x a x 2 (1 + x 2 ) n.
|
|
|
- Piers Murphy
- 9 years ago
- Views:
Transcription
1 Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number δ > 0 such that f(x) l < ɛ 0 < x a < δ. Note:. The function need not be defined at x = a in order to have a limit there. This is typically the case when we are evaluating derivatives. 2. Even if f(a) exists, it is not necessary that f(a) = l. e.g. Consider the function f(x) defined by f(x) = n=0 x 2 ( + x 2 ) n. f(0) = 0, but for x 0, we can sum the geometric progression to obtain f(x) = + x 2. Therefore lim x 0 f(x) =. 3. For given ɛ, the value of δ is not fixed. If the property holds for some δ > 0 then it holds for any 0 < δ δ. If f(a) exists and f(a) = l, we say that f(x) is continuous at x = a. That is: f(x) is continuous at x = a, if f(a) exists, and, given any ɛ > 0, there is a δ > 0, (which value depends usually on both x and ɛ) such that f(x) f(a) < ɛ x a < δ. Note that since the first inequality is trivially satisfied when x = a, there is no need to exclude this case from the definition. This definition of continuity does not accord with the intuitive idea of drawing the graph without taking the pencil off the paper. This is because it defines continuity at a point. This allows some unexpected results. For example, consider the following functions:. f(x) = x if x is rational, f(x) = x if x is irrational. This function is continuous only at the point x = 0.
2 2 2. f(x) = q when x = p q, p and q(> 0) coprime; f(x) = 0 when x is irrational. If a = p q is rational, then if we take ɛ = 2q, for every irrational x, f(x) f(a) = 0 q = q > ɛ. Since every interval x a < δ contains irrational points, there is no δ > 0 such that f(x) f(a) < ɛ x a < δ. Therefore f(x) is discontinuous at every rational value of x. On the other hand, given any ɛ > 0, we can find an integer Q such that ɛ > Q. For any irrational value a, consider the interval x a < 2. In this interval there are at most q rational numbers of the form p q, so that there are at most Q(Q )/2 such numbers for which q > Q. If we set δ = min p q<q q a then δ 0 since a is irrational, and if x a < min( 2, δ), when x is irrational; while if x = p q, q Q, so that f(x) f(a) = 0 0 < ɛ f(x) f(a) = q Q < ɛ. Therefore this function is continuous for every irrational value of x. This definition of continuity allows us to extend our consideration of the convergence of sequences. In particular, we have the following result: The function f(x) is continuous at x = a if and only if for every sequence {x n } which converges to a, the sequence {f(x n )} converges to f(a). This result is of central importance to analysis. The proof of the first part is straightforward. If the function f(x) is continuous at x = a, then given any ɛ > 0, there is a δ > 0 such that f(x) f(a) < ɛ x a < δ. For any sequence which converges to a, for this value δ we can find an integer N such that x n a < δ n > N. Therefore i.e. {f(x n )} converges to f(a). f(x n ) f(a) < ɛ n > N.
3 To prove the converse result that f(x n ) f(a) for every sequence x n a implies that f(x) is continuous at x = a, we show that if f(x) is NOT continuous at x = a then we can construct a sequence {x n } which converges to a but for which {f(x n } does not converge to f(a). Note that if f(a) does not exist, the result is trivially true. Otherwise, if f(x) is not continuous at x = a, then there is some value ɛ > 0 such that for every δ > 0 we can find a number X such that X a < δ and f(x) f(a) ɛ. Note that X a so that X a > 0. Begin with δ =. There is a value X such that X a < δ = ; f(x ) f(a) > ɛ. Choose δ 2 = 2 X a > 0. There is a value X 2 such that 3 X 2 a < δ 2 < 2 ; f(x 2) f(a) > ɛ. We proceed inductively defining δ n+ = 2 X n a and then determining the value X n+. The sequence {X n } has the property that so that it converges to a. However, X n a < 2 n n, f(x n ) f(a) > ɛ n, so that this sequence does not converge to f(a). As an illustration, consider the second function discussed above. If we take a = π, and consider the sequence then the sequence {f(x n )} is {3, 3., 3.4, 3.4, 3.45, 3.459,... } {, 0., 0.02, 0.00, , ,... } which converges to f(π) = 0. On the other hand, for a = 3, we can consider the sequence which converges to a. The sequence {f(x n )} is {0.3, 0.33, 0.333,... } {0., 0.0, 0.00,... } which converges to 0, while f(a) = 3. This is in accord with the fact that f(x) is continuous for x irrational, but discontinous for x rational.
4 4 We could in fact use this property to give another proof that this function is not continuous at any rational point. For any rational number r, consider the sequence x n = r + 2 n which converges to r. Each x n is irrational, so that f(x n ) = 0 for each x n, and the sequence {f(x n )} does not converge to f(r). Therefore f is not continuous at r. As a second illustration, consider the sequence {p 2 n/q 2 n} which we showed converges to 2. If the function f(x) is continuous at x = 2, then ( ) p 2 f n f(2). In particular, for f(x) = x, we obtain the result q 2 n p n q n 2. We recover our intuitive idea of continuity by considering continuity on an interval. Given some interval I, the function f(x) is continuous on I if it is continuous (in the pointwise sense above) at every point of I. In particular, we have the Intermediate Value Theorem: If the function f is continuous on the interval I, then for every a < b in I, and for every l between f(a) and f(b), there is a number c in (a, b) such that f(c) = l. (The converse is not true; a function may have the intermediate value property without being continuous. Consider for example f(x) = x /x with a < and b >.) Suppose without loss of generality that f(a) < f(b), and consider the set of all numbers x [a, b] for which f(x) < l. Since a is in this set, it is non-empty. This set is bounded above by b, therefore it has a least upper bound c. We will show that f(c) = l. Note that since f(b) > l, and f is continuous at b, there is a δ > 0 such that f(x) f(b) < f(b) l l < f(x) < 2f(b) l for all x b < δ; b δ < x < b + δ, so that c b δ. Similarly, c a + δ for some δ > 0. Suppose that f(c) < l. We know that f(x) is continuous at x = c. Therefore, for ɛ = l f(c) > 0, we can find δ > 0 such that f(x) f(c) < ɛ x c < δ.
5 5 Therefore f(x) < l x < c + δ and c is not an upper bound for the set. On the other hand, if f(c) > l, we choose ɛ = f(c) l > 0. There is a δ > 0 such that f(x) f(c) < f(c) l x c < δ f(x) < l x > c δ so that c is not the least upper bound. Together these two contradictions show that f(c) = l as required. Uniform continuity. Suppose that the function f is continuous on an interval I. For any given ɛ > 0 and for each x I, we can find some δ > 0 such that f(y) f(x) < ɛ y x < δ Therefore the set of values of δ for which this is true is non-empty. If the set of values is not bounded above (which happens if the function is a constant) choose δ(x, ɛ) =. Otherwise, let δ(x, ɛ) be the supremum of this set of values. Note that for any δ < δ(x, ɛ), f(y) f(x) < ɛ y x < δ Now consider the function δ(x, ɛ) for x I. It is defined for every x I, so that the set of values is non-empty. Also, each δ(x, ɛ) > 0, so that this set of values is bounded below. Therefore, this set has a greatest lower bound, δ(i, ɛ) say. If δ(i, ɛ) > 0 for every ɛ > 0, we say that the function is uniformly continuous on the interval. This means that given ɛ > 0, we can find δ > 0 (which depends on ɛ and on the interval I but not on particular points in I) such that for every x, y I such that f(y) f(x) < ɛ y x < δ For example, consider f(x) = sin x. ( ) ( ) sin y sin x = 2 sin (y x) cos (y + x) 2 2 For all values of θ, sin θ θ cos θ so that sin y sin x 2 (y x) 2 = y x Therefore, given any ɛ > 0, sin y sin x < ɛ y x < ɛ and this function is uniformly continuous on R.
6 6 On the other hand, consider the function f(x) = x 2. For x R, δ(x, ɛ) = x 2 ɛ + ɛ x = x2 + ɛ + x. While this is positive for all x R, so that f is continuous on R, δ(x, ɛ) 0 as x, so that f is not uniformly continuous on R. On the other hand, if we restrict the function to a finite interval [ a, a], δ(x, ɛ) a 2 + ɛ a for all x [ a, a], so that f is uniformly continuous on the finite interval. Finally, consider the function f(x) = /x on the interval (0, ]. In this case δ(x, ɛ) = ɛx2 + ɛx which goes to 0 as x 0+. Therefore f is continuous on (0, ] but not uniformly continuous. Uniform continuity is relevant to Cauchy sequences. If {x n } is a Cauchy sequence in some set S, and f is uniformly continuous on S, then {f(x n )} is also a Cauchy sequence. Given any ɛ > 0, we can find δ > 0 such that f(x) f(y) < ɛ x, y S ; x y < δ. Since {x n } is Cauchy, given this δ > 0 we can find an integer N such that But then and the sequence {f(x n )} is Cauchy. x n x m < δ m, n > N. f(x n ) f(x m ) < ɛ m, n > N, Therefore, for any Cauchy sequence {x n } in R, {sin(x n )} is also a Cauchy sequence, and since Cauchy sequences are bounded, {x 2 n} is also Cauchy. On the other hand, { n } is a Cauchy sequence on (0, ], but {n} is not a Cauchy sequence.
Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics
Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights
Homework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.
FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is
LIMITS AND CONTINUITY
LIMITS AND CONTINUITY 1 The concept of it Eample 11 Let f() = 2 4 Eamine the behavior of f() as approaches 2 2 Solution Let us compute some values of f() for close to 2, as in the tables below We see from
I. Pointwise convergence
MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.
THE BANACH CONTRACTION PRINCIPLE. Contents
THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,
Metric Spaces Joseph Muscat 2003 (Last revised May 2009)
1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of
Practice with Proofs
Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using
Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.
Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =
Continuity. DEFINITION 1: A function f is continuous at a number a if. lim
Continuity DEFINITION : A function f is continuous at a number a if f(x) = f(a) REMARK: It follows from the definition that f is continuous at a if and only if. f(a) is defined. 2. f(x) and +f(x) exist.
36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?
36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this
Notes on metric spaces
Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.
1. Prove that the empty set is a subset of every set.
1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: [email protected] Proof: For any element x of the empty set, x is also an element of every set since
Metric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
Fixed Point Theorems
Fixed Point Theorems Definition: Let X be a set and let T : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation
TOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12
CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.
Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
The Mean Value Theorem
The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers
Lecture Notes on Analysis II MA131. Xue-Mei Li
Lecture Notes on Analysis II MA131 Xue-Mei Li March 8, 2013 The lecture notes are based on this and previous years lectures by myself and by the previous lecturers. I would like to thank David Mond, who
CS 103X: Discrete Structures Homework Assignment 3 Solutions
CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering
Lectures 5-6: Taylor Series
Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,
Metric Spaces. Chapter 1
Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence
SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties
SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces
5.3 Improper Integrals Involving Rational and Exponential Functions
Section 5.3 Improper Integrals Involving Rational and Exponential Functions 99.. 3. 4. dθ +a cos θ =, < a
God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886)
Chapter 2 Numbers God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) God created the integers and the rest is the work
5.1 Derivatives and Graphs
5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity
MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x
Introduction to Topology
Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................
1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some
Section 3.1: First Derivative Test Definition. Let f be a function with domain D. 1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some open interval containing c. The number
No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics
No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results
n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...
6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence
4.5 Chebyshev Polynomials
230 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION 4.5 Chebyshev Polynomials We now turn our attention to polynomial interpolation for f (x) over [ 1, 1] based on the nodes 1 x 0 < x 1 < < x N 1. Both
BANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,
MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.
MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P
Chapter 7. Continuity
Chapter 7 Continuity There are many processes and eects that depends on certain set of variables in such a way that a small change in these variables acts as small change in the process. Changes of this
MA651 Topology. Lecture 6. Separation Axioms.
MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples
Taylor and Maclaurin Series
Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions
1 Norms and Vector Spaces
008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
Lecture Notes for Analysis II MA131. Xue-Mei Li with revisions by David Mond
Lecture Notes for Analysis II MA131 Xue-Mei Li with revisions by David Mond January 8, 2013 Contents 0.1 Introduction............................ 3 1 Continuity of Functions of One Real Variable 6 1.1
6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
Real Roots of Univariate Polynomials with Real Coefficients
Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials
10.2 Series and Convergence
10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and
Math 104: Introduction to Analysis
Math 104: Introduction to Analysis Evan Chen UC Berkeley Notes for the course MATH 104, instructed by Charles Pugh. 1 1 August 29, 2013 Hard: #22 in Chapter 1. Consider a pile of sand principle. You wish
Two Fundamental Theorems about the Definite Integral
Two Fundamental Theorems about the Definite Integral These lecture notes develop the theorem Stewart calls The Fundamental Theorem of Calculus in section 5.3. The approach I use is slightly different than
t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).
1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction
9 More on differentiation
Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......
4.3 Lagrange Approximation
206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average
Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem
Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem February 21, 214 In many problems, you are asked to show that something exists, but are not required to give a specific example or formula
Rolle s Theorem. q( x) = 1
Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question
Mathematics for Econometrics, Fourth Edition
Mathematics for Econometrics, Fourth Edition Phoebus J. Dhrymes 1 July 2012 1 c Phoebus J. Dhrymes, 2012. Preliminary material; not to be cited or disseminated without the author s permission. 2 Contents
Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88
Nonlinear Algebraic Equations Lectures INF2320 p. 1/88 Lectures INF2320 p. 2/88 Nonlinear algebraic equations When solving the system u (t) = g(u), u(0) = u 0, (1) with an implicit Euler scheme we have
Metric Spaces. Lecture Notes and Exercises, Fall 2015. M.van den Berg
Metric Spaces Lecture Notes and Exercises, Fall 2015 M.van den Berg School of Mathematics University of Bristol BS8 1TW Bristol, UK [email protected] 1 Definition of a metric space. Let X be a set,
To discuss this topic fully, let us define some terms used in this and the following sets of supplemental notes.
INFINITE SERIES SERIES AND PARTIAL SUMS What if we wanted to sum up the terms of this sequence, how many terms would I have to use? 1, 2, 3,... 10,...? Well, we could start creating sums of a finite number
Mathematical Induction
Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,
Follow links for Class Use and other Permissions. For more information send email to: [email protected]
COPYRIGHT NOTICE: Ariel Rubinstein: Lecture Notes in Microeconomic Theory is published by Princeton University Press and copyrighted, c 2006, by Princeton University Press. All rights reserved. No part
So let us begin our quest to find the holy grail of real analysis.
1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers
Mathematical Methods of Engineering Analysis
Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................
I. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
ALMOST COMMON PRIORS 1. INTRODUCTION
ALMOST COMMON PRIORS ZIV HELLMAN ABSTRACT. What happens when priors are not common? We introduce a measure for how far a type space is from having a common prior, which we term prior distance. If a type
The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line
The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line D. Bongiorno, G. Corrao Dipartimento di Ingegneria lettrica, lettronica e delle Telecomunicazioni,
Section 2.7 One-to-One Functions and Their Inverses
Section. One-to-One Functions and Their Inverses One-to-One Functions HORIZONTAL LINE TEST: A function is one-to-one if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.
Solutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
THE CONTRACTION MAPPING THEOREM
THE CONTRACTION MAPPING THEOREM KEITH CONRAD 1. Introduction Let f : X X be a mapping from a set X to itself. We call a point x X a fixed point of f if f(x) = x. For example, if [a, b] is a closed interval
SCORE SETS IN ORIENTED GRAPHS
Applicable Analysis and Discrete Mathematics, 2 (2008), 107 113. Available electronically at http://pefmath.etf.bg.ac.yu SCORE SETS IN ORIENTED GRAPHS S. Pirzada, T. A. Naikoo The score of a vertex v in
Mathematics 31 Pre-calculus and Limits
Mathematics 31 Pre-calculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals
MATH PROBLEMS, WITH SOLUTIONS
MATH PROBLEMS, WITH SOLUTIONS OVIDIU MUNTEANU These are free online notes that I wrote to assist students that wish to test their math skills with some problems that go beyond the usual curriculum. These
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x
(Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties
Lecture 1 Convex Sets (Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties 1.1.1 A convex set In the school geometry
THE CENTRAL LIMIT THEOREM TORONTO
THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................
k, then n = p2α 1 1 pα k
Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square
Friday, January 29, 2016 9:15 a.m. to 12:15 p.m., only
ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Friday, January 9, 016 9:15 a.m. to 1:15 p.m., only Student Name: School Name: The possession
Triangle deletion. Ernie Croot. February 3, 2010
Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,
4. Expanding dynamical systems
4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,
The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method
The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method Robert M. Freund February, 004 004 Massachusetts Institute of Technology. 1 1 The Algorithm The problem
On continued fractions of the square root of prime numbers
On continued fractions of the square root of prime numbers Alexandra Ioana Gliga March 17, 2006 Nota Bene: Conjecture 5.2 of the numerical results at the end of this paper was not correctly derived from
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
1. Let X and Y be normed spaces and let T B(X, Y ).
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: NVP, Frist. 2005-03-14 Skrivtid: 9 11.30 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
H/wk 13, Solutions to selected problems
H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.
1. Let P be the space of all polynomials (of one real variable and with real coefficients) with the norm
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 005-06-15 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Solutions of Equations in One Variable. Fixed-Point Iteration II
Solutions of Equations in One Variable Fixed-Point Iteration II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011
5. Linear algebra I: dimension
5. Linear algebra I: dimension 5.1 Some simple results 5.2 Bases and dimension 5.3 Homomorphisms and dimension 1. Some simple results Several observations should be made. Once stated explicitly, the proofs
A power series about x = a is the series of the form
POWER SERIES AND THE USES OF POWER SERIES Elizabeth Wood Now we are finally going to start working with a topic that uses all of the information from the previous topics. The topic that we are going to
The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.
The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,
Polarization codes and the rate of polarization
Polarization codes and the rate of polarization Erdal Arıkan, Emre Telatar Bilkent U., EPFL Sept 10, 2008 Channel Polarization Given a binary input DMC W, i.i.d. uniformly distributed inputs (X 1,...,
The Fourier Series of a Periodic Function
1 Chapter 1 he Fourier Series of a Periodic Function 1.1 Introduction Notation 1.1. We use the letter with a double meaning: a) [, 1) b) In the notations L p (), C(), C n () and C () we use the letter
Verifying Numerical Convergence Rates
1 Order of accuracy Verifying Numerical Convergence Rates We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, suc as te grid size or time step, and
Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 [email protected].
Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 [email protected] This paper contains a collection of 31 theorems, lemmas,
Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
Every Positive Integer is the Sum of Four Squares! (and other exciting problems)
Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer
Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions
Stanford Math Circle: Sunday, May 9, 00 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in
GREATEST COMMON DIVISOR
DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their
