The Method of Partial Fractions Math 121 Calculus II Spring 2015
|
|
|
- Christian Young
- 9 years ago
- Views:
Transcription
1 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x x x 60. The method of partial fractions can be used to integrate rational functions. It s a fairly complicated method and applying it takes time, but it works! We know how to integrate a few simple rational functions. This method will take a complicated rational function like the example above and express it as a sum of the simple rational functions we can already integrate, like these: = ln x + C, x x = 1 + C for n > 1, and n (n 1)xn x = arctan x + C These can be generalized to these three more useful identities = 1 ln ax + b + C ax + b a 1 = + C for n > 1 (ax + b) n a(n 1)(ax + b) n 1 = 1 a x + b ab arctan ax b + C Using the method called completing the square, that last equation can be further generalized to integrate the reciprocal of any irreducible quadratic function. Results from algebra. This method depends on some algebraic facts about polynomials, namely, the Fundamental Theorem of Algebra and the decomposition of rational functions into partial fractions. The term partial fractions just means simpler rational functions. The FTA. The Fundamental Theorem of Algebra (FTA) concerns factoring a polynomial into linear factors. An example of such a factoring is x 8x+15 = (x 5)(x 3). It can also be stated in terms of roots of the polynomial. For the example, the quadratic polynomial x 8x + 15 has two roots, x = 5, 3. The FTA states that over the complex numbers, every n th degree polynomial can be factored into n linear factors. In terms of roots, it says that every n th degree polynomial has exactly n roots, but the roots may be complex numbers, and multiplicities have to be counted. For an example of counting multiplicities, the cubic polynomial x 3 + x x 1 factors into linear factors as (x + 1) (x 1). The factor x + 1 appears twice. Its roots are +1 and 1, but 1 has multiplicity, i.e, it s a double root. 1
2 For an example of complex roots, the polynomial x + 1 factors as (x + i)(x i), and has two roots ±i. Here, i is 1, the imaginary unit. We don t have to get involved with complex numbers. Instead, we ll take a form of the FTA that only mentions real numbers. In that form, the FTA states that every n th degree polynomial can be factored over the real numbers into linear factors and irreducible quadratic factors. An irreducible quadratic polynomial is one like x + 1 that has no real roots. You can tell if a quadratic polynomial ax + bx + c is irreducible by looking at its discriminant b ac. If the discriminant is positive, then the polynomial has two real roots and it factors; if the discriminant is 0, then the polynomial has a double real root and it factors as the square a linear polynomial; but if the discriminant is negative, then it has two complex roots and it doesn t factor, that is, it s irreducible. The FTA is used for partial fractions in order to factor the denominator of the rational function. Decomposition of rational functions into partial fractions. There are a few steps to accomplish this decomposition. First divide the denominator into the numerator, then factor the denominator, next write the rational function as a sum of partial fractions with undetermined constants, and finally determine those constants. Example 1. Step 1. The first step in the decomposition is to reduce the problem to the case where the numerator has a lower degree than the denominator. Let s take our example f(x) g(x) = 3x5 + x x x 60. You can use long division to divide g(x) into f(x). In this case, divide into 3x 5 + x 3 x 60. You ll get 3x 3x + 16 with a remainder of 10x +. Therefore, 3x 5 + x x x 60 = 3x 3x x +. Step. Next factor the denominator. By the FTA we know there is a factorization. Finding the factorization for high degree polynomials is difficult, but in this example, we can do it. = (x )(x 1)(x + 1) Step 3. Now comes the theory for the decomposition. It says that any rational function whose numerator has a lower degree than the denominator can be written as a sum of simpler rational functions, the partial fractions, where each partial fraction has as denominator a factor of the original denominator or a power of that factor if that factor appears with multiplicity greater than 1. The numerators of the partial fractions have lower degrees than the denominators. For our example, this says that 10x + = A x + B x 1 + C x + 1 where, since the denominators have degree 1, the numerators have to have degree 0, that is, A, B, and C are constants. Step. Determine the numerators. Clear the denominators from the equation by multiplying both sides by = (x )(x 1)(x + 1). You ll get 10x + = A(x 1)(x + 1) + B(x )(x + 1) + C(x )(x 1).
3 There are various ways to continue from here to determine A, B, and C. Since the equation is true for all values of x, one way to continue is to set x to convenient values, and the most convenient values are the roots of the polynomial:, 1, and 1. If you set x =, then the equation says = 15A, so A = 15. If you set x = 1, then the equation says 1 = 6B, so B = 7 3. And if you set x = 1, then the equation says 6 = 10C, so C = 3 5. Therefore, 10x + = /15 x + 7/3 x 1 + 3/5 x + 1. Complete the integration. Now that the complicated rational function has been written as a sum of simpler partial fractions, we can integrate it. 3x 5 + x x x 60 ( ) = 3x 10x + 3x ( = 3x 3x /15 x + 7/3 x 1 + 3/5 ) x + 1 = x 3 3 x + 16x + 15 ln x 7 3 ln x 1 3 ln x C 5 This example was chosen to show the method, but there can be complications. One complication occurs when there is a multiple root. A more difficult complication occurs when one of the factors is an irreducible quadratic polynomial. That eventually leads to an answer involving arctangents. We ll look at a couple more examples to see some of these complications. x Example.. First divide the denominator into to the numerator to see x 3 + x x 1 that x x 3 + x x 1 = x + x + 1 x 3 + x x 1. Next, the denominator factors as x 3 + x x 1 = (x + 1) (x 1). The repeated factor of (x + 1) will give us two terms in the partial fraction decomposition as follows. x + 1 x 3 + x x 1 = A x B (x + 1) + C x 1 Determine the constants A, B, and C. First clear the denominators. x + 1 = A(x + 1)(x 1) + B(x 1) + C(x + 1) The two roots ±1 give us two convenient values of x to determine two of these constants. Setting x = 1, we get 5 = C, so C = 5. Setting x = 1, we get 5 = B, so B = 5. 3
4 There are no more roots, but we can set x to any other value, say x = 0, and we find 1 = A B + C, and since we know B and C, therefore A = 11. Thus, x x 3 + x x 1 = x + 11/ x / (x + 1) + 5/ x 1. We can now integrate the original rational function. x x 3 + x x 1 = ( x + 11/ x / (x + 1) + 5/ x 1 = x x + 11 ) 5/ ln x (x + 1) + 5 ln x 1 + C x + x + 5 Example 3.. The numerator already has a smaller degree than the (x + 1)(x 3) denominator, so we can skip that step, and the denominator is already factored as the product of the irreducible quadratic x + 1 and the linear factor x 3. The partial fraction decomposition has two parts, the first with denominator x + 1, but its numerator won t be a constant but an undetermined linear polynomial Ax + B. x + x + 5 (x + 1)(x 3) = Ax + B x C x 3 Now to determine A, B, and C. We ll clear the denominators. x + x + 5 = (Ax + B)(x 3) + C(x + 1) Although we could use the root x = 3 as a convenient value and determine what C is, we d still have to find A and B somehow. Let s use another method from algebra. Rewrite the right hand side of the equation as x + x + 5 = (A + C)x + ( 3A + B)x + ( 3B + C). The only way two polynomials can be equal is if they have the same coefficients. That gives us three simultaneous linear equations in three unknowns to solve. 1 = A + C = 3A + B 5 = 3B + C You can solve these equations the unknowns A, B, and C to find that A =, B = 1, and C =. Now we can continue the integration. x + x + 5 x 1 (x + 1)(x 3) = x x 3 The second integral is just ln x 3. We can split the first integral into two parts. The first part is x x + 1 = ln x + 1
5 which you can guess or find with the help of a substitution u = x + 1, while the second part is 1 = arctan x. x + 1 Thus, our original integral evaluates as ln x + 1 arctan x + ln x 3 + C. See the text for some examples that are more complicated than these. Weierstrass s universal t-substitution. This is a substitution that converts and any function built out of trig functions and the four arithmetic operations into a rational function like the ones we just looked at. + sin θ Suppose we have an integral of such a function, say dθ. Weierstrass s t substitution makes t = tan θ/. The full set of formulas for this substitution 3 + cos θ is t = tan θ sin θ = t θ = arctan t cos θ = 1 t dθ = Our example integral then becomes t dt tan θ = t 1 t t t 1 + t dt = (t + t + 1) (t + )(t + 1) dt The methods described above finish off this integral. 1 t = t + dt + t t + 1 dt = 1 arctan t 1 ln(t + ) + 1 ln(t + 1) + C where t = tan θ/. Math 11 Home Page at 5
1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).
.7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational
Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
Partial Fractions. (x 1)(x 2 + 1)
Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +
Integrals of Rational Functions
Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t
3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes
Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same
Partial Fractions. p(x) q(x)
Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break
1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
Zeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
is identically equal to x 2 +3x +2
Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3
Factoring Polynomials and Solving Quadratic Equations
Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3
JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
Differentiation and Integration
This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have
PYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
Partial Fractions Decomposition
Partial Fractions Decomposition Dr. Philippe B. Laval Kennesaw State University August 6, 008 Abstract This handout describes partial fractions decomposition and how it can be used when integrating rational
Integration ALGEBRAIC FRACTIONS. Graham S McDonald and Silvia C Dalla
Integration ALGEBRAIC FRACTIONS Graham S McDonald and Silvia C Dalla A self-contained Tutorial Module for practising the integration of algebraic fractions Table of contents Begin Tutorial c 2004 [email protected]
Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
POLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x
Solving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
Techniques of Integration
CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration
Partial Fractions Examples
Partial Fractions Examples Partial fractions is the name given to a technique of integration that may be used to integrate any ratio of polynomials. A ratio of polynomials is called a rational function.
SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS
(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic
Zeros of Polynomial Functions
Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction
FACTORING QUADRATICS 8.1.1 and 8.1.2
FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.
Equations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
Solving Cubic Polynomials
Solving Cubic Polynomials 1.1 The general solution to the quadratic equation There are four steps to finding the zeroes of a quadratic polynomial. 1. First divide by the leading term, making the polynomial
Integrating algebraic fractions
Integrating algebraic fractions Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fraction as the sum of its partial fractions. In this unit we will illustrate
is identically equal to x 2 +3x +2
Partial fractions.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as + for any
More Quadratic Equations
More Quadratic Equations Math 99 N1 Chapter 8 1 Quadratic Equations We won t discuss quadratic inequalities. Quadratic equations are equations where the unknown appears raised to second power, and, possibly
Vieta s Formulas and the Identity Theorem
Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion
3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
Zeros of Polynomial Functions
Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of
Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola
Chapter 7 - Roots, Radicals, and Complex Numbers
Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the
Partial Fractions: Undetermined Coefficients
1. Introduction Partial Fractions: Undetermined Coefficients Not every F(s) we encounter is in the Laplace table. Partial fractions is a method for re-writing F(s) in a form suitable for the use of the
Sample Problems. Practice Problems
Lecture Notes Partial Fractions page Sample Problems Compute each of the following integrals.. x dx. x + x (x + ) (x ) (x ) dx 8. x x dx... x (x + ) (x + ) dx x + x x dx x + x x + 6x x dx + x 6. 7. x (x
MA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
Zeros of Polynomial Functions
Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate
Decomposing Rational Functions into Partial Fractions:
Prof. Keely's Math Online Lessons University of Phoenix Online & Clark College, Vancouver WA Copyright 2003 Sally J. Keely. All Rights Reserved. COLLEGE ALGEBRA Hi! Today's topic is highly structured and
Mathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI)
( : Focus on free Education) Miscellaneous Exercise on chapter 5 Question 1: Evaluate: Answer 1: 1 ( : Focus on free Education) Question 2: For any two complex numbers z1 and z2, prove that Re (z1z2) =
Separable First Order Differential Equations
Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously
SOLVING POLYNOMIAL EQUATIONS
C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra
MATH 21. College Algebra 1 Lecture Notes
MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a
Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.
Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method
Homework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
To add fractions we rewrite the fractions with a common denominator then add the numerators. = +
Partial Fractions Adding fractions To add fractions we rewrite the fractions with a common denominator then add the numerators. Example Find the sum of 3 x 5 The common denominator of 3 and x 5 is 3 x
Core Maths C1. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the
Polynomial and Rational Functions
Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving
Factoring Quadratic Expressions
Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the
Solving Rational Equations
Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,
Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
Week 13 Trigonometric Form of Complex Numbers
Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working
SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen
SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen A. GENERALITIES. When a given quadratic equation can be factored, there are 2 best methods
1 Shapes of Cubic Functions
MA 1165 - Lecture 05 1 1/26/09 1 Shapes of Cubic Functions A cubic function (a.k.a. a third-degree polynomial function) is one that can be written in the form f(x) = ax 3 + bx 2 + cx + d. (1) Quadratic
5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.
5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations
Answer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
Answers to Basic Algebra Review
Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard
Factoring Polynomials
Factoring Polynomials Hoste, Miller, Murieka September 12, 2011 1 Factoring In the previous section, we discussed how to determine the product of two or more terms. Consider, for instance, the equations
6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives
6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise
0.4 FACTORING POLYNOMIALS
36_.qxd /3/5 :9 AM Page -9 SECTION. Factoring Polynomials -9. FACTORING POLYNOMIALS Use special products and factorization techniques to factor polynomials. Find the domains of radical expressions. Use
Linear and quadratic Taylor polynomials for functions of several variables.
ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is
GRE Prep: Precalculus
GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach
0.8 Rational Expressions and Equations
96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to
Math 4310 Handout - Quotient Vector Spaces
Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
TOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
MATH 108 REVIEW TOPIC 10 Quadratic Equations. B. Solving Quadratics by Completing the Square
Math 108 T10-Review Topic 10 Page 1 MATH 108 REVIEW TOPIC 10 Quadratic Equations I. Finding Roots of a Quadratic Equation A. Factoring B. Quadratic Formula C. Taking Roots II. III. Guidelines for Finding
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
3 1. Note that all cubes solve it; therefore, there are no more
Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if
Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper
Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic
x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.
A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are
3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.
Polynomial Degree and Finite Differences
CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial
College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran
College Algebra - MAT 6 Page: Copyright 2009 Killoran Zeros and Roots of Polynomial Functions Finding a Root (zero or x-intercept) of a polynomial is identical to the process of factoring a polynomial.
Examples of Tasks from CCSS Edition Course 3, Unit 5
Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can
Solving DEs by Separation of Variables.
Solving DEs by Separation of Variables. Introduction and procedure Separation of variables allows us to solve differential equations of the form The steps to solving such DEs are as follows: dx = gx).
4.3 Lagrange Approximation
206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average
FX 115 MS Training guide. FX 115 MS Calculator. Applicable activities. Quick Reference Guide (inside the calculator cover)
Tools FX 115 MS Calculator Handouts Other materials Applicable activities Quick Reference Guide (inside the calculator cover) Key Points/ Overview Advanced scientific calculator Two line display VPAM to
THE TRANSPOSING METHOD IN SOLVING LINEAR EQUATIONS (Basic Step to improve math skills of high school students) (by Nghi H. Nguyen Jan 06, 2015)
THE TRANSPOSING METHOD IN SOLVING LINEAR EQUATIONS (Basic Step to improve math skills of high school students) (by Nghi H. Nguyen Jan 06, 2015) Most of the immigrant students who first began learning Algebra
Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.
Polynomial and Rational Functions Outline 3-1 Polynomial Functions 3-2 Finding Rational Zeros of Polynomials 3-3 Approximating Real Zeros of Polynomials 3-4 Rational Functions Chapter 3 Group Activity:
5.5. Solving linear systems by the elimination method
55 Solving linear systems by the elimination method Equivalent systems The major technique of solving systems of equations is changing the original problem into another one which is of an easier to solve
x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3
CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -
COLLEGE ALGEBRA. Paul Dawkins
COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5
CURVE FITTING LEAST SQUARES APPROXIMATION
CURVE FITTING LEAST SQUARES APPROXIMATION Data analysis and curve fitting: Imagine that we are studying a physical system involving two quantities: x and y Also suppose that we expect a linear relationship
THE COMPLEX EXPONENTIAL FUNCTION
Math 307 THE COMPLEX EXPONENTIAL FUNCTION (These notes assume you are already familiar with the basic properties of complex numbers.) We make the following definition e iθ = cos θ + i sin θ. (1) This formula
Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date
Leaving Certificate Honours Maths - Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many
Discrete Mathematics: Homework 7 solution. Due: 2011.6.03
EE 2060 Discrete Mathematics spring 2011 Discrete Mathematics: Homework 7 solution Due: 2011.6.03 1. Let a n = 2 n + 5 3 n for n = 0, 1, 2,... (a) (2%) Find a 0, a 1, a 2, a 3 and a 4. (b) (2%) Show that
minimal polyonomial Example
Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We
The Deadly Sins of Algebra
The Deadly Sins of Algebra There are some algebraic misconceptions that are so damaging to your quantitative and formal reasoning ability, you might as well be said not to have any such reasoning ability.
NSM100 Introduction to Algebra Chapter 5 Notes Factoring
Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the
2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
Algebra Practice Problems for Precalculus and Calculus
Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials
Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only
Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: A-APR.3: Identify zeros of polynomials
Basics of Polynomial Theory
3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where
1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes
Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.
