelines
AP Calculus AB 006 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college
AP Calculus AB 2010 Free-Response Questions Form B
AP Calculus AB 2010 Free-Response Questions Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity.
Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.
Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line
(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,
Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We
Mark Howell Gonzaga High School, Washington, D.C.
Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,
Notes for EER #4 Graph transformations (vertical & horizontal shifts, vertical stretching & compression, and reflections) of basic functions.
Notes for EER #4 Graph transformations (vertical & horizontal shifts, vertical stretching & compression, and reflections) of basic functions. Basic Functions In several sections you will be applying shifts
MA 408 Computer Lab Two The Poincaré Disk Model of Hyperbolic Geometry. Figure 1: Lines in the Poincaré Disk Model
MA 408 Computer Lab Two The Poincaré Disk Model of Hyperbolic Geometry Put your name here: Score: Instructions: For this lab you will be using the applet, NonEuclid, created by Castellanos, Austin, Darnell,
L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
