Vieta s Formulas and the Identity Theorem
|
|
|
- Karin York
- 9 years ago
- Views:
Transcription
1 Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion will be polynomials The first thing we ll do is define a polynomial: Definition: A polynomial is an expression of the form P (x) = x n + 1 x n x n a 1 x 1 + a 0 where x is a variable (you can plug in anything you want for x) and the a 0, a 1, a 2, are all constants We call these constants the coefficients of the polynomial We call the highest exponent of x the degree of the polynomial This is a polynomial: P (x) = 5x 3 + 4x 2 2x + 1 The highest exponent of x is 3, so the degree is 3 P (x) has coefficients = 5 a 2 = 4 a 1 = 2 a 0 = 1 Since x is a variable, I can evaluate the polynomial for some values of x All this means is that I can plug in different values for x so that my polynomial simplifies to a single number: P (1) = 5 (1) (1) 2 2 (1) + 1 = 8 P (0) = 5 (0) (0) 2 2 (0) + 1 = 1 P ( 1) = 5 ( 1) ( 1) 2 2 ( 1) + 1 = 2 Practice Problem: For practice, let s analyze the polynomial P (x) = x 3 + x 2 Write down all the coefficients of P (x), find the degree of P (x), and evaluate P ( 1), P (2), and P (1) Solution: a0 = 2, a1 = 1, a2 = 0, a3 = 1, P ( 1) = 4, P (2) = 8, P (1) = 0 The degree is 3 Notice that in the practice problem above, P (1) = 0 Values at which complicated polynomials simplify to zero are very important and are known as the roots of the polynomial 1
2 Definition: The roots of the polynomial P (x) = x n + 1 x n x n a 1 x 1 + a 0 are the values r 1, r 2, r 3, such that The roots of the polynomial are P (r 1 ) = 0 P (r 2 ) = 0 P (r 3 ) = 0 P (x) = x 3 + 7x 2 + 6x r 1 = 1 r 2 = 6 r 3 = 0 You should check that P ( 1) = 0, P ( 6) = 0, and that P (0) = 0 Practice Problem: Find two roots of the polynomial P (x) = x 2 1 (Try guessing some small numbers) What is the degree of P (x)? Solution: r1 = 1, r2 = 1 The degree is 2 Perhaps you have noticed that in the last two examples the number of roots is the same as the degree of the polynomial This is not just a coincidence - there is a theorem that says that this will always be true: Theorem 1: A polynomial of degree n has exactly n roots However, some of the roots may be very complicated (some may be complex numbers) Don t be discouraged if you cannot immediately find all n roots The polynomial P (x) = 5x 3 + 4x 2 2x + 1 has degree 3 (n = 3), so it has exactly three roots: r 1, r 2, and r 3 However, finding these roots would be really hard (in fact, two of them are complex and the other one is very messy!) Although many polynomials have very complicated roots, we can often determine a lot about them using Vieta s Formulas, the first of which we look at next: Theorem 2: Given a polynomial P (x) = x n + 1 x n x n 2 + +a 1 x 1 +a 0, with roots r 1, r 2, r 3, r n, the sum of the roots is given by r 1 + r 2 + r r n = 1 2
3 Let s look at the polynomial P (x) = 2x 4 6x 3 + 5x 2 + x 3 Notice that this polynomial has degree 4 (so n = 4), so by Theorem 1 we know that it has exactly 4 roots: call them r 1, r 2, r 3, r 4 Without knowing anything else about P (x), Theorem 2 gives us a very easy way to find the sum of the roots: r 1 + r 2 + r 3 + r 4 = a 4 = 6 2 = 3 Practice: Find the sum of the roots of the polynomials P (x) = 3x 3 + 2x 2 6x 3 and G(x) = x 2 1 Solution: P (x) has degree 3 (n = 3), so the sum of the three roots of P (x) is a2 = 2 a3 3 G(x) has degree 2 (n = 2), so the sum of the three roots of G(x) is a1 = 0 a2 1 = 0 Hopefully you find it really cool that just by looking at a polynomial you can determine the sum of its roots But we re not done quite yet Vieta s Formulas are a set of n equations, where sum of the roots is just the first one Theorem 3 (Vieta s Formulas): Consider the polynomial P (x) = x n + 1 x n x n a 1 x 1 + a 0 with degree n By Theorem 1 P (x) has n roots, call them r 1, r 2, r n Vieta s Formulas say that r 1 + r 2 + r r n = 1 (r 1 r 2 + r 1 r 3 + r 1 r 4 + r 1 r n ) + (r 2 r 3 + r 2 r r 2 r n ) + + r n 1 r n = 2 (r 1 r 2 r 3 + r 1 r 2 r 4 + r 1 r 2 r 5 + r 1 r 2 r n ) + (r 1 r 3 r 4 + r 1 r 3 r r 1 r 3 r n ) + + r n 2 r n 1 r n = 3 r 1 r 2 r 3 r 4 r n = ( 1) n a 0 These formulas look quite complicated - below you ll find a simplified version of them But before before you rush to see the Simplified Vieta s Formulas, let s notice some patterns The first equation we are already comfortable with: all it says is that the sum of the roots is an 1 Now let s look at the second equation The left hand side is a sum of every possible product of a pair of roots The first parentheses has every possible pair that involves r 1, the second has every possible pair that involves r 2, etc Now let s move on to the third equation Now the left hand side is a sum of every possible product of three roots (the parentheses are organized similarly) Hopefully the pattern is clear now, so it makes sense that the last equation is a product of all the roots (every possible sum of n roots) The right hand side is a little bit easier: it is always of the form ± a #, where the sign (±) alternates with every equation If the degree (n) is even, then the last equation ends with a positive sign and if n is odd then it ends on egative sign That s why we have the ( 1) n in the last equation Now let s look at a simpler version of Vieta s Formulas 3
4 Simplified Vieta s Formulas: In the case of a polynomial with degree 3, Vieta s Formulas become very simple Given a polynomial P (x) = x 3 + a 2 x 2 + a 1 x + a 0 with roots r 1, r 2, r 3, Vieta s formulas are r 1 + r 2 + r 3 = a 2 r 1 r 2 + r 1 r 3 + r 2 r 3 = a 1 r 1 r 2 r 3 = a 0 Find the sum of the roots and the product of the roots of the polynomial P (x) = 3x 3 + 2x 2 x + 5 By the first of the Simplified Vieta s Formulas, the sum of the roots is and the product is r 1 + r 2 + r 3 = a 2 = 2 3 r 1 r 2 r 3 = a 0 = 5 3 Practice: Find the roots of the polynomial P (x) = x 3 x using Vieta s Formulas (Hint: first figure out what the product of the roots must be Then, figure out what the sum of the roots must be Then you should be able to guess what the roots are) Solution: Applying the Simplified Vieta s Formulas we find that the sum of the roots and the product of the roots must be 0 Since the product of the roots is zero, at least one of the roots must be zero Since the sum of the roots is zero, the other two roots must be negatives of each other (or they are all zero) Now you can either plug all of this into the last of Vieta s Formula, or you can guess that the roots are 1, 1, and 0 The last topic that we covered (very quickly) was the Identity Theorem This theorem tells us when two polynomials are actually the same polynomial Theorem 4 (Identity Theorem): Suppose we have two polynomials: P (x) and G(x), and both of them have degree less than n Suppose there are n values α 1, α 2, α n such that P (α 1 ) = G(α 1 ) P (α 2 ) = G(α 2 ) P (α n ) = G(α n ) (This just means that P (x) and G(x) evaluate to the same thing for n different values of x) Then P (x) and G(x) are the same polynomial 4
5 Suppose I give you two polynomials: P (x) = ax 2 + bx + c and G(x) = Ax 2 + Bx + C All you know about them is that P (1) = G(1), P (5) = G(5), and that P ( 1) = G( 1) Then you can guarantee that P (x) and G(x) are actually the same polynomial (so a = A, b = B, and c = C) Indeed, since both P (x) and G(x) have degree less than 3 (both have degree two), the Identity Theorem tells us that if P and G evaluate to the same thing at three values of x then they are the same polynomial Well, I told you that they evaluate to the same thing at 1, 2, and 5, so they must be the same polynomial Practice: You are given a polynomial P (x) that has degree less than 10 Suppose that P (x) has at least 10 roots (ie, P (x) = 0 for at least 10 different values of x) Prove that P (x) is always zero Solution: Define the polynomial G(x) so that it is zero everywhere We can write this as G(x) = 0 (so all of the coefficients are 0, and the degree is 0) I will use the Identity Theorem to prove that G(x) is the same polynomial as P (x), which would mean that P (x) is zero everywhere (always zero) Notice that P (x) is zero at at least 10 values of x, so P (x) evaluates to the same thing as G(x) at these 10 values of x (because G(x) is always zero) Since the degrees of P (x) and G(x) are both less than 10, by the Identity Theorem this means that P (x) and G(x) are the same polynomial Therefore P (x) is everywhere zero That s it! Congratulations on reaching the end! Shoot me an to let me know that you ve gone through this worksheet and I ll bring you some candy next week! 5
Factoring Polynomials and Solving Quadratic Equations
Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3
Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
The Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
1 Shapes of Cubic Functions
MA 1165 - Lecture 05 1 1/26/09 1 Shapes of Cubic Functions A cubic function (a.k.a. a third-degree polynomial function) is one that can be written in the form f(x) = ax 3 + bx 2 + cx + d. (1) Quadratic
( ) FACTORING. x In this polynomial the only variable in common to all is x.
FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard
Zeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
Polynomial Invariants
Polynomial Invariants Dylan Wilson October 9, 2014 (1) Today we will be interested in the following Question 1.1. What are all the possible polynomials in two variables f(x, y) such that f(x, y) = f(y,
Factoring Polynomials
Factoring Polynomials Hoste, Miller, Murieka September 12, 2011 1 Factoring In the previous section, we discussed how to determine the product of two or more terms. Consider, for instance, the equations
Polynomial and Rational Functions
Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving
Solving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x
Partial Fractions. (x 1)(x 2 + 1)
Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +
Chapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
Discrete Mathematics: Homework 7 solution. Due: 2011.6.03
EE 2060 Discrete Mathematics spring 2011 Discrete Mathematics: Homework 7 solution Due: 2011.6.03 1. Let a n = 2 n + 5 3 n for n = 0, 1, 2,... (a) (2%) Find a 0, a 1, a 2, a 3 and a 4. (b) (2%) Show that
Equations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
MA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
Chapter 11 Number Theory
Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications
Factoring and Applications
Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the
Zeros of Polynomial Functions
Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction
Click on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is
POLYNOMIALS and FACTORING
POLYNOMIALS and FACTORING Exponents ( days); 1. Evaluate exponential expressions. Use the product rule for exponents, 1. How do you remember the rules for exponents?. How do you decide which rule to use
3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
5.1 Radical Notation and Rational Exponents
Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
No Solution Equations Let s look at the following equation: 2 +3=2 +7
5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are
QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE
MODULE - 1 Quadratic Equations 6 QUADRATIC EQUATIONS In this lesson, you will study aout quadratic equations. You will learn to identify quadratic equations from a collection of given equations and write
Factoring Polynomials
Factoring Polynomials Any Any Any natural number that that that greater greater than than than 1 1can can 1 be can be be factored into into into a a a product of of of prime prime numbers. For For For
Pigeonhole Principle Solutions
Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such
2.5 Zeros of a Polynomial Functions
.5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and
0.8 Rational Expressions and Equations
96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to
Math 4310 Handout - Quotient Vector Spaces
Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).
.7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational
DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents
DIFFERENTIABILITY OF COMPLEX FUNCTIONS Contents 1. Limit definition of a derivative 1 2. Holomorphic functions, the Cauchy-Riemann equations 3 3. Differentiability of real functions 5 4. A sufficient condition
A Short Guide to Significant Figures
A Short Guide to Significant Figures Quick Reference Section Here are the basic rules for significant figures - read the full text of this guide to gain a complete understanding of what these rules really
3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
The Mean Value Theorem
The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers
Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1
Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1 What are the multiples of 5? The multiples are in the five times table What are the factors of 90? Each of these is a pair of factors.
JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
Partial Fractions Examples
Partial Fractions Examples Partial fractions is the name given to a technique of integration that may be used to integrate any ratio of polynomials. A ratio of polynomials is called a rational function.
Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.
Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method
Math 115 Spring 2011 Written Homework 5 Solutions
. Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence
Homework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
1.6 The Order of Operations
1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative
1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
Integrals of Rational Functions
Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t
Procedure for Graphing Polynomial Functions
Procedure for Graphing Polynomial Functions P(x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 To graph P(x): As an example, we will examine the following polynomial function: P(x) = 2x 3 3x 2 23x + 12 1. Determine
Answer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
SAT Math Facts & Formulas Review Quiz
Test your knowledge of SAT math facts, formulas, and vocabulary with the following quiz. Some questions are more challenging, just like a few of the questions that you ll encounter on the SAT; these questions
Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
minimal polyonomial Example
Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We
Solution to Homework 2
Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if
6.3 Conditional Probability and Independence
222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted
SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property
498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1
What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.
PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of
1.3 Polynomials and Factoring
1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.
Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM. x + 5 = 7 2 + 5-2 = 7-2 5 + (2-2) = 7-2 5 = 5. x + 5-5 = 7-5. x + 0 = 20.
Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM 1. Introduction (really easy) An equation represents the equivalence between two quantities. The two sides of the equation are in balance, and solving
A positive exponent means repeated multiplication. A negative exponent means the opposite of repeated multiplication, which is repeated
Eponents Dealing with positive and negative eponents and simplifying epressions dealing with them is simply a matter of remembering what the definition of an eponent is. division. A positive eponent means
Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs
Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s
3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
MATH 90 CHAPTER 6 Name:.
MATH 90 CHAPTER 6 Name:. 6.1 GCF and Factoring by Groups Need To Know Definitions How to factor by GCF How to factor by groups The Greatest Common Factor Factoring means to write a number as product. a
MATH 10034 Fundamental Mathematics IV
MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.
Algebra: Real World Applications and Problems
Algebra: Real World Applications and Problems Algebra is boring. Right? Hopefully not. Algebra has no applications in the real world. Wrong. Absolutely wrong. I hope to show this in the following document.
Prime Time: Homework Examples from ACE
Prime Time: Homework Examples from ACE Investigation 1: Building on Factors and Multiples, ACE #8, 28 Investigation 2: Common Multiples and Common Factors, ACE #11, 16, 17, 28 Investigation 3: Factorizations:
8 Square matrices continued: Determinants
8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You
Chapter 7 - Roots, Radicals, and Complex Numbers
Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the
SIMPLIFYING ALGEBRAIC FRACTIONS
Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is
A Quick Algebra Review
1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals
3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 3 EQUATIONS This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.
3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.
Math 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Spring 2012 Homework # 9, due Wednesday, April 11 8.1.5 How many ways are there to pay a bill of 17 pesos using a currency with coins of values of 1 peso, 2 pesos,
Session 6 Number Theory
Key Terms in This Session Session 6 Number Theory Previously Introduced counting numbers factor factor tree prime number New in This Session composite number greatest common factor least common multiple
Quotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
Solving Rational Equations
Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,
GRE Prep: Precalculus
GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach
Tool 1. Greatest Common Factor (GCF)
Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
3.3 Real Zeros of Polynomials
3.3 Real Zeros of Polynomials 69 3.3 Real Zeros of Polynomials In Section 3., we found that we can use synthetic division to determine if a given real number is a zero of a polynomial function. This section
Linear Programming Notes VII Sensitivity Analysis
Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization
Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013
Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,
MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform
MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish
Multiplication and Division with Rational Numbers
Multiplication and Division with Rational Numbers Kitty Hawk, North Carolina, is famous for being the place where the first airplane flight took place. The brothers who flew these first flights grew up
2.4 Real Zeros of Polynomial Functions
SECTION 2.4 Real Zeros of Polynomial Functions 197 What you ll learn about Long Division and the Division Algorithm Remainder and Factor Theorems Synthetic Division Rational Zeros Theorem Upper and Lower
6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives
6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise
MATH 108 REVIEW TOPIC 10 Quadratic Equations. B. Solving Quadratics by Completing the Square
Math 108 T10-Review Topic 10 Page 1 MATH 108 REVIEW TOPIC 10 Quadratic Equations I. Finding Roots of a Quadratic Equation A. Factoring B. Quadratic Formula C. Taking Roots II. III. Guidelines for Finding
8 Polynomials Worksheet
8 Polynomials Worksheet Concepts: Quadratic Functions The Definition of a Quadratic Function Graphs of Quadratic Functions - Parabolas Vertex Absolute Maximum or Absolute Minimum Transforming the Graph
Section 1.5 Exponents, Square Roots, and the Order of Operations
Section 1.5 Exponents, Square Roots, and the Order of Operations Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Identify perfect squares.
15. Symmetric polynomials
15. Symmetric polynomials 15.1 The theorem 15.2 First examples 15.3 A variant: discriminants 1. The theorem Let S n be the group of permutations of {1,, n}, also called the symmetric group on n things.
Section 4.1 Rules of Exponents
Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells
ALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals
ALGEBRA REVIEW LEARNING SKILLS CENTER The "Review Series in Algebra" is taught at the beginning of each quarter by the staff of the Learning Skills Center at UC Davis. This workshop is intended to be an
5544 = 2 2772 = 2 2 1386 = 2 2 2 693. Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1
MATH 13150: Freshman Seminar Unit 8 1. Prime numbers 1.1. Primes. A number bigger than 1 is called prime if its only divisors are 1 and itself. For example, 3 is prime because the only numbers dividing
Regions in a circle. 7 points 57 regions
Regions in a circle 1 point 1 region points regions 3 points 4 regions 4 points 8 regions 5 points 16 regions The question is, what is the next picture? How many regions will 6 points give? There's an
23. RATIONAL EXPONENTS
23. RATIONAL EXPONENTS renaming radicals rational numbers writing radicals with rational exponents When serious work needs to be done with radicals, they are usually changed to a name that uses exponents,
SOLVING QUADRATIC EQUATIONS BY THE NEW TRANSFORMING METHOD (By Nghi H Nguyen Updated Oct 28, 2014))
SOLVING QUADRATIC EQUATIONS BY THE NEW TRANSFORMING METHOD (By Nghi H Nguyen Updated Oct 28, 2014)) There are so far 8 most common methods to solve quadratic equations in standard form ax² + bx + c = 0.
Rolle s Theorem. q( x) = 1
Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question
Constrained optimization.
ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values
