Cloud-Resolving Simulations of Convection during DYNAMO
|
|
|
- Kelly Hill
- 9 years ago
- Views:
Transcription
1 Cloud-Resolving Simulations of Convection during DYNAMO Matthew A. Janiga and Chidong Zhang University of Miami, RSMAS 2013 Fall ASR Workshop
2 Outline Overview of observations. Methodology. Simulation results. Differences between observations and model. Rain statistics and system sizes. Vertical distribution of hydrometeors and clouds. Role of free-tropospheric moisture. Summary and conclusions. Future work.
3 Overview of Observed Conditions Two periods of active convection were observed over the northern sounding array (NSA) array. Both were accompanied by increased free-tropospheric moisture. NSA Version 1 of CSU Array-Averaged Analysis Products
4 Simulation Setup Model System for Atmospheric Modeling (SAM) Domain Grid x km at 800 m grid spacing. Stretched vertical grid with 96 levels up to 30 km and ~250 m grid spacing throughout troposphere. Microphysics 2 simulations: SAM 1- moment and Morrison 2-moment. Radiation CAM. Nudging - Winds nudged at τ = 6 h and no thermodynamic nudging. Damping Gravity waves in upper 10 km damped. Forcing Convection forced by NSA large-scale forcing (LSF). Vertical Grid
5 Large-Scale Forcing Simulation covers 10/1 to 12/15, Large-scale horizontal temperature and moisture tendencies, vertical velocities, and time-varying SSTs were prescribed to force the development of convection. Vertical velocity is the most important of the forcings.
6 Overview of Model vs. Obs. The general pattern of rainfall is reproduced in the simulations. However, dry and moist periods are overdone. Discrepancies between model and observed rain rate should be smaller with the variational analysis.
7 Rain Rate PDFs Much of the extra light rain (< 2 mm/hr) in M2005 is probably stratiform. Rain rates < 0.2 mm/hr excluded from subsequent rain statistics. SAM1MOM Rain Rate = 0.60 mm/hr Rain Freq. = 8.06% (of total area) Cond. RR = 5.71 mm/hr M2005 Rain Rate = 0.60 mm/hr Rain Freq. = 13.80% (of total area) Cond. RR = 4.26 mm/hr
8 Time Series of Rain Statistics Only rain rates > 0.2 mm/hr used. The unconditional rain rates match very well. Rain area and conditional rain rates show less agreement. The unconditional rain rate is controlled by the rain area more than the rain intensity. SAM1MOM M2005
9 Precipitation Feature (PF) Size PDFs Effective Diameter (D) Statistics Small = D < 10 km. 18.6% of Area, 7.4% of rain. 10.5% of area, 7.7% of rain. Medium = D = km. 58.9% of area, 66.7% of rain. 35.1% of area, 43.6% of rain. Large = D > 80 km. 22.5% of area, 25.8% of rain. 54.4% of area, 48.7% of rain. Effective Diameter (km) SAM1MOM M2005
10 Time-Series of Rain Rate by PF Sizes Small PFs are found at all times while large PFs are concentrated in the active periods. There is a suggestion of a transition from small to medium to large PFs. SAM1MOM M2005
11 Vertical Profile of Hydrometeors SAM1MOM M2005 More cloud ice with SAM1MOM. Lots more snow with M2005 likely more stratiform.
12 Cloud Mass Time-Height Cloud mass = cloud water + cloud ice. Shallow and congestus clouds are present during suppressed and active periods. More anvil cloud mass in SAM1MOM than M2005. Strong peak in cloud mass at 600 hpa in M2005.
13 Precip. Mass Time-Height Precip. mass = snow + rain + graupel. The abundance of snow in M2005 really stands out.
14 Cloud Top PDFs SAM1MOM Shallow Congestus Deep <3 km = 12.3% of area, 1.7% of rain. 3-7 km = 18.6% of area, 15.3% of rain. >7 km = 69.0% of area, 82.7% of rain. M2005 <3 km = 7.7% of area, 2.2% of rain. 3-7 km = 6.5% of area, 8.3% of rain. >7 km = 85.8% of area, 89.0% of rain. More medium-top cloud from SAM1MOM and more high-top cloud from M2005. Very little rain from shallow clouds.
15 Time-Series of Cloud Tops The shallow cloud rain rate is increased ahead of the two active periods. In the first event this is followed by increased congestus rain. Especially in the first event there is a progression of increased shallow, congestus, and deep cloud rainfall. SAM1MOM M2005
16 SAM1MOM M2005 Rain and CRH Unconditional rain rates and rain area vary by a factor of 100. Rain intensity (conditional rain rates) varies by less than a factor of 2 or 3. Part of this is the increase in stratiform (weak intensity).
17 Summary and Conclusions 1: Microphysics Absence of light rain rates with SAM1MOM compared to M2005 are consistent with comparisons of 1 and 2-moment schemes (e.g., Bryan and Morrison 2012). Smaller drop sizes more low-level evaporation. Abundance of snow in M2005 is also consistent with past studies (e.g., Varble et al. 2011). Would be associated with more stratiform abundance of light rain with M2005.
18 Summary and Conclusions 2: Shallow to Deep Transition With both MJO events (especially in the 1st one) there is a progression from small shallow clouds to large deep clouds. Small PFs and shallow clouds are not as strongly modulated as large PFs and deep clouds...consistent with some observations (Barnes and Houze 2013, Deng et al. 2013). The transitions are dominated by increases in rain area as opposed to rain intensity. Increased free-tropospheric moisture deep convection cold pools and more triggering more convective area.
19 Future Work Simulations using parameterized large-scale dynamics simulations and variational analysis forcing datasets. Analysis of convective/stratiform in simulations and comparisons with radar observations. More detailed investigation of microphysics schemes.
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency In Sik Kang Seoul National University Young Min Yang (UH) and Wei Kuo Tao (GSFC) Content 1. Conventional
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Kate Thayer-Calder and Dave Randall Colorado State University October 24, 2012 NOAA's 37th Climate Diagnostics and Prediction Workshop Convective
CRM simula+ons with parameterized large- scale dynamics using +me- dependent forcings from observa+ons
CRM simula+ons with parameterized large- scale dynamics using +me- dependent forcings from observa+ons Shuguang Wang, Adam Sobel, Zhiming Kuang Zhiming & Kerry s workshop Harvard, March 2012 In tropical
Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models
Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models S. A. Klein National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics
Limitations of Equilibrium Or: What if τ LS τ adj?
Limitations of Equilibrium Or: What if τ LS τ adj? Bob Plant, Laura Davies Department of Meteorology, University of Reading, UK With thanks to: Steve Derbyshire, Alan Grant, Steve Woolnough and Jeff Chagnon
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang
Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model simulations of TWP ICE
Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 734 754, April 2012 A Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model
The formation of wider and deeper clouds through cold-pool dynamics
The formation of wider and deeper clouds through cold-pool dynamics Linda Schlemmer, Cathy Hohenegger e for Meteorology, Hamburg 2013-09-03 Bergen COST Meeting Linda Schlemmer 1 / 27 1 Motivation 2 Simulations
MICROPHYSICS COMPLEXITY EFFECTS ON STORM EVOLUTION AND ELECTRIFICATION
MICROPHYSICS COMPLEXITY EFFECTS ON STORM EVOLUTION AND ELECTRIFICATION Blake J. Allen National Weather Center Research Experience For Undergraduates, Norman, Oklahoma and Pittsburg State University, Pittsburg,
Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A.
376 THE SIMULATION OF TROPICAL CONVECTIVE SYSTEMS William M. Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A. ABSTRACT IN NUMERICAL
Evaluation of precipitation simulated over mid-latitude land by CPTEC AGCM single-column model
Evaluation of precipitation simulated over mid-latitude land by CPTEC AGCM single-column model Enver Ramírez Gutiérrez 1, Silvio Nilo Figueroa 2, Paulo Kubota 2 1 CCST, 2 CPTEC INPE Cachoeira Paulista,
Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models Yefim L. Kogan Cooperative Institute
Description of zero-buoyancy entraining plume model
Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium Supplementary information Martin S. Singh & Paul A. O Gorman S1 CRM simulations Here we give more
SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment
SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment Mark Webb, Adrian Lock (Met Office), Sandrine Bony (IPSL), Chris Bretherton (UW), Tsuyoshi Koshiro, Hideaki Kawai (MRI), Thorsten Mauritsen
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM Hugh Morrison and Wojciech Grabowski NCAR* (MMM Division, NESL) Marat Khairoutdinov Stony Brook University
A Review on the Uses of Cloud-(System-)Resolving Models
A Review on the Uses of Cloud-(System-)Resolving Models Jeffrey D. Duda Since their advent into the meteorological modeling world, cloud-(system)-resolving models (CRMs or CSRMs) have become very important
Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium
GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L08802, doi:10.1029/2007gl033029, 2008 Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium D. J. Posselt, 1 S. C. van
Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux
Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux Cloud-resolving modelling : perspectives Improvement of models, new ways of using them, renewed views And
Usama Anber 1, Shuguang Wang 2, and Adam Sobel 1,2,3
Response of Atmospheric Convection to Vertical Wind Shear: Cloud Resolving Simulations with Parameterized Large-Scale Circulation. Part I: Specified Radiative Cooling. Usama Anber 1, Shuguang Wang 2, and
Convective Vertical Velocities in GFDL AM3, Cloud Resolving Models, and Radar Retrievals
Convective Vertical Velocities in GFDL AM3, Cloud Resolving Models, and Radar Retrievals Leo Donner and Will Cooke GFDL/NOAA, Princeton University DOE ASR Meeting, Potomac, MD, 10-13 March 2013 Motivation
How To Understand And Understand The Physics Of Clouds And Precipitation
Deutscher Wetterdienst Research and Development Physical Parameterizations: Cloud Microphysics and Subgrid-Scale Cloudiness Axel Seifert Deutscher Wetterdienst, Offenbach Deutscher Wetterdienst Research
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low
DETAILED STORM SIMULATIONS BY A NUMERICAL CLOUD MODEL WITH ELECTRIFICATION AND LIGHTNING PARAMETERIZATIONS
DETAILED STORM SIMULATIONS BY A NUMERICAL CLOUD MODEL WITH ELECTRIFICATION AND LIGHTNING PARAMETERIZATIONS Don MacGorman 1, Ted Mansell 1,2, Conrad Ziegler 1, Jerry Straka 3, and Eric C. Bruning 1,3 1
Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition
Thirteenth ARM Science Team Meeting Proceedings, Broomfield, Colorado, March 31-April 4, 23 Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective
J4.1 CENTRAL NORTH CAROLINA TORNADOES FROM THE 16 APRIL 2011 OUTBREAK. Matthew Parker* North Carolina State University, Raleigh, North Carolina
J4.1 CENTRAL NORTH CAROLINA TORNADOES FROM THE 16 APRIL 2011 OUTBREAK Matthew Parker* North Carolina State University, Raleigh, North Carolina Jonathan Blaes NOAA/National Weather Service, Raleigh, North
Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches Joao Teixeira
Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations. Final Report
Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations Final Report Principal Investigator: Xiaoqing Wu, Department of Geological and Atmospheric Sciences, Iowa State
Group Session 1-3 Rain and Cloud Observations
Group Session 1-3 Rain and Cloud Observations Targets in Science Plans CINDY Science Plan (Apr. 2009) DYNAMO SPO (Jul. 2009) Atmospheric Research a. Preconditioning processes b. Rossby wave c. Diabatic
On the diurnal cycle of deep convection, high-level cloud, and upper troposphere water vapor in the Multiscale Modeling Framework
Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008jd009905, 2008 On the diurnal cycle of deep convection, high-level cloud, and upper troposphere water vapor in the
Cloud-resolving simulation of TOGA-COARE using parameterized largescale
Cloud-resolving simulation of TOGA-COARE using parameterized largescale dynamics Shuguang Wang 1, Adam H. Sobel 2, and Zhiming Kuang 3 -------------- Shuguang Wang, Department of Applied Physics and Applied
Chapter 7 Stability and Cloud Development. Atmospheric Stability
Chapter 7 Stability and Cloud Development Atmospheric Stability 1 Cloud Development - stable environment Stable air (parcel) - vertical motion is inhibited if clouds form, they will be shallow, layered
1D shallow convective case studies and comparisons with LES
1D shallow convective case studies and comparisons with CNRM/GMME/Méso-NH 24 novembre 2005 1 / 17 Contents 1 5h-6h time average vertical profils 2 2 / 17 Case description 5h-6h time average vertical profils
Clouds and Convection
Max-Planck-Institut Clouds and Convection Cathy Hohenegger, Axel Seifert, Bjorn Stevens, Verena Grützun, Thijs Heus, Linda Schlemmer, Malte Rieck Max-Planck-Institut Shallow convection Deep convection
An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models
An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models Steven Krueger1 and Peter Bogenschutz2 1University of Utah, 2National
Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS
Introduction Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS Zhanqing Li and Seoung-Soo Lee University of Maryland NOAA/NCEP/EMC Collaborators
Sub-grid cloud parametrization issues in Met Office Unified Model
Sub-grid cloud parametrization issues in Met Office Unified Model Cyril Morcrette Workshop on Parametrization of clouds and precipitation across model resolutions, ECMWF, Reading, November 2012 Table of
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota Outline 1) Statistical results from SGP and AZORES 2) Challenge and Difficult
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP X. Wu Department of Geological and Atmospheric Sciences Iowa State University Ames, Iowa X.-Z.
A model to observation approach to evaluating cloud microphysical parameterisations using polarimetric radar
A model to observation approach to evaluating cloud microphysical parameterisations using polarimetric radar Monika Pfeifer G. Craig, M. Hagen, C. Keil Polarisation Doppler Radar POLDIRAD Rain Graupel
Roelof Bruintjes, Sarah Tessendorf, Jim Wilson, Rita Roberts, Courtney Weeks and Duncan Axisa WMA Annual meeting 26 April 2012
Aerosol affects on the microphysics of precipitation development in tropical and sub-tropical convective clouds using dual-polarization radar and airborne measurements. Roelof Bruintjes, Sarah Tessendorf,
Convective Systems over the South China Sea: Cloud-Resolving Model Simulations
VOL. 60, NO. 24 JOURNAL OF THE ATMOSPHERIC SCIENCES 15 DECEMBER 2003 Convective Systems over the South China Sea: Cloud-Resolving Model Simulations W.-K. TAO Laboratory for Atmospheres, NASA Goddard Space
Simulations of Clouds and Sensitivity Study by Wearther Research and Forecast Model for Atmospheric Radiation Measurement Case 4
Simulations of Clouds and Sensitivity Study by Wearther Research and Forecast Model for Atmospheric Radiation Measurement Case 4 Jingbo Wu and Minghua Zhang Institute for Terrestrial and Planetary Atmospheres
In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. aero quarterly qtr_01 10
In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. 22 avoiding convective Weather linked to Ice-crystal Icing engine events understanding
Guy Carpenter Asia-Pacific Climate Impact Centre, School of energy and Environment, City University of Hong Kong
Diurnal and Semi-diurnal Variations of Rainfall in Southeast China Judy Huang and Johnny Chan Guy Carpenter Asia-Pacific Climate Impact Centre School of Energy and Environment City University of Hong Kong
Climate Models: Uncertainties due to Clouds. Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography
Climate Models: Uncertainties due to Clouds Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography Global mean radiative forcing of the climate system for
This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air. 2. Processes that cause instability and cloud development
Stability & Cloud Development This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air 2. Processes that cause instability and cloud development Stability & Movement A rock,
IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS
IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS M. J. Mueller, R. W. Pasken, W. Dannevik, T. P. Eichler Saint Louis University Department of Earth and
Convective Clouds. Convective clouds 1
Convective clouds 1 Convective Clouds Introduction Convective clouds are formed in vertical motions that result from the instability of the atmosphere. This instability can be caused by: a. heating at
Not all clouds are easily classified! Cloud Classification schemes. Clouds by level 9/23/15
Cloud Classification schemes 1) classified by where they occur (for example: high, middle, low) 2) classified by amount of water content and vertical extent (thick, thin, shallow, deep) 3) classified by
Cloud Correction and its Impact on Air Quality Simulations
Cloud Correction and its Impact on Air Quality Simulations Arastoo Pour Biazar 1, Richard T. McNider 1, Andrew White 1, Bright Dornblaser 3, Kevin Doty 1, Maudood Khan 2 1. University of Alabama in Huntsville
Titelmasterformat durch Klicken. bearbeiten
Evaluation of a Fully Coupled Atmospheric Hydrological Modeling System for the Sissili Watershed in the West African Sudanian Savannah Titelmasterformat durch Klicken June, 11, 2014 1 st European Fully
How To Model An Ac Cloud
Development of an Elevated Mixed Layer Model for Parameterizing Altocumulus Cloud Layers S. Liu and S. K. Krueger Department of Meteorology University of Utah, Salt Lake City, Utah Introduction Altocumulus
Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model
Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model H. Guo, J. E. Penner, M. Herzog, and X. Liu Department of Atmospheric,
Physical properties of mesoscale high-level cloud systems in relation to their atmospheric environment deduced from Sounders
Physical properties of mesoscale high-level cloud systems in relation to their atmospheric environment deduced from Sounders Claudia Stubenrauch, Sofia Protopapadaki, Artem Feofilov, Theodore Nicolas &
Cloud/Hydrometeor Initialization in the 20-km RUC Using GOES Data
WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR BASIC SYSTEMS OPEN PROGRAMMME AREA GROUP ON INTEGRATED OBSERVING SYSTEMS EXPERT TEAM ON OBSERVATIONAL DATA REQUIREMENTS AND REDESIGN OF THE GLOBAL OBSERVING
Weather Radar Basics
Weather Radar Basics RADAR: Radio Detection And Ranging Developed during World War II as a method to detect the presence of ships and aircraft (the military considered weather targets as noise) Since WW
Stability and Cloud Development. Stability in the atmosphere AT350. Why did this cloud form, whereas the sky was clear 4 hours ago?
Stability and Cloud Development AT350 Why did this cloud form, whereas the sky was clear 4 hours ago? Stability in the atmosphere An Initial Perturbation Stable Unstable Neutral If an air parcel is displaced
Improving Hydrological Predictions
Improving Hydrological Predictions Catherine Senior MOSAC, November 10th, 2011 How well do we simulate the water cycle? GPCP 10 years of Day 1 forecast Equatorial Variability on Synoptic scales (2-6 days)
Goal: Understand the conditions and causes of tropical cyclogenesis and cyclolysis
Necessary conditions for tropical cyclone formation Leading theories of tropical cyclogenesis Sources of incipient disturbances Extratropical transition Goal: Understand the conditions and causes of tropical
Investigations on COSMO 2.8Km precipitation forecast
Investigations on COSMO 2.8Km precipitation forecast Federico Grazzini, ARPA-SIMC Emilia-Romagna Coordinator of physical aspects group of COSMO Outline Brief description of the COSMO-HR operational suites
How To Find Out How Much Cloud Fraction Is Underestimated
Parameterizing the difference in cloud fraction defined by area and by volume as observed with radar and lidar MALCOLM E. BROOKS 1 2, ROBIN J. HOGAN, AND ANTHONY J. ILLINGWORTH Department of Meteorology,
Formation & Classification
CLOUDS Formation & Classification DR. K. K. CHANDRA Department of forestry, Wildlife & Environmental Sciences, GGV, Bilaspur What is Cloud It is mass of tiny water droplets or ice crystals or both of size
Climate Extremes Research: Recent Findings and New Direc8ons
Climate Extremes Research: Recent Findings and New Direc8ons Kenneth Kunkel NOAA Cooperative Institute for Climate and Satellites North Carolina State University and National Climatic Data Center h#p://assessment.globalchange.gov
Very High Resolution Arctic System Reanalysis for 2000-2011
Very High Resolution Arctic System Reanalysis for 2000-2011 David H. Bromwich, Lesheng Bai,, Keith Hines, and Sheng-Hung Wang Polar Meteorology Group, Byrd Polar Research Center The Ohio State University
A Microwave Retrieval Algorithm of Above-Cloud Electric Fields
A Microwave Retrieval Algorithm of Above-Cloud Electric Fields Michael J. Peterson The University of Utah Chuntao Liu Texas A & M University Corpus Christi Douglas Mach Global Hydrology and Climate Center
Improving Low-Cloud Simulation with an Upgraded Multiscale Modeling Framework
Improving Low-Cloud Simulation with an Upgraded Multiscale Modeling Framework Kuan-Man Xu and Anning Cheng NASA Langley Research Center Hampton, Virginia Motivation and outline of this talk From Teixeira
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility Arunchandra S. Chandra Pavlos Kollias Department of Atmospheric
Fog and Cloud Development. Bows and Flows of Angel Hair
Fog and Cloud Development Bows and Flows of Angel Hair 1 Ch. 5: Condensation Achieving Saturation Evaporation Cooling of Air Adiabatic and Diabatic Processes Lapse Rates Condensation Condensation Nuclei
