MATH 381 HOMEWORK 2 SOLUTIONS

Size: px
Start display at page:

Download "MATH 381 HOMEWORK 2 SOLUTIONS"

Transcription

1 MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e y e y ] f y = 4g(x)[ey e y ]. g (x) + 4g(x) =. Thus g(x) has the form A sin(x) + B cos(x) and by the initial conditions, A = andb =. Therefore, g(x) = sin(x). Question (p.86 #). Find the harmonic conjugate of tan x y where π < tan x y π. Write u(x, y) = tan x y.thenbythecauchy-riemannequations, () () By (), x = y x + y y = y x + y = v y y = y x x + y y = x x + y = v x. v = log(x + y ) + C(x), and by () v x = x x + y + x C (x) = x + y so C (x) = andc(x) is a constant, call it D. Therefore, v(x, y) = log(x + y ) + D. Question 3. (p.86 #3) Show, if u(x, y) and v(x, y) are harmonic functions, that u + v must be a harmonic function but that uv need not be a harmonic function. Is e u e v a harmonic function? If u and v are harmonic, then u + v is harmonic since (u + v) + (u + v) = u x y x + v x + u y + v y = u x + u y + v x + v y =. To show that uv is not necessarily harmonic, it suffices to show that there exists u, v harmonic such that (uv) x + (uv) y = v x x + v y y. Any u = v harmonic where, willsuffice. Forinstance,takingu = v = x will work, since it s harmonic (both x y of its second-order partials vanish) but v x x + v y y =. Date: October3,.

2 MATH 38 HOMEWORK SOLUTIONS Now, in order for e u e v to be harmonic, we need (e u e v ) + (e u e v ) = e u+v x y x + v x + y + v y =. Thus, the existence of any u, v harmonic such that + v x x + + v y y willshowthate u e v is not harmonic. Again, taking u = v = x gives us what we want as e x is easily seen to be non-harmonic. Question 4 (p.6 #4). State the domain of analyticity of f(z) = e iz. Find the real and imaginary parts u(x, y) and v(x, y) of the function, show that these satisfy the Cauchy-Riemann equations, and find f (z) in terms of z. By definition, Therefore, These are continuous functions at all (x, y) R.Now, f(z) = e iz = e ix e y = e y [cos x + i sin x]. u(x, y) = e y cos x v(x, y) = e y sin x. x = e y sin x = v y y = e y cos x = v x so u, v satisfy the C-R equations, and these derivatives are continuous for allx, y. Therefore, f(z) is entire. Furthermore, f (z) = e y sin x + i(e y cos x) = i(e y [cos x + i sin x]) = ie iz. Question 5 (p.6 #6). State the domain of analyticity of f(z) = e ez. Find the real and imaginary parts u(x, y) and v(x, y) of the function, show that these satisfy the Cauchy-Riemann equations, and find f (z) in terms of z. First, observe that f is an entire function of an entire function, so it is analytic everywhere. Now, so e ez = e ex (cos y+i sin y) = e ex cos y cos(e x sin y) + i sin(e x sin y), u(x, y) = e ex cos y cos(e x sin y) v(x, y) = e ex cos y sin(e x sin y) and f satisfies the C-R equations. Furthermore, x = x cos y ee (e x cos y) cos(e x sin y) e ex cos y (e x sin y) sin(e x sin y) = e ex cos y+x (cos y cos(e x sin y) sin y sin(e x sin y)) v y = x cos y ee ( e x sin y) sin(e x sin y) + e ex cos y cos(e x sin y)(e x cos y) = e ex cos y+x (cos y cos(e x sin y) sin y sin(e x sin y)) y = x cos y ee ( e x sin y) cos(e x sin y) + e ex cos y (e x cos y)( sin(e x sin y)) = e ex cos y+x (cos y sin(e x sin y) + sin y cos(e x sin y)) v x = x cos y ee (e x cos y) sin(e x sin y) + e ex cos y (e x sin y) cos(e x sin y) = e ex cos y+x (cos y sin(e x sin y) + sin y cos(e x sin y)) f (z) = e ex cos y e x (cos y cos(e x sin y) sin y sin(e x sin y)) + i(cos y sin(e x sin y) + sin y cos(e x sin y) = e ex cos y e x cos y cos(e x sin y) + i sin(e x sin y) + e x sin yi cos(e x sin y) sin(e x sin y) = e ex cos y cos(e x sin y) + i sin(e x sin y)e x (cos y + i sin y) = e ez e z.

3 MATH 38 HOMEWORK SOLUTIONS 3 Question 6 (p.6 #3). (a) Prove the expression given in the text for the n th derivative of f(t) = t t + = Re. (Note: t R). t i (b) Find similar expressions for the n th derivative of f(t) = t + = Im.(Note: t R ). t i (a) By the Lemma, for n, Now, observe that f (n) (t) = Re dn dt n t i = Re ( )n n! (t i) n+ = t+i, so by the binomial theorem t i t + ( ) n n! (t i) = ( )n n!(t + i) n+ = ( )n n+ n!(n + )! i k t n+ k n+ (t + ) n+ (t + ) n+ k= (n + k)!k!. But notice that we only get contributions to the real part of this expression when k is even; i.e. when i k R. Summing over the even integers, k = m, we get for n odd that and for n even that (b) In this case we want f (n) (t) = ( )n n!(n + )! (t + ) n+ = f (n) (t) = ( )n!(n + )! (t + ) n+ n!(n + )! (t + ) n+ n+ m= n+ m= n m= i m t n+ m (n + m)!(m)! ( ) m t n+ m (n + m)!(m)! i m t n+ m (n + m)!(m)! f (n) (t) = Im dn dt n t i = Im ( )n n! (t i) n+. By the work above, we want the imaginary part of ( ) n n!(n + )! (t + ) n+ n+ k= i k t n+ k (n + k)!k!. In this case we get contributions when k is odd, so we take the the sum over k = m + for m. Note that i m+ = ( ) m i. It follows that when n is odd, and when n is even, f (n) (t) = f (n) (t) = ( )n!(n + )! (t + ) n+ n m= n n!(n + )! (t + ) n+ m= ( ) m t n m (n m)!(m + )! ( ) m t n m (n m)!(m + )!. Question 7 (p.6 #5). Let P (ψ) = N n= e inψ. (a) Show that (b) Find lim ψ P (ψ). (c) Plot P (ψ) for ψ and N = 3. (a) Note that P (ψ) = sin(nψ) sin(ψ). P (ψ) = einψ e iψ.

4 z = π 4 + kπ, k Z. 4 MATH 38 HOMEWORK SOLUTIONS Thus, Thus, P (ψ) = einψ e iψ = einψ e iψ = einψ e iψ = einψ e iψ (b) By l Hopital s rule we get einψ e inψ e iψ e iψ cos(nψ) + i sin(nψ) cos( Nψ) i sin( Nψ) cos(ψ) + i sin(ψ) cos( ψ) i sin( ψ) i sin(nψ) i sin ψ. P (ψ) = einψ e iψ sin(nψ) sin ψ = sin(nψ) sin ψ. sin(nψ) Nsin(Nψ) lim = lim = N. ψ sin ψ ψ sinψ (c) If you have nothing else, just plug it in Wolfram Alpha. Question 8 (p. #7). Show that sin z cos z = has solutions only for real values of z. What are the solutions? In other words, for z = x + iy we want Equating the real parts and imaginary parts we require (3) (4) sin x cosh y + i cos x sinh y = cos x cosh y i sin x sinh y. sin x cosh y = cos x cosh y cos x sinh y = sin x sinh y. Suppose y andhencesinhy andcoshy. Then in order to have solutions, by (3), weneedcosx = sin x and by (4) we need cos x = sin x. These equations are only satisfied for sin x = cos x =, but no solutions for x exists. Therefore, if there are solutions to the original equation, we must have that y =. Suppose y =. Then since cosh = andsinh= wesimplyneedsolutionstosinx = cos x. Thus we have solutions if and only if Question 9 (p. #). Where does the function f(z) = 3sinz cos z fail to be analytic? Since sin z and cos z are both analytic, f(z) will fail to be analytic when 3sinz cos z =. In other words, when we have solutions to ( sin x cosh y + i cos x sinh y) = cos x cosh y i sin x sinh y. Equating the real parts and imaginary parts we require (5) 3sinx cosh y = cos x cosh y (6) 3cosx sinh y = sin x sinh y. By the same argument as the previous question, there are no solutions when y. Suppose y =. Then since cosh = andsinh= wesimplyneedsolutionsto 3sinx = cos x, thatistotanx = 3. So f(z) is not analytic when z = π 6 + kπ, k Z. Question (p. #). Let f(z) = sin z. (a) Express this function in the form u(x, y) + iv(x, y). Where in the complex plane is this function analytic? (b) What is the derivative of f(z)? Where in the complex plane is f (z) analytic?

5 MATH 38 HOMEWORK SOLUTIONS 5 (a) Since sin z is entire, and z (b) For z, is analytic for z, it follows that f(z) is analytic for z. sin x iy = sin z x + y x = sin x + y cosh y x + y + i cos x x + y sinh y x + y x = sin x + y cosh y x + y i cos x x + y sinh y x + y. which is analytic for all z. d dz sin z = cos z z Question (p. #5). Show that cos z = sinh y + cos x. cos z = cos x cosh y i sin x sinh y = cos x cosh y + sin x sinh y = cos x( + sinh y) + sin x sinh y = cos x + sinh y(cos x + sin x) = cos x + sinh y Question (p.9 #6). Use logarithms to find solutions to e z = e iz. We want solutions to e z( i) =, so taking logs on both sides we get for any k Z, z( i) = πik, so z = πik (i + )πik = = (i )kπ. i Question 3 (p.9 #8). Use logarithms to find solutions to e z = (e z ). In other words, we want solutions to e z 3e z + =. By the quadratic formula, we get that Taking logs gives that for k Z. e z = 3 ± 4 9 = 3 ± 5. z = log 3 ± 5 + πik Question 4 (p.9 #). Use logarithms to find solutions to e ez =. First, taking logs we get e z = πik for k Z. Now for k >, the argument of πik is π + πm where m Z, and for k <, the argument of πik is 3π + πm (again m Z). Thus, for k >, z = log(πk) + i π + mπ and for k <, Question 5 (p.9 #3). Show that where θ R and e iθ. z = log(πk) + i π + mπ. Re log( + e iθ ) = log cos θ

6 6 MATH 38 HOMEWORK SOLUTIONS Re log( + e iθ ) = log + e iθ = log ( + cos θ) + sin θ = log( + cosθ) = log cos θ + sin θ + cos θ sin θ = log cos θ Question 6 (p.7 #9). Intergrate along z =, in the lower half plane. z dz Let z = e it, then we are integrating along the interval t [, π]. Now,dz = ie it dt so z dz = π e i t iei tdt = iπ. Question 7 (p.7 #). Show that x = cos t, y = sin t, wheret ranges from to π, yields a parametric representation of the ellipse x 4 + y =. Use this representation to evaluate i zdz along the portion of the ellipse in the first quadrant. Note that (cost) + sin t = cos t + sin t = 4 and furthermore cos = cosπ = andsin= sin π =. To see that we get all of the ellipse, note that x = cost has solutions t [, π] for all x [, ] and y = sin t has solutions t [, π] for all y [, ]. Furthermore, the parametrization is : except for when x =,y =. Setting z = x + iy = cost + i sin t, wegetdz = (i cos t sint)dt, and i zdz = = π π = 3 + iπ. (cost i sin t)(i cos t sint)dt (i 3sint cos t)dt Question 8 (p.7 #4). Consider I = +i e z dz taken along the line x = y. Without actually doing the integration, show that I 5e 3. Let M be the maximal value attained by e z along the path of integration. Now, for x = y, e z = e x y +ixy = e 3y which attains its maximum when y attains a maximum that is, when z = +i. Therefore M = e 3. By the pythagorean theorem, the length of the path is + = 5, so by the ML inequality, I ML = 5e 3. Question 9 (p.7 #6). Consider I = i e i log z dz taken along the parabola y = x. Without doing the integration, show that I.479e π. Letting θ = arg z e i log z = e i(logz iθ) = e i logz e θ = e θ. Along the given path, this attains a maximum when θ = π, so let M = e π.

7 MATH 38 HOMEWORK SOLUTIONS 7 Now, we need to find the length of the path of integration. So since dy = xdx, L = + dy dx dx = + 4x dx The ML inequality then gives the desired result. <.479. Question (p.8 #). Is the Cauchy-Goursat theorem directly applicable to z= sin z z+i dz? Since sin z z+i directly applicable. is analytic everywhere except for z = i which is not in the unit circle, the C-G theorem is Question (p.8 #6). Is the Cauchy-Goursat theorem directly applicable to z i = log zdz? Since is not in the unit circle about i +, log z is analytic in the desired region so the C-G theorem is directly applicable. Question (p.8 #7). Is the Cauchy-Goursat theorem directly applicable to z= (z ) 4 + dz? Observe that we have a singularity when z is a primitive 8 th root of unity that is, when (z ) 4 =. These roots of unity lie on the unit circle, so shifting over by, we need to determine if the roots closest to the origin, at z = e iπ34 + andz = e iπ54 + have absolute value greater than. By geometry (right angle triangles), it can be seen that at these points, so the C-G theorem directly applies. z = + > Question 3 (p.8 #9). Is the Cauchy-Goursat theorem directly applicable to z=b z + bz + dz where < b <? In this case the singularities are at the roots of the equation x + bx +, that is, when z = b ± b 4 = b 4 b ± i. Here, b z = b = > b 4 therefore C-G applies directly. Question 4 (p.8 #3). Prove that π e cos θ sin(sin θ + θ)dθ =. Begin with e z dz performed around z =. Use the parametric representation z = e iθ, θ π. Separate your equation into real and imaginary parts. Let z = e iθ = cos θ + i sin θ, sodz = e iθ idθ. Sincee z is analytic, But then π z= e z dz = e cos θ+i(sin θ+θ) dθ = π e cos θ+i sin θ e iθ idθ =. so by equating the imaginary part with zero we get the desired result. π e cos θ (cos(θ + sin θ) + i sin(θ + sin θ))dθ =

Solutions for Math 311 Assignment #1

Solutions for Math 311 Assignment #1 Solutions for Math 311 Assignment #1 (1) Show that (a) Re(iz) Im(z); (b) Im(iz) Re(z). Proof. Let z x + yi with x Re(z) and y Im(z). Then Re(iz) Re( y + xi) y Im(z) and Im(iz) Im( y + xi) x Re(z). () Verify

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:

More information

Homework # 3 Solutions

Homework # 3 Solutions Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8

More information

Complex Algebra. What is the identity, the number such that it times any number leaves that number alone?

Complex Algebra. What is the identity, the number such that it times any number leaves that number alone? Complex Algebra When the idea of negative numbers was broached a couple of thousand years ago, they were considered suspect, in some sense not real. Later, when probably one of the students of Pythagoras

More information

4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complex-valued function of a real variable

4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complex-valued function of a real variable 4. Complex integration: Cauchy integral theorem and Cauchy integral formulas Definite integral of a complex-valued function of a real variable Consider a complex valued function f(t) of a real variable

More information

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w. hapter omplex integration. omplex number quiz. Simplify 3+4i. 2. Simplify 3+4i. 3. Find the cube roots of. 4. Here are some identities for complex conjugate. Which ones need correction? z + w = z + w,

More information

THE COMPLEX EXPONENTIAL FUNCTION

THE COMPLEX EXPONENTIAL FUNCTION Math 307 THE COMPLEX EXPONENTIAL FUNCTION (These notes assume you are already familiar with the basic properties of complex numbers.) We make the following definition e iθ = cos θ + i sin θ. (1) This formula

More information

Differentiation and Integration

Differentiation and Integration This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have

More information

COMPLEX NUMBERS AND SERIES. Contents

COMPLEX NUMBERS AND SERIES. Contents COMPLEX NUMBERS AND SERIES MIKE BOYLE Contents 1. Complex Numbers Definition 1.1. A complex number is a number z of the form z = x + iy, where x and y are real numbers, and i is another number such that

More information

Calculus 1: Sample Questions, Final Exam, Solutions

Calculus 1: Sample Questions, Final Exam, Solutions Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.

More information

3 Contour integrals and Cauchy s Theorem

3 Contour integrals and Cauchy s Theorem 3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of

More information

Euler s Formula Math 220

Euler s Formula Math 220 Euler s Formula Math 0 last change: Sept 3, 05 Complex numbers A complex number is an expression of the form x+iy where x and y are real numbers and i is the imaginary square root of. For example, + 3i

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

Chapter 4. Linear Second Order Equations. ay + by + cy = 0, (1) where a, b, c are constants. The associated auxiliary equation is., r 2 = b b 2 4ac 2a

Chapter 4. Linear Second Order Equations. ay + by + cy = 0, (1) where a, b, c are constants. The associated auxiliary equation is., r 2 = b b 2 4ac 2a Chapter 4. Linear Second Order Equations ay + by + cy = 0, (1) where a, b, c are constants. ar 2 + br + c = 0. (2) Consequently, y = e rx is a solution to (1) if an only if r satisfies (2). So, the equation

More information

C. Complex Numbers. 1. Complex arithmetic.

C. Complex Numbers. 1. Complex arithmetic. C. Complex Numbers. Complex arithmetic. Most people think that complex numbers arose from attempts to solve quadratic equations, but actually it was in connection with cubic equations they first appeared.

More information

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

More information

Lecture 17: Conformal Invariance

Lecture 17: Conformal Invariance Lecture 17: Conformal Invariance Scribe: Yee Lok Wong Department of Mathematics, MIT November 7, 006 1 Eventual Hitting Probability In previous lectures, we studied the following PDE for ρ(x, t x 0 ) that

More information

MMGF30, Transformteori och analytiska funktioner

MMGF30, Transformteori och analytiska funktioner MATEMATIK Göteborgs universitet Tentamen 06-03-8, 8:30-:30 MMGF30, Transformteori och analytiska funktioner Examiner: Mahmood Alaghmandan, tel: 77 53 74, Email: mahala@chalmers.se Telefonvakt: 07 97 5630

More information

Calculus with Parametric Curves

Calculus with Parametric Curves Calculus with Parametric Curves Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x f(t), y g(t) where y is also a differentiable function

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

GRE Prep: Precalculus

GRE Prep: Precalculus GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach

More information

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

Chapter 2. Complex Analysis. 2.1 Analytic functions. 2.1.1 The complex plane

Chapter 2. Complex Analysis. 2.1 Analytic functions. 2.1.1 The complex plane Chapter 2 Complex Analysis In this part of the course we will study some basic complex analysis. This is an extremely useful and beautiful part of mathematics and forms the basis of many techniques employed

More information

COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i 1 4 1 7 i 5 6i

COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i 1 4 1 7 i 5 6i COMPLEX NUMBERS _4+i _-i FIGURE Complex numbers as points in the Arg plane i _i +i -i A complex number can be represented by an expression of the form a bi, where a b are real numbers i is a symbol with

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x

DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of

More information

Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.

Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C. Review Solutions MAT V. (a) If u 4 x, then du dx. Hence, substitution implies dx du u + C 4 x + C. 4 x u (b) If u e t + e t, then du (e t e t )dt. Thus, by substitution, we have e t e t dt e t + e t u

More information

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

More information

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents DIFFERENTIABILITY OF COMPLEX FUNCTIONS Contents 1. Limit definition of a derivative 1 2. Holomorphic functions, the Cauchy-Riemann equations 3 3. Differentiability of real functions 5 4. A sufficient condition

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

Solutions to Exercises, Section 5.1

Solutions to Exercises, Section 5.1 Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

More information

Solutions by: KARATUĞ OZAN BiRCAN. PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set in

Solutions by: KARATUĞ OZAN BiRCAN. PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set in KOÇ UNIVERSITY, SPRING 2014 MATH 401, MIDTERM-1, MARCH 3 Instructor: BURAK OZBAGCI TIME: 75 Minutes Solutions by: KARATUĞ OZAN BiRCAN PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set

More information

Solutions to Practice Problems for Test 4

Solutions to Practice Problems for Test 4 olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,

More information

Elementary Functions

Elementary Functions Chapter Three Elementary Functions 31 Introduction Complex functions are, of course, quite easy to come by they are simply ordered pairs of real-valued functions of two variables We have, however, already

More information

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm. PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

More information

5.3 Improper Integrals Involving Rational and Exponential Functions

5.3 Improper Integrals Involving Rational and Exponential Functions Section 5.3 Improper Integrals Involving Rational and Exponential Functions 99.. 3. 4. dθ +a cos θ =, < a

More information

The Mean Value Theorem

The Mean Value Theorem The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers

More information

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

More information

Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem

Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem February 21, 214 In many problems, you are asked to show that something exists, but are not required to give a specific example or formula

More information

Section 12.6: Directional Derivatives and the Gradient Vector

Section 12.6: Directional Derivatives and the Gradient Vector Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

More information

Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015

Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015 Harold s s Cheat Sheet 8 December 05 Algebra Constant Linear Identity f(x) c f(x) x Range: [c, c] Undefined (asymptote) Restrictions: c is a real number Ay + B 0 g(x) x Restrictions: m 0 General Fms: Ax

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions

More information

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homework 5 1. Let z = f(x, y) be a twice continously differentiable function of x and y. Let x = r cos θ and y = r sin θ be the equations which transform polar coordinates into rectangular

More information

PRE-CALCULUS GRADE 12

PRE-CALCULUS GRADE 12 PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.

More information

Merton College Maths for Physics Prelims October 10, 2005 MT I. Calculus. { y(x + δx) y(x)

Merton College Maths for Physics Prelims October 10, 2005 MT I. Calculus. { y(x + δx) y(x) Merton College Maths for Physics Prelims October 10, 2005 1. From the definition of the derivative, dy = lim δx 0 MT I Calculus { y(x + δx) y(x) evaluate d(x 2 )/. In the same way evaluate d(sin x)/. 2.

More information

Math Placement Test Practice Problems

Math Placement Test Practice Problems Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211

More information

Notes and questions to aid A-level Mathematics revision

Notes and questions to aid A-level Mathematics revision Notes and questions to aid A-level Mathematics revision Robert Bowles University College London October 4, 5 Introduction Introduction There are some students who find the first year s study at UCL and

More information

Answer Key for the Review Packet for Exam #3

Answer Key for the Review Packet for Exam #3 Answer Key for the Review Packet for Eam # Professor Danielle Benedetto Math Ma-Min Problems. Show that of all rectangles with a given area, the one with the smallest perimeter is a square. Diagram: y

More information

Lectures 5-6: Taylor Series

Lectures 5-6: Taylor Series Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

More information

Examples of Functions

Examples of Functions Chapter 3 Examples of Functions Obvious is the most dangerous word in mathematics. E. T. Bell 3.1 Möbius Transformations The first class of functions that we will discuss in some detail are built from

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

Computing Euler angles from a rotation matrix

Computing Euler angles from a rotation matrix Computing Euler angles from a rotation matrix Gregory G. Slabaugh Abstract This document discusses a simple technique to find all possible Euler angles from a rotation matrix. Determination of Euler angles

More information

The Math Circle, Spring 2004

The Math Circle, Spring 2004 The Math Circle, Spring 2004 (Talks by Gordon Ritter) What is Non-Euclidean Geometry? Most geometries on the plane R 2 are non-euclidean. Let s denote arc length. Then Euclidean geometry arises from the

More information

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

More information

10 Polar Coordinates, Parametric Equations

10 Polar Coordinates, Parametric Equations Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS

COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS BORIS HASSELBLATT CONTENTS. Introduction. Why complex numbers were introduced 3. Complex numbers, Euler s formula 3 4. Homogeneous differential equations 8 5.

More information

Derive 5: The Easiest... Just Got Better!

Derive 5: The Easiest... Just Got Better! Liverpool John Moores University, 1-15 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de Technologie Supérieure, Canada Email; mbeaudin@seg.etsmtl.ca 1. Introduction Engineering

More information

Algebra 2: Themes for the Big Final Exam

Algebra 2: Themes for the Big Final Exam Algebra : Themes for the Big Final Exam Final will cover the whole year, focusing on the big main ideas. Graphing: Overall: x and y intercepts, fct vs relation, fct vs inverse, x, y and origin symmetries,

More information

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0, Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

More information

This is the second in a series of two papers investigating the solitary wave solutions of the integrable model wave equation

This is the second in a series of two papers investigating the solitary wave solutions of the integrable model wave equation CONVERGENCE OF SOLITARY-WAVE SOLUTIONS IN A PERTURBED BI-HAMILTONIAN DYNAMICAL SYSTEM. II. COMPLEX ANALYTIC BEHAVIOR AND CONVERGENCE TO NON-ANALYTIC SOLUTIONS. Y. A. Li 1 and P. J. Olver 1, Abstract. In

More information

tegrals as General & Particular Solutions

tegrals as General & Particular Solutions tegrals as General & Particular Solutions dy dx = f(x) General Solution: y(x) = f(x) dx + C Particular Solution: dy dx = f(x), y(x 0) = y 0 Examples: 1) dy dx = (x 2)2 ;y(2) = 1; 2) dy ;y(0) = 0; 3) dx

More information

Calculus. Contents. Paul Sutcliffe. Office: CM212a.

Calculus. Contents. Paul Sutcliffe. Office: CM212a. Calculus Paul Sutcliffe Office: CM212a. www.maths.dur.ac.uk/~dma0pms/calc/calc.html Books One and several variables calculus, Salas, Hille & Etgen. Calculus, Spivak. Mathematical methods in the physical

More information

Homework #1 Solutions

Homework #1 Solutions MAT 303 Spring 203 Homework # Solutions Problems Section.:, 4, 6, 34, 40 Section.2:, 4, 8, 30, 42 Section.4:, 2, 3, 4, 8, 22, 24, 46... Verify that y = x 3 + 7 is a solution to y = 3x 2. Solution: From

More information

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

FINAL EXAM SOLUTIONS Math 21a, Spring 03

FINAL EXAM SOLUTIONS Math 21a, Spring 03 INAL EXAM SOLUIONS Math 21a, Spring 3 Name: Start by printing your name in the above box and check your section in the box to the left. MW1 Ken Chung MW1 Weiyang Qiu MW11 Oliver Knill h1 Mark Lucianovic

More information

Second-Order Linear Differential Equations

Second-Order Linear Differential Equations Second-Order Linear Differential Equations A second-order linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1

More information

( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those 1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make

More information

Vector Calculus Solutions to Sample Final Examination #1

Vector Calculus Solutions to Sample Final Examination #1 Vector alculus s to Sample Final Examination #1 1. Let f(x, y) e xy sin(x + y). (a) In what direction, starting at (,π/), is f changing the fastest? (b) In what directions starting at (,π/) is f changing

More information

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS A second-order linear differential equation has the form 1 Px d y dx dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. Equations of this type arise

More information

Techniques of Integration

Techniques of Integration CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration

More information

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.

More information

Algebra and Geometry Review (61 topics, no due date)

Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

More information

Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.

Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. MAC 1105 Final Review Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. 1) 8x 2-49x + 6 x - 6 A) 1, x 6 B) 8x - 1, x 6 x -

More information

NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane

NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane Mathematical Sciences Paper II Time Allowed : 75 Minutes] [Maximum Marks : 100 Note : This Paper contains Fifty (50) multiple choice questions. Each question carries Two () marks. Attempt All questions.

More information

Differentiation of vectors

Differentiation of vectors Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where

More information

Line and surface integrals: Solutions

Line and surface integrals: Solutions hapter 5 Line and surface integrals: olutions Example 5.1 Find the work done by the force F(x, y) x 2 i xyj in moving a particle along the curve which runs from (1, ) to (, 1) along the unit circle and

More information

WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS.

WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS. WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS. DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE Contributor: U.N.Iyer Department of Mathematics and Computer Science, CP 315, Bronx Community College, University

More information

Semester 2, Unit 4: Activity 21

Semester 2, Unit 4: Activity 21 Resources: SpringBoard- PreCalculus Online Resources: PreCalculus Springboard Text Unit 4 Vocabulary: Identity Pythagorean Identity Trigonometric Identity Cofunction Identity Sum and Difference Identities

More information

Mathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI)

Mathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI) ( : Focus on free Education) Miscellaneous Exercise on chapter 5 Question 1: Evaluate: Answer 1: 1 ( : Focus on free Education) Question 2: For any two complex numbers z1 and z2, prove that Re (z1z2) =

More information

LINEAR MAPS, THE TOTAL DERIVATIVE AND THE CHAIN RULE. Contents

LINEAR MAPS, THE TOTAL DERIVATIVE AND THE CHAIN RULE. Contents LINEAR MAPS, THE TOTAL DERIVATIVE AND THE CHAIN RULE ROBERT LIPSHITZ Abstract We will discuss the notion of linear maps and introduce the total derivative of a function f : R n R m as a linear map We will

More information

6.4 Logarithmic Equations and Inequalities

6.4 Logarithmic Equations and Inequalities 6.4 Logarithmic Equations and Inequalities 459 6.4 Logarithmic Equations and Inequalities In Section 6.3 we solved equations and inequalities involving exponential functions using one of two basic strategies.

More information

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x

More information

The Mathematics Diagnostic Test

The Mathematics Diagnostic Test The Mathematics iagnostic Test Mock Test and Further Information 010 In welcome week, students will be asked to sit a short test in order to determine the appropriate lecture course, tutorial group, whether

More information

Review Sheet for Test 1

Review Sheet for Test 1 Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And

More information

Separable First Order Differential Equations

Separable First Order Differential Equations Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use

More information

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

More information

Mathematics I, II and III (9465, 9470, and 9475)

Mathematics I, II and III (9465, 9470, and 9475) Mathematics I, II and III (9465, 9470, and 9475) General Introduction There are two syllabuses, one for Mathematics I and Mathematics II, the other for Mathematics III. The syllabus for Mathematics I and

More information

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4) ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

MATH 52: MATLAB HOMEWORK 2

MATH 52: MATLAB HOMEWORK 2 MATH 52: MATLAB HOMEWORK 2. omplex Numbers The prevalence of the complex numbers throughout the scientific world today belies their long and rocky history. Much like the negative numbers, complex numbers

More information