Nonhomogeneous Linear Equations
|
|
|
- Sheena Wheeler
- 10 years ago
- Views:
Transcription
1 Nonhomogeneous Linear Equations In this section we learn how to solve second-order nonhomogeneous linear differential equations with constant coefficients, that is, equations of the form ay by cy G x where a, b, and c are constants and G is a continuous function. The related homogeneous equation ay by cy 0 is called the complementary equation and plays an important role in the solution of the original nonhomogeneous equation (). 3 Theorem The general solution of the nonhomogeneous differential equation () can be written as y x x y c x where is a particular solution of Equation and is the general solution of the complementary Equation. y c Proof All we have to do is verify that if y is any solution of Equation, then y is a solution of the complementary Equation. Indeed a y b y c y ay a by b cy c ay by cy a b c t x t x 0 We know from Additional Topics: Second-Order Linear Differential Equations how to solve the complementary equation. (Recall that the solution is y c c y c y, where y and y are linearly independent solutions of Equation.) Therefore, Theorem 3 says that we know the general solution of the nonhomogeneous equation as soon as we know a particular solution. There are two methods for finding a particular solution: The method of undetermined coefficients is straightforward but works only for a restricted class of functions G. The method of variation of parameters works for every function G but i0s usually more difficult to apply in practice. The Method of Undetermined Coefficients We first illustrate the method of undetermined coefficients for the equation ay by cy G x where G x) is a polynomial. It is reasonable to guess that there is a particular solution that is a polynomial of the same degree as G because if y is a polynomial, then ay by cy is also a polynomial. We therefore substitute x a polynomial (of the same degree as G) into the differential equation and determine the coefficients. EXAMPLE Solve the equation y y y x. SOLUTION The auxiliary equation of y y y 0 is r r r r 0
2 NONHOMOGENEOUS LINEAR EQUATIONS with roots r,. So the solution of the complementary equation is y c c e x c e x Since G x x is a polynomial of degree, we seek a particular solution of the form x Ax Bx C Then Ax B and A so, substituting into the given differential equation, we have A Ax B Ax Bx C x or Ax A B x A B C x Figure shows four solutions of the differential equation in Example in terms of the particular solution y and the functions f x e x p and t x e x. +f+3g +3g +f _3 3 FIGURE 8 _5 Polynomials are equal when their coefficients are equal. Thus A A B 0 A B C 0 The solution of this system of equations is A B C 3 4 A particular solution is therefore x x x 3 4 and, by Theorem 3, the general solution is y y c c e x c e x x x 3 4 If G x (the right side of Equation ) is of the form Ce kx, where C and k are constants, then we take as a trial solution a function of the same form, x Ae kx, because the derivatives of e kx are constant multiples of e kx. Figure shows solutions of the differential equation in Example in terms of and the functions f x cos x and t x sin x. Notice that all solutions approach as x l and all solutions resemble sine functions when x is negative. 4 +f+g +g _4 +f FIGURE _ EXAMPLE Solve y 4y e 3x. SOLUTION The auxiliary equation is r 4 0 with roots i, so the solution of the complementary equation is y c x c cos x c sin x For a particular solution we try y. Then y and 9Ae 3x p 3Ae 3x p x Ae 3x. Substituting into the differential equation, we have 9Ae 3x 4 Ae 3x e 3x so 3Ae 3x e 3x and A 3. Thus, a particular solution is x 3e 3x and the general solution is y x c cos x c sin x 3e 3x If G x is either C cos kx or C sin kx, then, because of the rules for differentiating the sine and cosine functions, we take as a trial particular solution a function of the form x A cos kx B sin kx
3 NONHOMOGENEOUS LINEAR EQUATIONS 3 EXAMPLE 3 Solve y y y sin x. SOLUTION We try a particular solution x A cos x B sin x Then A sin x B cos x A cos x B sin x so substitution in the differential equation gives A cos x B sin x A sin x B cos x A cos x B sin x sin x or 3A B cos x A 3B sin x sin x This is true if The solution of this system is 3A B 0 and A 3B so a particular solution is A 0 B 3 0 In Example we determined that the solution of the complementary equation is y c c e x c e x. Thus, the general solution of the given equation is If G x is a product of functions of the preceding types, then we take the trial solution to be a product of functions of the same type. For instance, in solving the differential equation we would try y x c e x c e x 0 cos x 3sin x x Ax B cos 3x Cx D sin 3x If G x is a sum of functions of these types, we use the easily verified principle of superposition, which says that if and are solutions of x 0 cos x 3 0 sin x y y 4y x cos 3x ay by cy G x ay by cy G x respectively, then is a solution of ay by cy G x G x EXAMPLE 4 Solve y 4y xe x cos x. SOLUTION The auxiliary equation is r 4 0 with roots, so the solution of the complementary equation is y. For the equation y 4y xe x c x c e x c e x we try x Ax B e x Then y, Ax A B e x p Ax A B e x, so substitution in the equation gives Ax A B e x 4 Ax B e x xe x or 3Ax A 3B e x xe x
4 4 NONHOMOGENEOUS LINEAR EQUATIONS Thus, 3A and A 3B 0, so A, B 3 9, and x ( 3 x 9)e x For the equation y 4y cos x, we try In Figure 3 we show the particular solution of the differential equation in Example 4. The other solutions are given in terms of f x e x and t x e x. FIGURE 3 +f+g +g +f _4 5 _ x C cos x D sin x Substitution gives 4C cos x 4D sin x 4 C cos x D sin x cos x or 8C cos x 8D sin x cos x Therefore, 8C, 8D 0, and x 8 cos x By the superposition principle, the general solution is y y c c e x c e x ( 3x 9)e x 8 cos x Finally we note that the recommended trial solution sometimes turns out to be a solution of the complementary equation and therefore can t be a solution of the nonhomogeneous equation. In such cases we multiply the recommended trial solution by x (or by x if necessary) so that no term in x is a solution of the complementary equation. EXAMPLE 5 Solve y y sin x. SOLUTION The auxiliary equation is r 0 with roots i, so the solution of the complementary equation is y c x c cos x c sin x Ordinarily, we would use the trial solution x A cos x B sin x but we observe that it is a solution of the complementary equation, so instead we try x Ax cos x Bx sin x Then x A cos x Ax sin x B sin x Bx cos x x A sin x Ax cos x B cos x Bx sin x The graphs of four solutions of the differential equation in Example 5 are shown in Figure 4. 4 Substitution in the differential equation gives A sin x B cos x sin x _π π so A, B 0, and x x cos x _4 The general solution is FIGURE 4 y x c cos x c sin x x cos x
5 NONHOMOGENEOUS LINEAR EQUATIONS 5 We summarize the method of undetermined coefficients as follows:. If G x e kx P x, where P is a polynomial of degree n, then try x e kx Q x, where Q x is an nth-degree polynomial (whose coefficients are determined by substituting in the differential equation.). If G x e kx P x cos mx or G x e kx P x sin mx, where P is an nth-degree polynomial, then try x e kx Q x cos mx e kx R x sin mx where Q and R are nth-degree polynomials. Modification: If any term of by x (or by x if necessary). is a solution of the complementary equation, multiply EXAMPLE 6 Determine the form of the trial solution for the differential equation y 4y 3y e x cos 3x. SOLUTION Here G x has the form of part of the summary, where k, m 3, and P x. So, at first glance, the form of the trial solution would be x e x A cos 3x B sin 3x But the auxiliary equation is r 4r 3 0, with roots r 3i, so the solution of the complementary equation is y c x e x c cos 3x c sin 3x This means that we have to multiply the suggested trial solution by x. So, instead, we use x xe x A cos 3x B sin 3x The Method of Variation of Parameters Suppose we have already solved the homogeneous equation ay by cy 0 and written the solution as 4 y x c y x c y x y ters) c and c in Equation 4 by arbitrary functions u x and u x. We look for a particular where and y are linearly independent solutions. Let s replace the constants (or parame- solution of the nonhomogeneous equation ay by cy G x of the form 5 x u x y x u x y x (This method is called variation of parameters because we have varied the parameters c and c to make them functions.) Differentiating Equation 5, we get 6 u y u y u y u y u u Since and are arbitrary functions, we can impose two conditions on them. One condition is that is a solution of the differential equation; we can choose the other condition so as to simplify our calculations. In view of the expression in Equation 6, let s impose the condition that 7 u y u y 0
6 6 NONHOMOGENEOUS LINEAR EQUATIONS Then u y u y u y u y Substituting in the differential equation, we get or a u y u y u y u y b u y u y c u y u y G 8 u ay by cy u ay by cy a u y u y G y y But and are solutions of the complementary equation, so ay by cy 0 and Equation 8 simplifies to and ay by cy 0 9 a u y u y G Equations 7 and 9 form a system of two equations in the unknown functions u and u. After solving this system we may be able to integrate to find u and u and then the particular solution is given by Equation 5. EXAMPLE 7 Solve the equation y y tan x, 0 x. SOLUTION The auxiliary equation is r 0 with roots i, so the solution of y y 0 is c sin x c cos x. Using variation of parameters, we seek a solution of the form x u x sin x u x cos x Then u sin x u cos x u cos x u sin x Set 0 u sin x u cos x 0 Then u cos x u sin x u sin x u cos x For to be a solution we must have u cos x u sin x tan x Solving Equations 0 and, we get Figure 5 shows four solutions of the differential equation in Example 7..5 u sin x cos x cos x tan x u sin x u x cos x (We seek a particular solution, so we don t need a constant of integration here.) Then, from Equation 0, we obtain 0 _ π u sin x cos x u sin x cos x cos x cos x sec x cos x FIGURE 5 So u x sin x ln sec x tan x
7 NONHOMOGENEOUS LINEAR EQUATIONS 7 (Note that sec x tan x 0 for 0 x.) Therefore x cos x sin x sin x ln sec x tan x cos x cos x ln sec x tan x and the general solution is y x c sin x c cos x cos x ln sec x tan x Exercises A Click here for answers. 0 Solve the differential equation or initial-value problem using the method of undetermined coefficients.. y 3y y x. y 9y e 3x 3. y y sin 4x 4. y 6y 9y x 5. y 4y 5y e x 6. x y y y xe 7. y y e x x 3, y 0, y y 4y e x cos x, y 0, y 0 9. y y xe x, y 0, y 0 0. y y y x sin x, y 0, y 0 0 ; Graph the particular solution and several other solutions. What characteristics do these solutions have in common?. 4y 5y y e x. y 3y y cos x 3 8 Write a trial solution for the method of undetermined coefficients. Do not determine the coefficients. 3. y 9y e x x sin x 4. y 9y xe x cos x 5. y 9y xe 9x S Click here for solutions. 6. y 3y 4y x 3 x e x 7. y y 0y x e x cos 3x 8. y 4y e 3x x sin x 9 Solve the differential equation using (a) undetermined coefficients and (b) variation of parameters. 9. y 4y x 0. y 3y y sin x. y y y e x. y y e x 3 8 Solve the differential equation using the method of variation of parameters. 3. y y sec x, 0 x 4. y y cot x, 0 x 5. y 3y y e x 6. y 3y y sin e x y y x y 4y 4y e x x 3
8 8 NONHOMOGENEOUS LINEAR EQUATIONS Answers S Click here for solutions y c e x c e x x 3 x 7 4 y c c e x 40 cos 4x 0 sin 4x y e x c cos x c sin x 0 e x y 3 cos x sin x e x x 3 6x y e x ( x x ). 5 The solutions are all asymptotic to e x 0 as x l. Except for, _ 4 all solutions approach either or as x l _4 Ae x Bx Cx D cos x Ex Fx G sin x Ax Bx C e 9x xe x Ax Bx C cos 3x Dx Ex F sin 3x y c cos x c sin x 4 x y c e x c xe x e x y c x sin x c ln cos x cos x y c ln e x e x c e x ln e x e x 7. y [c x e x x dx]e x [c x e x x dx]e x
9 NONHOMOGENEOUS LINEAR EQUATIONS 9 Solutions: Nonhomogeneous Linear Equations. The auxiliary equation is r +3r +=(r +)(r +)=0,sothecomplementarysolutionis y c (x) =c e x + c e x. We try the particular solution (x) =Ax + Bx + C, soy 0 p =Ax + B and y 00 p =A. Substituting into the differential equation, we have (A)+3(Ax + B)+(Ax + Bx + C) =x or Ax +(6A +B)x +(A +3B +C) =x. Comparing coefficients gives A =, 6A +B =0,and A +3B +C =0,soA =, B = 3,andC = 7. Thus the general solution is 4 y(x) =y c(x)+(x) =c e x + c e x + x 3 x The auxiliary equation is r r = r(r ) = 0,sothecomplementarysolutionisy c(x) =c + c e x.trythe particular solution (x) =A cos 4x + B sin 4x, soy 0 p = 4A sin 4x +4B cos 4x and y 00 p = 6A cos 4x 6B sin 4x. Substitution into the differential equation gives ( 6A cos 4x 6B sin4x) ( 4A sin4x + 4B cos 4x) = sin4x ( 6A 8B)cos4x +(8A 6B)sin4x =sin4x. Then 6A 8B =0and 8A 6B = A = 40 and B =. Thus the general solution is y(x) =y 0 c(x)+ (x) =c + c e x + cos 4x sin 4x The auxiliary equation is r 4r +5=0with roots r =± i, sothecomplementarysolutionis y c(x) =e x (c cos x + c sin x). Try (x) =Ae x,soy 0 p = Ae x and y 00 p = Ae x. Substitution gives Ae x 4( Ae x )+5(Ae x )=e x 0Ae x = e x A =. Thus the general solution is 0 y(x) =e x (c cos x + c sin x)+ 0 e x. 7. The auxiliary equation is r +=0with roots r = ±i, sothecomplementarysolutionis y c(x) =c cos x + c sin x. Fory 00 + y = e x try (x) =Ae x.theny 0 p = y 00 p = Ae x and substitution gives Ae x + Ae x = e x A =,soyp (x) = ex.fory 00 + y = x 3 try (x) =Ax 3 + Bx + Cx + D. Then y 0 p =3Ax +Bx + C and y 00 p =6Ax +B. Substituting, we have 6Ax +B + Ax 3 + Bx + Cx + D = x 3,soA =, B =0, 6A + C =0 C = 6, andb + D =0 D =0.Thus (x) =x 3 6x and the general solution is y(x) =y c(x)+ (x)+ (x) =c cos x + c sin x + ex + x 3 6x. But=y(0) = c + c = 3 and 0=y 0 (0) = c + y(x) = 3 cos x + sin x + ex + x 3 6x. 6 c =. Thus the solution to the initial-value problem is 9. The auxiliary equation is r r =0with roots r =0, r =so the complementary solution is y c(x) =c + c e x. Try (x) =x(ax + B)e x so that no term in is a solution of the complementary equation. Then y 0 p =(Ax +(A + B)x + B)e x and y 00 p =(Ax +(4A + B)x +(A +B))e x. Substitution into the differential equation gives (Ax +(4A + B)x +(A +B))e x (Ax +(A + B)x + B)e x = xe x (Ax +(A + B))e x = xe x A =, B =. Thus (x) = x x e x and the general solution is y(x) =c + c e x + x x e x.but=y(0) = c + c and =y 0 (0) = c,soc =and c =0.The solution to the initial-value problem is y(x) =e x + x x e x = e x x x +.
10 0 NONHOMOGENEOUS LINEAR EQUATIONS. y c(x) =c e x/4 + c e x.try(x) =Ae x.then 0Ae x = e x,soa = and the general solution is 0 y(x) =c e x/4 + c e x + 0 ex. The solutions are all composed of exponential curves and with the exception of the particular solution (which approaches 0 as x ), they all approach either or as x.asx, all solutions are asymptotic to = 0 ex. 3. Here y c(x) =c cos 3x + c sin 3x. Fory 00 +9y = e x try (x) =Ae x and for y 00 +9y = x sin x try (x) =(Bx + Cx + D)cosx +(Ex + Fx+ G)sinx. Thus a trial solution is (x) = (x)+ (x) =Ae x +(Bx + Cx + D)cosx +(Ex + Fx+ G)sinx. 5. Here y c(x) =c + c e 9x.Fory 00 +9y 0 =try (x) =Ax (since y = A is a solution to the complementary equation) and for y 00 +9y 0 = xe 9x try (x) =(Bx + C)e 9x. 7. Since y c(x) =e x (c cos 3x + c sin 3x) we try (x) =x(ax + Bx + C)e x cos 3x + x(dx + Ex + F )e x sin 3x (sothatnotermof is a solution of the complementary equation). Note: Solving Equations (7) and (9) in The Method of Variation of Parameters gives u 0 Gy = a (y y 0 y y 0 ) and u 0 Gy = a (y y 0 y y 0 ) We will use these equations rather than resolving the system in each of the remaining exercises in this section. 9. (a) The complementary solution is y c (x) =c cos x + c sin x. A particular solution is of the form (x) =Ax + B. Thus,4Ax +4B = x A = and B =0 yp(x) = x. Thus, the general 4 4 solution is y = y c + = c cos x + c sin x + 4 x. (b) In (a), y c(x) =c cos x + c sin x, sosety =cosx, y =sinx. Then y y 0 y y 0 =cos x +sin x =so u 0 = x sin x R u (x) = x sin xdx = 4 x cos x + sin x [barts] and u 0 = x cos x R u (x) = x cos xdx = 4 x sin x + cos x [barts]. Hence (x) = 4 x cos x + sin x cos x + 4 x sin x + cos x sin x = x.thus 4 y(x) =y c (x)+ (x) =c cos x + c sin x + x. 4. (a) r r = r(r ) = 0 r =0,, so the complementary solution is y c (x) =c e x + c xe x. A particular solution is of the form (x) =Ae x. Thus 4Ae x 4Ae x + Ae x = e x Ae x = e x A = (x) =e x. So a general solution is y(x) =y c(x)+(x) =c e x + c xe x + e x. (b) From (a), y c (x) =c e x + c xe x,sosety = e x, y = xe x. Then, y y 0 y y 0 = e x ( + x) xe x = e x and so u 0 = xe x u (x) = R xe x dx = (x )e x [barts] and u 0 = e x u (x) = R e x dx = e x. Hence (x) =( x)e x + xe x = e x and the general solution is y(x) =y c (x)+ (x) =c e x + c xe x + e x.
11 NONHOMOGENEOUS LINEAR EQUATIONS 3. As in Example 6, y c(x) =c sin x + c cos x, sosety =sinx, y =cosx. Then y y 0 y y 0 = sin x cos x =, sou 0 sec x cos x = = u (x) =x and u 0 sec x sin x = = tan x u (x) = R tan xdx =ln cos x =ln(cosx) on 0 <x< π.hence (x) =x sin x +cosx ln(cos x) and the general solution is y(x) =(c + x)sinx +[c +ln(cosx)] cos x. 5. y = e x, y = e x and y y 0 y y 0 = e 3x.Sou 0 = Z u (x) = e x +e dx x =ln(+e x ). u 0 = Z e x µ e x + u (x) = dx =ln e 3x + ex e x e x e x = and ( + e x )e3x +e x e x ( + e x )e = e x so 3x e 3x + ex e x =ln(+e x ) e x.hence (x) =e x ln( + e x )+e x [ln( + e x ) e x ] and the general solution is y(x) =[c +ln(+e x )]e x +[c e x +ln(+e x )]e x. 7. y = e x, y = e x and y y 0 y y 0 =.Sou 0 = ex x, u0 = e x Z e (x) = e x x y(x) = µ Z c e x Z dx + ex x e x x dx e x + x µ c + x and dx. Hence the general solution is Z e x x dx e x.
Second-Order Linear Differential Equations
Second-Order Linear Differential Equations A second-order linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1
SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS
SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS A second-order linear differential equation has the form 1 Px d y dx dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. Equations of this type arise
Second Order Linear Differential Equations
CHAPTER 2 Second Order Linear Differential Equations 2.. Homogeneous Equations A differential equation is a relation involving variables x y y y. A solution is a function f x such that the substitution
2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style
Finding a Particular Integral 19.6 Introduction We stated in Block 19.5 that the general solution of an inhomogeneous equation is the sum of the complementary function and a particular integral. We have
A Brief Review of Elementary Ordinary Differential Equations
1 A Brief Review of Elementary Ordinary Differential Equations At various points in the material we will be covering, we will need to recall and use material normally covered in an elementary course on
So far, we have looked at homogeneous equations
Chapter 3.6: equations Non-homogeneous So far, we have looked at homogeneous equations L[y] = y + p(t)y + q(t)y = 0. Homogeneous means that the right side is zero. Linear homogeneous equations satisfy
INTEGRATING FACTOR METHOD
Differential Equations INTEGRATING FACTOR METHOD Graham S McDonald A Tutorial Module for learning to solve 1st order linear differential equations Table of contents Begin Tutorial c 2004 [email protected]
1. First-order Ordinary Differential Equations
Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential
Taylor and Maclaurin Series
Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions
Homework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard
u dx + y = 0 z x z x = x + y + 2 + 2 = 0 6) 2
DIFFERENTIAL EQUATIONS 6 Many physical problems, when formulated in mathematical forms, lead to differential equations. Differential equations enter naturally as models for many phenomena in economics,
General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1
A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions
tegrals as General & Particular Solutions
tegrals as General & Particular Solutions dy dx = f(x) General Solution: y(x) = f(x) dx + C Particular Solution: dy dx = f(x), y(x 0) = y 0 Examples: 1) dy dx = (x 2)2 ;y(2) = 1; 2) dy ;y(0) = 0; 3) dx
1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).
.7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational
Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College
Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College Equations of Order One: Mdx + Ndy = 0 1. Separate variables. 2. M, N homogeneous of same degree:
The Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
How To Understand The Theory Of Algebraic Functions
Homework 4 3.4,. Show that x x cos x x holds for x 0. Solution: Since cos x, multiply all three parts by x > 0, we get: x x cos x x, and since x 0 x x 0 ( x ) = 0, then by Sandwich theorem, we get: x 0
Sample Problems. Practice Problems
Lecture Notes Partial Fractions page Sample Problems Compute each of the following integrals.. x dx. x + x (x + ) (x ) (x ) dx 8. x x dx... x (x + ) (x + ) dx x + x x dx x + x x + 6x x dx + x 6. 7. x (x
Techniques of Integration
CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration
1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve
SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives
To differentiate logarithmic functions with bases other than e, use
To ifferentiate logarithmic functions with bases other than e, use 1 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b 1 To ifferentiate logarithmic functions with
How To Solve A Linear Dierential Equation
Dierential Equations (part 2): Linear Dierential Equations (by Evan Dummit, 2012, v. 1.00) Contents 4 Linear Dierential Equations 1 4.1 Terminology.................................................. 1 4.2
y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx
Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.
November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation
Interpolation, Extrapolation & Polynomial Approximation November 16, 2015 Introduction In many cases we know the values of a function f (x) at a set of points x 1, x 2,..., x N, but we don t have the analytic
a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x
Chapter 7 Outline Math 236 Spring 2001
Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will
Find all of the real numbers x that satisfy the algebraic equation:
Appendix C: Factoring Algebraic Expressions Factoring algebraic equations is the reverse of expanding algebraic expressions discussed in Appendix B. Factoring algebraic equations can be a great help when
Limits and Continuity
Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function
14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style
Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of
4.3 Lagrange Approximation
206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average
On closed-form solutions to a class of ordinary differential equations
International Journal of Advanced Mathematical Sciences, 2 (1 (2014 57-70 c Science Publishing Corporation www.sciencepubco.com/index.php/ijams doi: 10.14419/ijams.v2i1.1556 Research Paper On closed-form
100. In general, we can define this as if b x = a then x = log b
Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,
correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style
Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with
is identically equal to x 2 +3x +2
Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3
3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
System of First Order Differential Equations
CHAPTER System of First Order Differential Equations In this chapter, we will discuss system of first order differential equations. There are many applications that involving find several unknown functions
Calculus 1: Sample Questions, Final Exam, Solutions
Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.
Math 2280 - Assignment 6
Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue
y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C
Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.
FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.
FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is
Lecture 14: Section 3.3
Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in
An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate.
Chapter 10 Series and Approximations An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate 1 0 e x2 dx, you could set
A First Course in Elementary Differential Equations. Marcel B. Finan Arkansas Tech University c All Rights Reserved
A First Course in Elementary Differential Equations Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 Contents 1 Basic Terminology 4 2 Qualitative Analysis: Direction Field of y = f(t, y)
Solutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
Sequences and Series
Sequences and Series Consider the following sum: 2 + 4 + 8 + 6 + + 2 i + The dots at the end indicate that the sum goes on forever. Does this make sense? Can we assign a numerical value to an infinite
Section 12.6: Directional Derivatives and the Gradient Vector
Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate
TOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
Name: ID: Discussion Section:
Math 28 Midterm 3 Spring 2009 Name: ID: Discussion Section: This exam consists of 6 questions: 4 multiple choice questions worth 5 points each 2 hand-graded questions worth a total of 30 points. INSTRUCTIONS:
Partial Fractions. p(x) q(x)
Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break
Applications of Second-Order Differential Equations
Applications of Second-Order Differential Equations Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration
Don't Forget the Differential Equations: Finishing 2005 BC4
connect to college success Don't Forget the Differential Equations: Finishing 005 BC4 Steve Greenfield available on apcentral.collegeboard.com connect to college success www.collegeboard.com The College
Partial Fractions Examples
Partial Fractions Examples Partial fractions is the name given to a technique of integration that may be used to integrate any ratio of polynomials. A ratio of polynomials is called a rational function.
College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions
College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use
3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes
Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same
Lectures 5-6: Taylor Series
Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,
Techniques of Integration
8 Techniques of Integration Over the next few sections we examine some techniques that are frequently successful when seeking antiderivatives of functions. Sometimes this is a simple problem, since it
1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives
TRIGONOMETRY Chapter Trigonometry Objectives After studying this chapter you should be able to handle with confidence a wide range of trigonometric identities; be able to express linear combinations of
minimal polyonomial Example
Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We
The Mathematics Diagnostic Test
The Mathematics iagnostic Test Mock Test and Further Information 010 In welcome week, students will be asked to sit a short test in order to determine the appropriate lecture course, tutorial group, whether
Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a
REVIEW EXERCISES DAVID J LOWRY
REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and
9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.
9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role
2.2 Separable Equations
2.2 Separable Equations 73 2.2 Separable Equations An equation y = f(x, y) is called separable provided algebraic operations, usually multiplication, division and factorization, allow it to be written
LS.6 Solution Matrices
LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions
PRE-CALCULUS GRADE 12
PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.
PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
Linear and quadratic Taylor polynomials for functions of several variables.
ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is
is identically equal to x 2 +3x +2
Partial fractions.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as + for any
JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
Homework #2 Solutions
MAT Spring Problems Section.:, 8,, 4, 8 Section.5:,,, 4,, 6 Extra Problem # Homework # Solutions... Sketch likely solution curves through the given slope field for dy dx = x + y...8. Sketch likely solution
Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015
Harold s s Cheat Sheet 8 December 05 Algebra Constant Linear Identity f(x) c f(x) x Range: [c, c] Undefined (asymptote) Restrictions: c is a real number Ay + B 0 g(x) x Restrictions: m 0 General Fms: Ax
Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
The one dimensional heat equation: Neumann and Robin boundary conditions
The one dimensional heat equation: Neumann and Robin boundary conditions Ryan C. Trinity University Partial Differential Equations February 28, 2012 with Neumann boundary conditions Our goal is to solve:
Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
Class Meeting # 1: Introduction to PDEs
MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x
The Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
Homework #1 Solutions
MAT 303 Spring 203 Homework # Solutions Problems Section.:, 4, 6, 34, 40 Section.2:, 4, 8, 30, 42 Section.4:, 2, 3, 4, 8, 22, 24, 46... Verify that y = x 3 + 7 is a solution to y = 3x 2. Solution: From
Inner product. Definition of inner product
Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product
Approximating functions by Taylor Polynomials.
Chapter 4 Approximating functions by Taylor Polynomials. 4.1 Linear Approximations We have already seen how to approximate a function using its tangent line. This was the key idea in Euler s method. If
Calculus. Contents. Paul Sutcliffe. Office: CM212a.
Calculus Paul Sutcliffe Office: CM212a. www.maths.dur.ac.uk/~dma0pms/calc/calc.html Books One and several variables calculus, Salas, Hille & Etgen. Calculus, Spivak. Mathematical methods in the physical
Integration ALGEBRAIC FRACTIONS. Graham S McDonald and Silvia C Dalla
Integration ALGEBRAIC FRACTIONS Graham S McDonald and Silvia C Dalla A self-contained Tutorial Module for practising the integration of algebraic fractions Table of contents Begin Tutorial c 2004 [email protected]
COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS
COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS BORIS HASSELBLATT CONTENTS. Introduction. Why complex numbers were introduced 3. Complex numbers, Euler s formula 3 4. Homogeneous differential equations 8 5.
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
Differentiation and Integration
This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have
PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
MATH 381 HOMEWORK 2 SOLUTIONS
MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e
4.5 Linear Dependence and Linear Independence
4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then
The Derivative. Philippe B. Laval Kennesaw State University
The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition
Factoring Polynomials
Factoring Polynomials Hoste, Miller, Murieka September 12, 2011 1 Factoring In the previous section, we discussed how to determine the product of two or more terms. Consider, for instance, the equations
6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives
6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise
Recognizing Types of First Order Differential Equations E. L. Lady
Recognizing Types of First Order Differential Equations E. L. Lady Every first order differential equation to be considered here can be written can be written in the form P (x, y)+q(x, y)y =0. This means
Mathematics I, II and III (9465, 9470, and 9475)
Mathematics I, II and III (9465, 9470, and 9475) General Introduction There are two syllabuses, one for Mathematics I and Mathematics II, the other for Mathematics III. The syllabus for Mathematics I and
