Multiplexers and demultiplexers
|
|
|
- Junior Cross
- 9 years ago
- Views:
Transcription
1 Multiplexers and demultiplexers This worksheet and all related files are licensed under the Creative Commons Attribution License, version.. To view a copy of this license, visit or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 935, USA. The terms and conditions of this license allow for free copying, distribution, and/or modification of all licensed works by the general public. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
2 Question Questions Imagine a telephone system with only one pair of wires stretching between phone units. For the sake of simplicity, let s consider each telephone to be a sound-powered (unamplified) unit, where the voltage produced directly by the microphone drives the speaker on the other end: Microphone Speaker wires If we were to install a second telephone line to accommodate another pair of people talking to each other, it certainly would work, but it might be expensive to do so because of the cost of wire over the long distance: line # line # Suppose, though, we installed a set of DPDT switches that switched the two telephone conversations along the same pair of wires (only telephone line ). This general technique is known as multiplexing. The switches would be synchronized according to clocks at either end of the line, and cycled back and forth repeatedly: clock-synchronized What would the conversation sound like to either of the listeners if the switch frequency was Hz What if it was Hz What if it was khz file 33
3 Question Most modern analog oscilloscopes have the ability to display multiple traces on their screens (dual-trace is the standard), even though the CRT itself used by the scope may only have one electron gun, and thus only be able to paint one flying dot on the screen at a time. Oscilloscopes with single-gun display tubes achieve dual-trace capability by way of multiplexing the two input channels to the same CRT. There are usually two different modes for this multiplexing, though: alternate and chop. Explain how these multiplexing techniques work, and what conditions would prompt you to use the two different multiplexing modes. I strongly encourage you to experiment with displaying two different signals on one of these oscilloscopes as your research. You will likely learn far more from a hands-on exercise than if you were to read about it in a book! file 3 3
4 Question 3 A variety of practical electronic applications require multiplexing, where several input signals are individually selected, one at a time but very rapidly, to be communicated through a single channel. Telephony systems use this technique to concentrate multiple voice conversations over a single wire pair, and most analog dual-trace oscilloscopes use this technique to allow a single-gun CRT to display more than one signal trace on the screen at a time. In order to rapidly select (or switch) analog signals in these multiplexing applications, we need some form of semiconductor on/off switch capable of fast switching time, low pass-through ( on state) impedance, and high blocking ( off state) impedance. Thankfully, there is such a device commonly and inexpensively produced, called a CMOS bilateral switch: 66 CMOS quad bilateral switch IC V DD V SS This hybrid analog/digital device uses digital logic signals (high/low) to activate the gates of CMOS transistor assemblies to switch analog signals on and off. It is like having four low-current solid-state relays in a single integrated circuit. When the control line is made high (standard CMOS logic level), the respective switch goes into its conductive ( on ) state. When the control line is made low, the switch turns off. Because it is MOSFETs we are turning on and off, the control lines draw negligible current (just like CMOS logic gate inputs). If we are to use such bilateral switches to multiplex analog signals along a common signal line, though, we must add some accessory components to control which switch (out of the four) is active at any given time. Take for instance this circuit where we use four bilateral switches to multiplex the voltage signals from four accelerometers (measuring acceleration on a vibration-testing jig):
5 Four-channel analog multiplexer circuit Accel. Accel. Accel. Selected accelerometer signal Coaxial signal cable Accel. S S Mystery device Identify the necessary mystery device shown in the schematic, which allows a binary input (S and S with four combinations of high/low states:,,, and ) to activate just one bilateral switch at a time. file 36 5
6 Question The following schematic diagram shows an eight-step arbitrary waveform generator. The analog multiplexer selects one of the eight potentiometer signals at a time, stepping from one to the next at the pace of the clock pulse: +V U U 7 -V +V U 6 +V -V U 5 -V +V U +V -V U 3 -V +V U +V -V V out U + U -V +V CTR DEC -V U 9 U Clock Explain what effect a shorted bilateral switch would have on the output waveform. Be as specific as possible. file 395 6
7 Question 5 The following schematic diagram is for a two-input selector circuit, which (as the name implies) selects one of two inputs to be sent to the output: Input A Select control Output Input B Determine what state the select control input line has to be in to select Input A to be sent to the output, and what state it has to be in to select Input B to go to the output. file 365 7
8 Question 6 Multiplexers and demultiplexers are often confused with one another by students first learning about them. Although they appear similar, they certainly perform different functions. Shown here is a multiplexer and a demultiplexer, each using a multiple-position switch symbol to indicate the selection functions inside the respective circuits: Mux or Demux "Select" inputs S S S Data in Data out Mux or Demux "Select" inputs S S S Data out Data in After identifying which is which, provide definitions for multiplexer and demultiplexer in your own words. file 35
9 Question 7 The 7HC5 is a high-speed CMOS (TTL-compatible) integrated circuit multiplexer, also known as a data selector. It is commonly available as a pin DIP chip. Identify the terminals of a 7HC5, and label them here: 7HC5 In particular, note the locations of the four select terminals, as well as the single output terminal. What types of electrical data may be selected by this particular integrated circuit For example, can it select an analog waveform, such as human speech from a microphone Is it limited to discrete TTL signals (low and high, volts and 5 volts DC) How can you tell file 3 9
10 Question Multiplexers, or data selectors, may be used to generate arbitrary truth table functions. Take for example this truth table, shown beside a symbol for a 6-channel multiplexer: A B C D G 5 D C B A Out G E E E E3 E E5 E6 E7 E E9 E E EN Output E E3 3 E E5 5 Show the wire connections necessary to make the multiplexer output the specified logic states in response to the data select (A, B, C, and D) inputs. file 76
11 Question 9 Multiplexers, or data selectors, may be used to generate arbitrary truth table functions. Take for example this Boolean SOP expression, shown beside a symbol for a 6-channel multiplexer: A B C D G 5 ABCD + ABCD + ABCD G E E E E3 E E5 E6 E7 E E9 E E E E3 E E5 EN Output Show the wire connections necessary to make the multiplexer output the specified logic states in response to the data select (A, B, C, and D) inputs. file 3
12 Question The 7HC5 is a high-speed CMOS (TTL-compatible) integrated circuit decoder with four input lines and sixteen output lines: G G V DD 7HC5 & Identify the logic states of all output terminals given the input conditions shown. Now, identify the logic states for the same circuit, this time with a square wave (on/off pulse) logic signal applied to the enable terminals:
13 V DD 7HC5 & file 3 3
14 Question The 7HC5 is a high-speed CMOS (TTL-compatible) integrated circuit decoder, which may also be used as a demultiplexer: G G 7HC5 & What terminal(s) do we use for the signal input, if using this chip as a demultiplexer and not just a decoder file 37
15 Question Predict how the operation of this concentrator circuit (which takes eight digital inputs and concentrates them into a single, multiplexed, communication line to be expanded into eight outputs at the receiving end) will be affected as a result of the following faults. Consider each fault independently (i.e. one at a time, no multiple faults): Cable Clock CTR Data in G W G 7 G GA GB Data out EN Clock pulse generator stops pulsing: Pin breaks on the W output of 75 chip, leaving that wire floating: Pin breaks on GA input of 73 chip, leaving it floating: Enable pin breaks on 75 chip, leaving it floating: For each of these conditions, explain why the resulting effects will occur. file 39 Question 3 The 7HC37 and 7HC37 decoder/demultiplexer integrated circuits have a feature that some other decoder/demultiplexers do not: address latching. Explain what this additional feature is, how it works, and how you would disable the feature if you needed to use one of these integrated circuits in an application not requiring address latching. file 33 5
16 Question When first learning about encoders, decoders, multiplexers, and demultiplexers, students often get them confused with one another. Write succinct definitions (complete with illustrations) for each of these four digital functions, based on your own research and written using your own words. Also, identify which two of these digital functions are usually performed by the same integrated circuit. file 379 6
17 Question 5 Don t just sit there! Build something!! Learning to analyze digital circuits requires much study and practice. Typically, students practice by working through lots of sample problems and checking their answers against those provided by the textbook or the instructor. While this is good, there is a much better way. You will learn much more by actually building and analyzing real circuits, letting your test equipment provide the answers instead of a book or another person. For successful circuit-building exercises, follow these steps:. Draw the schematic diagram for the digital circuit to be analyzed.. Carefully build this circuit on a breadboard or other convenient medium. 3. Check the accuracy of the circuit s construction, following each wire to each connection point, and verifying these elements one-by-one on the diagram.. Analyze the circuit, determining all output logic states for given input conditions. 5. Carefully measure those logic states, to verify the accuracy of your analysis. 6. If there are any errors, carefully check your circuit s construction against the diagram, then carefully re-analyze the circuit and re-measure. Always be sure that the power supply voltage levels are within specification for the logic circuits you plan to use. If TTL, the power supply must be a 5-volt regulated supply, adjusted to a value as close to 5. volts DC as possible. One way you can save time and reduce the possibility of error is to begin with a very simple circuit and incrementally add components to increase its complexity after each analysis, rather than building a whole new circuit for each practice problem. Another time-saving technique is to re-use the same components in a variety of different circuit configurations. This way, you won t have to measure any component s value more than once. file 5 7
18 Answer Answers At Hz, a half-second of each conversation would be missing, every second. The result would be a very choppy stream of audio reaching each listener. At Hz, the choppiness would be reduced, with only / of a second s worth of conversation missing every / of a second from each conversation. It would still be very difficult to listen to, though. At khz switching speed, both conversations would sound seamless. Follow-up question: how can we multiplex more than two conversations along the same pair of telephone wires Challenge question: is there a limit as to how many conversations we can multiplex on the same wire pair If so, what parameters would define this limit Answer Chop is used to display two waveforms when the timebase is set to a slow (low-frequency) setting. Alternate is used to display two waveforms when the timebase is set to a fast (high-frequency) setting. Answer 3 This mystery device is a -line to -line binary decoder. Answer If one of the bilateral switches were to fail shorted, it would skew all the arbitrary waveform voltages toward the one with the failed switch, distorting the waveform from its original shape. Answer 5 A high signal on the select control line selects Input A, while a low signal on that same line selects Input B. Answer 6 I ll let you research the answer to this question on your own! Answer 7 Did you really think I would just show you the pinout here, instead of having you consult a datasheet This is a discrete-signal device, only. It cannot select analog signals such as those involved in telephony. Challenge question: how could you build an analog signal multiplexer, using components you are familiar with I recommend you start with something simple, such as a four-channel multiplexer, before attempting something with as many channels as the digital device shown here (7HC5).
19 Answer V cc A B C D G 5 EN Output Follow-up question: what if this multiplexer had an active-low output, like the 75 How would this change your design for implementing the truth table 9
20 Answer 9 V CC A B C D EN G Output Answer In the first scenario with the enable lines grounded, output # will be low, with all other outputs high. In the second scenario with a square wave signal input to the enable lines, output # will pulse while all other outputs remain in the high state. Answer Use the enable terminals (together) as one input terminal.
21 Answer Clock pulse generator stops pulsing: Only one channel out of the eight will work, and it works all the time without interruption. Data cannot get through any of the other seven channels. Pin breaks on the W output of 75 chip, leaving that wire floating: All selected outputs on the 73 chip go low, instead of repeating the respective logic states input at the 75 chip. Pin breaks on GA input of 73 chip, leaving it floating: All outputs on the 73 chip go high, all the time. Enable pin breaks on 75 chip, leaving it floating: All selected outputs on the 73 chip go low, instead of repeating the respective logic states input at the 75 chip. Answer 3 I ll let you figure out the answers to this question. The manufacturers datasheet, of course, is probably your best source of information! Follow-up question: what is the functional difference between the 7HC37 and the 7HC37 How would the respective schematic symbols for these two decoder/demux ICs differ Challenge question: think of a practical application where you might need the feature of address latching. Answer I ll let you figure out the first part of the answer (four succinct definitions, complete with illustrations)! Because it is so easy to get these four functions mixed up in your mind, it is important that you arrive at your own understanding of which is which, rather than have someone else (like me) provide ready-made definitions for you to memorize. Decoding and demultiplexing are usually performed by the same integrated circuit device. A good example of this is the 7HC5. Answer 5 Let the electrons themselves give you the answers to your own practice problems!
22 Notes Notes Ask your students why this technique of switching conversations works. How is it possible for audio conversations to sound seamless when half the information is missing from each one (regardless of switching speed) Ask your students for answers to the challenge question. If no one has any, give them a hint: how does the bandwidth of the telephone lines impact multiplexing a large number of signals Notes Don t simply tell your students how the alternate and chop facilities of their oscilloscopes work. Let them experience these two modes of multiplexing directly, with hands-on investigation. If nothing else, this will provide them with additional practice using oscilloscopes. Notes 3 This question serves a few purposes: to introduce students to the 66 quad bilateral switch, to showcase a practical application for analog multiplexing, and to review a previous subject (decoders). Notes A failed-shorted bilateral switch would create a sort of passive averager circuit between the shortedswitch pot and the selected-switch pot. If your students have difficulty figuring out the effects of this fault, remind them of what a passive averager is, and how it works. Notes 5 Selector circuits are widely used internally in counter and shift register circuits where digital signals must be selected from multiple sources to achieve certain functions. Be sure your students understand how it works, for they will surely see it later in some application! Notes 6 This question forces students to directly face a point of confusion I have noticed over several years of teaching. Ask them where they were able to find definitions for each term. Notes 7 Datasheets not only provide basic pinout information, but they also reveal important operational characteristics of integrated circuits. In many cases they also show typical applications, which have great educational value. Stress the importance of datasheets to your students with look-up exercises such as this, build their ability to interpret the information contained. In regard to the challenge question, it is a common mistake for students to think they can build an analog signal multiplexer around a digital signal multiplexer. In actuality, they would need a completely different type of device! Notes Discuss with your students the significance of using a multiplexer in this fashion: to implement arbitrary logic functions. For those students who may not be familiar with the term, be sure to define the word arbitrary. It may seem silly, but students often fail to ask for the definitions of words that are new to them, for fear of sounding dumb in front of their peers and in front of you. One more reason to model respect in your classroom, and also to create an atmosphere where students feel comfortable asking any question.
23 Notes 9 Discuss with your students the significance of using a multiplexer in this fashion: to implement arbitrary logic functions. For those students who may not be familiar with the term, be sure to define the word arbitrary. It may seem silly, but students often fail to ask for the definitions of words that are new to them, for fear of sounding dumb in front of their peers and in front of you. One more reason to model respect in your classroom, and also to create an atmosphere where students feel comfortable asking any question. Notes Notes This question previews the use of a decoder as a demultiplexer. Explain to your students that decoder and demultiplexer are really just two different words for the same device, seeing as how all real decoders come equipped with enable inputs. Notes The purpose of this question is to approach the domain of circuit troubleshooting from a perspective of knowing what the fault is, rather than only knowing what the symptoms are. Although this is not necessarily a realistic perspective, it helps students build the foundational knowledge necessary to diagnose a faulted circuit from empirical data. Questions such as this should be followed (eventually) by other questions asking students to identify likely faults based on measurements. Notes 3 The feature of address latching is not hard to understand if students have already studied D-type latches (and/or parallel-in/parallel-out shift registers). Notes Here is a good example of where students like to fall on rote memorization, and where such shallow learning strategies often fail. It is imperative that students do their own research and cast these functions into their own personal terms. This way, they will understand the differences rather than just memorize the differences. Call on individual students to present their findings for this question, and let the classroom be a place where students share their understandings with one another. Let them know that this is important for them to grasp, but do not simply provide ready-made answers for them! 3
24 Notes 5 It has been my experience that students require much practice with circuit analysis to become proficient. To this end, instructors usually provide their students with lots of practice problems to work through, and provide answers for students to check their work against. While this approach makes students proficient in circuit theory, it fails to fully educate them. Students don t just need mathematical practice. They also need real, hands-on practice building circuits and using test equipment. So, I suggest the following alternative approach: students should build their own practice problems with real components, and try to predict the various logic states. This way, the digital theory comes alive, and students gain practical proficiency they wouldn t gain merely by solving Boolean equations or simplifying Karnaugh maps. Another reason for following this method of practice is to teach students scientific method: the process of testing a hypothesis (in this case, logic state predictions) by performing a real experiment. Students will also develop real troubleshooting skills as they occasionally make circuit construction errors. Spend a few moments of time with your class to review some of the rules for building circuits before they begin. Discuss these issues with your students in the same Socratic manner you would normally discuss the worksheet questions, rather than simply telling them what they should and should not do. I never cease to be amazed at how poorly students grasp instructions when presented in a typical lecture (instructor monologue) format! I highly recommend CMOS logic circuitry for at-home experiments, where students may not have access to a 5-volt regulated power supply. Modern CMOS circuitry is far more rugged with regard to static discharge than the first CMOS circuits, so fears of students harming these devices by not having a proper laboratory set up at home are largely unfounded. A note to those instructors who may complain about the wasted time required to have students build real circuits instead of just mathematically analyzing theoretical circuits: What is the purpose of students taking your course If your students will be working with real circuits, then they should learn on real circuits whenever possible. If your goal is to educate theoretical physicists, then stick with abstract analysis, by all means! But most of us plan for our students to do something in the real world with the education we give them. The wasted time spent building real circuits will pay huge dividends when it comes time for them to apply their knowledge to practical problems. Furthermore, having students build their own practice problems teaches them how to perform primary research, thus empowering them to continue their electrical/electronics education autonomously. In most sciences, realistic experiments are much more difficult and expensive to set up than electrical circuits. Nuclear physics, biology, geology, and chemistry professors would just love to be able to have their students apply advanced mathematics to real experiments posing no safety hazard and costing less than a textbook. They can t, but you can. Exploit the convenience inherent to your science, and get those students of yours practicing their math on lots of real circuits!
DC mesh current analysis
DC mesh current analysis This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Voltage/current converter opamp circuits
Voltage/current converter opamp circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Ammeter design. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Ammeter design This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Sum-of-Products and Product-of-Sums expressions
Sum-of-Products and Product-of-Sums expressions This worksheet and all related files are licensed under the reative ommons ttribution License, version.. To view a copy of this license, visit http://creativecommons.org/licenses/by/./,
Parallel DC circuits
Parallel DC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/.0/,
Potentiometers. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Potentiometers This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Differential transistor amplifiers
Differential transistor amplifiers This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Bipolar transistor biasing circuits
Bipolar transistor biasing circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Analog-to-Digital conversion
Analog-to-Digital conversion This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Capacitive reactance
Capacitive reactance This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Electromechanical relay logic
Electromechanical relay logic This worksheet and all related files are licensed under the Creative Commons ttribution License, version.. To view a copy of this license, visit http://creativecommons.org/licenses/by/./,
Design Project: Power inverter
Design Project: Power inverter This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Capacitors. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Capacitors This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Basic voltmeter use. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Basic voltmeter use This worksheet and all related files are licensed under the Creative Commons ttribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Elementary circuits. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Elementary circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
CHAPTER 11: Flip Flops
CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach
The components. E3: Digital electronics. Goals:
E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC
Digital Electronics Detailed Outline
Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept
Figure 8-1 Four Possible Results of Adding Two Bits
CHPTER EIGHT Combinational Logic pplications Thus far, our discussion has focused on the theoretical design issues of computer systems. We have not yet addressed any of the actual hardware you might find
Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots
Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Registers As you probably know (if you don t then you should consider changing your course), data processing is usually
EET272 Worksheet Week 9
EET272 Worksheet Week 9 answer questions 1-5 in preparation for discussion for the quiz on Monday. Finish the rest of the questions for discussion in class on Wednesday. Question 1 Questions AC s are becoming
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
CHAPTER3 QUESTIONS MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) If one input of an AND gate is LOW while the other is a clock signal, the output
Basic circuit troubleshooting
Basic circuit troubleshooting This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
PCM Encoding and Decoding:
PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth
ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits
Objectives ELEC - EXPERIMENT Basic Digital Logic Circuits The experiments in this laboratory exercise will provide an introduction to digital electronic circuits. You will learn how to use the IDL-00 Bit
A Digital Timer Implementation using 7 Segment Displays
A Digital Timer Implementation using 7 Segment Displays Group Members: Tiffany Sham u2548168 Michael Couchman u4111670 Simon Oseineks u2566139 Caitlyn Young u4233209 Subject: ENGN3227 - Analogue Electronics
Routinely DIYers opt to make themselves a passive preamp - just an input selector and a volume control.
The First Watt B1 Buffer Preamp Nelson Pass, June 2008 Side A So here we are in the New Millennium, and thanks to Tom Holman and THX we ve got lots of gain in our electronics. More gain than some of us
Conversion Between Analog and Digital Signals
ELET 3156 DL - Laboratory #6 Conversion Between Analog and Digital Signals There is no pre-lab work required for this experiment. However, be sure to read through the assignment completely prior to starting
3-Digit Counter and Display
ECE 2B Winter 2007 Lab #7 7 3-Digit Counter and Display This final lab brings together much of what we have done in our lab experiments this quarter to construct a simple tachometer circuit for measuring
Counters and Decoders
Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter
COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design
PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits
Operational Amplifier - IC 741
Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset
Sequential Logic: Clocks, Registers, etc.
ENEE 245: igital Circuits & Systems Lab Lab 2 : Clocks, Registers, etc. ENEE 245: igital Circuits and Systems Laboratory Lab 2 Objectives The objectives of this laboratory are the following: To design
Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.
Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational
Series-parallel DC circuits
Series-parallel DC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Physics 120 Lab 6: Field Effect Transistors - Ohmic region
Physics 120 Lab 6: Field Effect Transistors - Ohmic region The FET can be used in two extreme ways. One is as a voltage controlled resistance, in the so called "Ohmic" region, for which V DS < V GS - V
Digital circuits make up all computers and computer systems. The operation of digital circuits is based on
Digital Logic Circuits Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Boolean algebra, the mathematics of binary numbers. Boolean algebra is
LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS
LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND
Energy, Work, and Power
Energy, Work, and Power This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Step Response of RC Circuits
Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3
Numeration systems. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Numeration systems This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Basics of Digital Recording
Basics of Digital Recording CONVERTING SOUND INTO NUMBERS In a digital recording system, sound is stored and manipulated as a stream of discrete numbers, each number representing the air pressure at a
1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver
Electronics Exercise 2: The 555 Timer and its Applications Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles Ume,
Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.
Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage
Voltage, Current, and Resistance
Voltage, Current, and Resistance This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Interfacing To Alphanumeric Displays
Interfacing To Alphanumeric Displays To give directions or data values to users, many microprocessor-controlled instruments and machines need to display letters of the alphabet and numbers. In systems
Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas
Take-Home Exercise Assume you want the counter below to count mod-6 backward. That is, it would count 0-5-4-3-2-1-0, etc. Assume it is reset on startup, and design the wiring to make the counter count
Lab 5 Operational Amplifiers
Lab 5 Operational Amplifiers By: Gary A. Ybarra Christopher E. Cramer Duke University Department of Electrical and Computer Engineering Durham, NC. Purpose The purpose of this lab is to examine the properties
Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
Experiment 8 : Pulse Width Modulation
Name/NetID: Teammate/NetID: Experiment 8 : Pulse Width Modulation Laboratory Outline In experiment 5 we learned how to control the speed of a DC motor using a variable resistor. This week, we will learn
ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME
The national association for AMATEUR RADIO ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME This supplement is intended for use with the ARRL Morse Code Oscillator kit, sold separately.
AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
AC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill
Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.
2 : BISTABLES. In this Chapter, you will find out about bistables which are the fundamental building blocks of electronic counting circuits.
2 : BITABLE In this Chapter, you will find out about bistables which are the fundamental building blos of electronic counting circuits. et-reset bistable A bistable circuit, also called a latch, or flip-flop,
Table 1 Comparison of DC, Uni-Polar and Bi-polar Stepper Motors
Electronics Exercise 3: Uni-Polar Stepper Motor Controller / Driver Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles
Lecture 8: Synchronous Digital Systems
Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered
Inductors. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Inductors This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Wire types and sizes
Wire types and sizes This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
PLL frequency synthesizer
ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 4 Lab 4: PLL frequency synthesizer 1.1 Goal The goals of this lab exercise are: - Verify the behavior of a and of a complete PLL - Find capture
Content Map For Career & Technology
Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations
(Refer Slide Time: 00:01:16 min)
Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control
COURSE SYLLABUS. PRE-REQUISITES: Take CETT-1303(41052); Minimum grade C, CR.
COURSE SYLLABUS COURSE NUMBER AND TITLE: CETT 1325- Digital Fundamentals COURSE (CATALOG) DESCRIPTION An entry level course in digital electronics covering number systems, binary mathematics, digital codes,
Fundamentals of radio communication
Fundamentals of radio communication This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
earlier in the semester: The Full adder above adds two bits and the output is at the end. So if we do this eight times, we would have an 8-bit adder.
The circuit created is an 8-bit adder. The 8-bit adder adds two 8-bit binary inputs and the result is produced in the output. In order to create a Full 8-bit adder, I could use eight Full -bit adders and
Operating Manual Ver.1.1
4 Bit Binary Ripple Counter (Up-Down Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-
Sources of electricity
Sources of electricity This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Sources of electricity
Sources of electricity This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Scaling and Biasing Analog Signals
Scaling and Biasing Analog Signals November 2007 Introduction Scaling and biasing the range and offset of analog signals is a useful skill for working with a variety of electronics. Not only can it interface
EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS
1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides
ECEN 1400, Introduction to Analog and Digital Electronics
ECEN 1400, Introduction to Analog and Digital Electronics Lab 4: Power supply 1 INTRODUCTION This lab will span two lab periods. In this lab, you will create the power supply that transforms the AC wall
Upon completion of unit 1.1, students will be able to
Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal
Chapter 19 Operational Amplifiers
Chapter 19 Operational Amplifiers The operational amplifier, or op-amp, is a basic building block of modern electronics. Op-amps date back to the early days of vacuum tubes, but they only became common
Transformer circuit calculations
Transformer circuit calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Gates, Circuits, and Boolean Algebra
Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks
FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The Full-Adder
FORDHAM UNIVERSITY CISC 3593 Fordham College Lincoln Center Computer Organization Dept. of Computer and Info. Science Spring, 2011 Lab 2 The Full-Adder 1 Introduction In this lab, the student will construct
Digital codes. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Digital codes This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
INTEGRATED CIRCUITS. For a complete data sheet, please also download:
INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC6 74C/CT/CU/CMOS ogic Family Specifications The IC6 74C/CT/CU/CMOS ogic Package Information The IC6 74C/CT/CU/CMOS ogic
Lab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation
Lab 11 Digital Dice Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation From the beginning of time, dice have been used for games of chance. Cubic dice similar to modern dice date back to before
6 Series Parallel Circuits
6 Series Parallel Circuits This work is licensed under the Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/. Air Washington
Decimal Number (base 10) Binary Number (base 2)
LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be
Build A Video Switcher. Reprinted with permission from Electronics Now Magazine September 1997 issue
Build A Video Switcher Reprinted with permission from Electronics Now Magazine September 1997 issue Copyright Gernsback Publications, Inc.,1997 BUILD A VIDEO SWITCHER FRANK MONTEGARI Watch several cameras
1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal.
CHAPTER 3: OSCILLOSCOPE AND SIGNAL GENERATOR 3.1 Introduction to oscilloscope 1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal. 2. The graph show signal change
Chapter 6: From Digital-to-Analog and Back Again
Chapter 6: From Digital-to-Analog and Back Again Overview Often the information you want to capture in an experiment originates in the laboratory as an analog voltage or a current. Sometimes you want to
DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs
DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs General Description The DM9368 is a 7-segment decoder driver incorporating input latches and constant current output circuits
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya ([email protected]) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper
FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER
2014 Amplifier - 1 FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER The objectives of this experiment are: To understand the concept of HI-FI audio equipment To generate a frequency response curve for an audio
Basic AC-DC power supplies
Basic AC-DC power supplies This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial
Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial Administration: o Prayer Robot Building for Beginners, Chapter 15, Voltage Comparators: o Review of Sandwich s Circuit:
So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.
equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the
Line Monitoring and Control in Subsea Networks
Line Monitoring and Control in Subsea Networks This paper discusses how submerged equipment is monitored and contrasts different methods of doing this. It also considers what features are required by the
INTEGRATED CIRCUITS. For a complete data sheet, please also download:
INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC06 74HC/HCT/HCU/HCMOS Logic Package Information The IC06 74HC/HCT/HCU/HCMOS
Study Guide for the Electronics Technician Pre-Employment Examination
Bay Area Rapid Transit District Study Guide for the Electronics Technician Pre-Employment Examination INTRODUCTION The Bay Area Rapid Transit (BART) District makes extensive use of electronics technology
CS311 Lecture: Sequential Circuits
CS311 Lecture: Sequential Circuits Last revised 8/15/2007 Objectives: 1. To introduce asynchronous and synchronous flip-flops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce
Introduction to Digital Audio
Introduction to Digital Audio Before the development of high-speed, low-cost digital computers and analog-to-digital conversion circuits, all recording and manipulation of sound was done using analog techniques.
Features, Benefits, and Operation
Features, Benefits, and Operation 2014 Decibel Eleven Contents Introduction... 2 Features... 2 Rear Panel... 3 Connections... 3 Power... 3 MIDI... 3 Pedal Loops... 4 Example Connection Diagrams... 5,6
Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain
Module 3: Floyd, Digital Fundamental
Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : [email protected] Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental
1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.
File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one
