Assimilation of cloudy infrared satellite observations: The Met Office perspective
|
|
|
- Gerald Lindsey
- 10 years ago
- Views:
Transcription
1 Assimilation of cloudy infrared satellite observations: The Met Office perspective Ed Pavelin, Met Office International Symposium on Data Assimilation 2014, Munich
2 Contents This presentation covers the following areas Cloudy IR radiances: Introduction Current approaches to cloudy IR assimilation Use of cloudy IR radiances at the Met Office Improvements to the Met Office scheme Towards the assimilation of cloud information Hope to stimulate discussion!
3 Cloudy IR radiances: Radiative effect Clear Cloud signal ~ >10K Temperature O-B ~ 0.1K Cloudy 14.8 m 14 m 9.6 m 7.2 m 4.5 m 4.1 m LW T Sounding BT ~ >10K (Cloudy Clear) 14.8 m 14 m 9.6 m 7.2 m 4.5 m 4.1 m Need: Accurate forward model Knowledge of background error covariances for cloud Very challenging to assimilate cloudy radiances without degrading T/q analysis!
4 Height Height Height Cloudy IR radiance assimilation 1. Clear scenes only 2. Clear channels only 3. Grey cloud methods Cloud Cloud A. Improved forward models Jacobian B. Variational all-sky schemes Jacobian C. Ensemble DA methods
5 1D-Var Grey Cloud Analysis (Met Office scheme) Aim: To extract T and q information in the presence of cloud Analyse two cloud variables: n eff, p ctp Simple cloud model: Single-level grey cloud L n neff Lc (1 neff ) L0 eff n Overcast component Clear-sky component Retrieve n eff, p ctp in 1D-Var to fit observed radiances (No direct assimilation of cloud information)
6 Problems with grey cloud model (results from 1D-Var simulation) Severely degraded analysis below cloud Errors in cloud analysis aliasing into T and q
7 Limitations in cloud model In many cases, 1D-Var cloud model is unrealistic Not (generally) single-level grey cloud Cloud is generally multi-level, 3D Leads to large biases below cloud top Effect of inhomogeneous cloud Solution: Remove channels most likely to be poorly modelled (from Prates et al., 2014) Simple automatic channel selection: Reject all channels peaking below retrieved cloud top 10% of weighting function area allowed below cloud top Channel selection carried out for each sounding
8 Met Office cloudy IR scheme CTP CF CTP, CF Retrieve cloud parameters in 1D-Var Using RTTOV: Single-level grey cloud Choose channels with <10% sensitivity below cloud top 4D-Var Pass cloudy radiances, retrieved CTP and CF to 4D-Var (Bias corrections calculated using clear sky scenes only)
9 Example cloudy weighting functions ( B i / T j ) Mid-level cloud Use 26 of 94 channels Retrieved CTP Low cloud Use 67 of 94 channels
10 Simulated 1D-Var analysis errors: Mid-level cloud cases Retrieval Retrieval Background Background CTP CTP From: Pavelin, English and Eyre, 2008, Q. J. Roy. Met. Soc.
11 Coverage: Clear IASI No. of channels passing 1D-Var QC
12 Coverage: Cloudy IASI No. of channels passing 1D-Var QC
13 Retrieved effective cloud fraction
14 Forecast impact (Cloudy AIRS+IASI vs Clear) Bad Bad Good Good Impact ~ double clear-sky IASI
15 Grey cloud scheme: Next steps System is very conservative Fewer low-peaking channels used than in previous system Over-detection of low cloud in clear sky Use more low-peaking channels Variable observation errors More advanced cloud analysis Improved forward model introduce extra layers Towards the assimilation of cloud information
16 Estimating grey cloud radiative transfer errors Generate simulated brightness temperatures Use diverse profiles from ECMWF/NWPSAF profile dataset (Chevallier, 2001) Simulate BTs using RTTOV v10 Include full liquid water and ice water profiles Multiple scattering parametrisation (Chou et al., 1999; Matricardi, 2003 & 2005) Estimate single-level grey cloud parameters using minimum residual retrieval (Eyre & Menzel, 1989) Compare equivalent grey-cloud BTs with original Chou scattering BTs Approximate grey cloud RT errors
17 CLEAR SKY CLEAR SKY CLEAR SKY CLEAR SKY CLEAR SKY CLEAR SKY Grey cloud BT errors: Dependence on CTP and CF Full channel selection Above the red line = extra obs Use with reduced weight
18 Bias look-up table
19 Std. dev. look-up table
20 Corrected BT histograms Ch cm -1 (Mid-trop) Ch cm -1 (Lower trop) Ch cm -1 (Surface)
21 Improved cloudy IR processing scheme simulation Bias-corrected BTs Minimum residual + 1D-Var Simulate using profile dataset + RTTOV 10 Use NWP SAF standalone 1D-Var CTP, CF CTP, CF Look-up tables Cloud bias correction Observation error model Corrected BTs (all channels) Predicted residual errors Simulate using 1D-Var 4D-Var
22 Preliminary 1D-Var analysis errors Background Channel Selection Error Model q CF<0.5, Low cloud CF<0.5, High cloud CF>0.5, Low cloud CF>0.5, High cloud T
23 Towards the assimilation of IR cloud information Advanced cloudy IR radiative transfer schemes: e.g. Chou scaling (RTTOV-CLD) Forward modelling of full cloud ice/water profiles Variational analysis? Adjust cloud through TL and adjoint of NWP model physics Ensemble DA? Fit observations using a linear combination of ensemble forecasts --- Global and convective-scale ---
24 Cloud in convective-scale DA Convective-scale model (e.g. UK 1.5km model) Radiances (e.g. SEVIRI or MTG-IRS) Simulated image: Tom Blackmore SEVIRI 10.8 m Can improved cloud analysis improve the forecast?
25 Convective-scale DA Representativeness / scale matching? Initial analysis vs lateral boundary conditions (global)? Future application: NWP-based Nowcasting SEVIRI 10.8 m
26 Variational vs. Ensemble DA Methods Variational Methods (1D/3D/4D-Var) 4D-Var: Requires TL and Adjoint of forecast model Forecast error covariance model required Relatively complex to implement Covariances not flow dependent (unless hybrid) Balance imposed through choice of control variables Ensemble Methods (EnKF, ETKF, 4DEnVar ) No TL/Adjoint needed Forecast covariances obtained from ensemble spread Relatively easy to implement Localisation issues Balance imposed by ensemble forecast model
27 Cloud assimilation: Plans for 2014 Investigate viability of ensemble-based cloud analysis methods e.g. 4D-En-Var Analysis = linear combination of ensemble members Focus on UK regional ensemble (MOGREPS-UK) Localisation of analysis increments? Can we generate an improved cloud analysis? How do the cloud increments affect the forecast?
28 Summary (1): Met Office work on cloudy IR radiances Current operational scheme (AIRS, IASI, CrIS): 1D-Var CTP, CF analysis (grey cloud) Dynamic channel selection Next step ( ) Bias correction and variable obs error to account for grey cloud RT model errors Towards assimilating cloud information Experiments with ensemble DA methods Focus on convective scale model (UK)
29 Summary (2): Questions to answer Variational vs. ensemble methods? Benefits of cloud assimilation: Global vs regional? Regional scale: Importance of cloud analysis vs LBCs? Ensemble DA: Localisation methods? How to assimilate cloud information without damaging critical T/q information? Representativeness / scale matching Plenty to discuss!
30 Questions and answers
All-sky assimilation of microwave imager observations sensitive to water vapour, cloud and rain
All-sky assimilation of microwave imager observations sensitive to water vapour, cloud and rain A.J. Geer, P. Bauer, P. Lopez and D. Salmond European Centre for Medium-Range Weather Forecasts, Reading,
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect Tuuli Perttula, FMI + Thanks to: Nadia Fourrié, Lydie Lavanant, Florence Rabier and Vincent Guidard, Météo
Improved diagnosis of low-level cloud from MSG SEVIRI data for assimilation into Met Office limited area models
Improved diagnosis of low-level cloud from MSG SEVIRI data for assimilation into Met Office limited area models Peter N. Francis, James A. Hocking & Roger W. Saunders Met Office, Exeter, U.K. Abstract
Validation of SEVIRI cloud-top height retrievals from A-Train data
Validation of SEVIRI cloud-top height retrievals from A-Train data Chu-Yong Chung, Pete N Francis, and Roger Saunders Contents Introduction MO GeoCloud AVAC-S Long-term monitoring Comparison with OCA Summary
IRS Level 2 Processing Concept Status
IRS Level 2 Processing Concept Status Stephen Tjemkes, Jochen Grandell and Xavier Calbet 6th MTG Mission Team Meeting 17 18 June 2008, Estec, Noordwijk Page 1 Content Introduction Level 2 Processing Concept
Microwave observations in the presence of cloud and precipitation
Microwave observations in the presence of cloud and precipitation Alan Geer Thanks to: Bill Bell, Peter Bauer, Fabrizio Baordo, Niels Bormann Slide 1 ECMWF/EUMETSAT satellite course 2015: Microwave 2 Slide
Hybrid-DA in NWP. Experience at the Met Office and elsewhere. GODAE OceanView DA Task Team. Andrew Lorenc, Met Office, Exeter.
Hybrid-DA in NWP Experience at the Met Office and elsewhere GODAE OceanView DA Task Team Andrew Lorenc, Met Office, Exeter. 21 May 2015 Crown copyright Met Office Recent History of DA for NWP 4DVar was
ECMWF Aerosol and Cloud Detection Software. User Guide. version 1.2 20/01/2015. Reima Eresmaa ECMWF
ECMWF Aerosol and Cloud User Guide version 1.2 20/01/2015 Reima Eresmaa ECMWF This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction
Advances in data assimilation techniques
Advances in data assimilation techniques and their relevance to satellite data assimilation ECMWF Seminar on Use of Satellite Observations in NWP Andrew Lorenc,, 8-12 September 2014. Crown copyright Met
Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract
Clear Sky Radiance (CSR) Product from MTSAT-1R UESAWA Daisaku* Abstract The Meteorological Satellite Center (MSC) has developed a Clear Sky Radiance (CSR) product from MTSAT-1R and has been disseminating
Validating MOPITT Cloud Detection Techniques with MAS Images
Validating MOPITT Cloud Detection Techniques with MAS Images Daniel Ziskin, Juying Warner, Paul Bailey, John Gille National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 ABSTRACT The
An Integrated Ensemble/Variational Hybrid Data Assimilation System
An Integrated Ensemble/Variational Hybrid Data Assimilation System DAOS Working Group Meeting September 2012 Tom Auligné, National Center for Atmospheric Research Acknowledgements: Contributors: Luke Peffers
SYNERGISTIC USE OF IMAGER WINDOW OBSERVATIONS FOR CLOUD- CLEARING OF SOUNDER OBSERVATION FOR INSAT-3D
SYNERGISTIC USE OF IMAGER WINDOW OBSERVATIONS FOR CLOUD- CLEARING OF SOUNDER OBSERVATION FOR INSAT-3D ABSTRACT: Jyotirmayee Satapathy*, P.K. Thapliyal, M.V. Shukla, C. M. Kishtawal Atmospheric and Oceanic
Cloud detection by using cloud cost for AIRS: Part 1
cloud cost for the Advanced Infrared Radiometer Sounder (Part I) - A simulation study - August 19, 2002 Yoshiaki Takeuchi Japan Meteorological Agency EUMETSAT NWP-SAF Visiting Scientist to Met Office,
GOES-R AWG Cloud Team: ABI Cloud Height
GOES-R AWG Cloud Team: ABI Cloud Height June 8, 2010 Presented By: Andrew Heidinger 1 1 NOAA/NESDIS/STAR 1 Outline Executive Summary Algorithm Description ADEB and IV&V Response Summary Requirements Specification
The impact of window size on AMV
The impact of window size on AMV E. H. Sohn 1 and R. Borde 2 KMA 1 and EUMETSAT 2 Abstract Target size determination is subjective not only for tracking the vector but also AMV results. Smaller target
Hybrid Data Assimilation in the GSI
Hybrid Data Assimilation in the GSI Rahul Mahajan NOAA / NWS / NCEP / EMC IMSG GSI Hybrid DA Team: Daryl Kleist (UMD), Jeff Whitaker (NOAA/ESRL), John Derber (EMC), Dave Parrish (EMC), Xuguang Wang (OU)
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations 22 September 2011 Hervé LE GLEAU, Marcel DERRIEN Centre de météorologie Spatiale. Lannion Météo-France 1 Fog or low level clouds?
How To Understand Cloud Properties From Satellite Imagery
P1.70 NIGHTTIME RETRIEVAL OF CLOUD MICROPHYSICAL PROPERTIES FOR GOES-R Patrick W. Heck * Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison Madison, Wisconsin P.
Synoptic assessment of AMV errors
NWP SAF Satellite Application Facility for Numerical Weather Prediction Visiting Scientist mission report Document NWPSAF-MO-VS-038 Version 1.0 4 June 2009 Synoptic assessment of AMV errors Renato Galante
Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon
Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates C. N. Long Pacific Northwest National Laboratory Richland, Washington
Towards an NWP-testbed
Towards an NWP-testbed Ewan O Connor and Robin Hogan University of Reading, UK Overview Cloud schemes in NWP models are basically the same as in climate models, but easier to evaluate using ARM because:
VIIRS-CrIS mapping. NWP SAF AAPP VIIRS-CrIS Mapping
NWP SAF AAPP VIIRS-CrIS Mapping This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement
MSG MPEF Products focus on GII Simon Elliott Meteorological Operations Division [email protected]
MSG MPEF focus on GII Simon Elliott Meteorological Operations Division [email protected] MSG Application Workshop, 15-19 March 2010, Alanya, Türkiye Slide: 1 1. What is the MPEF? Meteorological
Options for filling the LEO-GEO AMV Coverage Gap Francis Warrick Met Office, UK
AMV investigation Document NWPSAF-MO-TR- Version. // Options for filling the LEO-GEO AMV Coverage Gap Francis Warrick Met Office, UK Options for filling the LEO-GEO AMV Coverage Gap Doc ID : NWPSAF-MO-TR-
Overview of the IR channels and their applications
Ján Kaňák Slovak Hydrometeorological Institute [email protected] Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation
Mode-S Enhanced Surveillance derived observations from multiple Air Traffic Control Radars and the impact in hourly HIRLAM
Mode-S Enhanced Surveillance derived observations from multiple Air Traffic Control Radars and the impact in hourly HIRLAM 1 Introduction Upper air wind is one of the most important parameters to obtain
Labs in Bologna & Potenza Menzel. Lab 3 Interrogating AIRS Data and Exploring Spectral Properties of Clouds and Moisture
Labs in Bologna & Potenza Menzel Lab 3 Interrogating AIRS Data and Exploring Spectral Properties of Clouds and Moisture Figure 1: High resolution atmospheric absorption spectrum and comparative blackbody
REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL
REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL D. Santos (1), M. J. Costa (1,2), D. Bortoli (1,3) and A. M. Silva (1,2) (1) Évora Geophysics
The APOLLO cloud product statistics Web service
The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in
Cloud Masking and Cloud Products
Cloud Masking and Cloud Products MODIS Operational Algorithm MOD35 Paul Menzel, Steve Ackerman, Richard Frey, Kathy Strabala, Chris Moeller, Liam Gumley, Bryan Baum MODIS Cloud Masking Often done with
Partnership to Improve Solar Power Forecasting
Partnership to Improve Solar Power Forecasting Venue: EUPVSEC, Paris France Presenter: Dr. Manajit Sengupta Date: October 1 st 2013 NREL is a national laboratory of the U.S. Department of Energy, Office
MSG-SEVIRI cloud physical properties for model evaluations
Rob Roebeling Weather Research Thanks to: Hartwig Deneke, Bastiaan Jonkheid, Wouter Greuell, Jan Fokke Meirink and Erwin Wolters (KNMI) MSG-SEVIRI cloud physical properties for model evaluations Cloud
Cloud detection and clearing for the MOPITT instrument
Cloud detection and clearing for the MOPITT instrument Juying Warner, John Gille, David P. Edwards and Paul Bailey National Center for Atmospheric Research, Boulder, Colorado ABSTRACT The Measurement Of
CERES Edition 2 & Edition 3 Cloud Cover, Cloud Altitude and Temperature
CERES Edition 2 & Edition 3 Cloud Cover, Cloud Altitude and Temperature S. Sun-Mack 1, P. Minnis 2, Y. Chen 1, R. Smith 1, Q. Z. Trepte 1, F. -L. Chang, D. Winker 2 (1) SSAI, Hampton, VA (2) NASA Langley
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low
The APOLLO cloud product statistics Web service The APOLLO cloud product statistics Web service
The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in
Sub-grid cloud parametrization issues in Met Office Unified Model
Sub-grid cloud parametrization issues in Met Office Unified Model Cyril Morcrette Workshop on Parametrization of clouds and precipitation across model resolutions, ECMWF, Reading, November 2012 Table of
MOGREPS status and activities
MOGREPS status and activities by Warren Tennant with contributions from Rob Neal, Sarah Beare, Neill Bowler & Richard Swinbank Crown copyright Met Office 32 nd EWGLAM and 17 th SRNWP meetings 1 Contents
Interactive comment on Total cloud cover from satellite observations and climate models by P. Probst et al.
Interactive comment on Total cloud cover from satellite observations and climate models by P. Probst et al. Anonymous Referee #1 (Received and published: 20 October 2010) The paper compares CMIP3 model
A Hybrid ETKF 3DVAR Data Assimilation Scheme for the WRF Model. Part II: Real Observation Experiments
5132 M O N T H L Y W E A T H E R R E V I E W VOLUME 136 A Hybrid ETKF 3DVAR Data Assimilation Scheme for the WRF Model. Part II: Real Observation Experiments XUGUANG WANG Cooperative Institute for Research
Remote Sensing of Contrails and Aircraft Altered Cirrus Clouds
Remote Sensing of Contrails and Aircraft Altered Cirrus Clouds R. Palikonda 1, P. Minnis 2, L. Nguyen 1, D. P. Garber 1, W. L. Smith, r. 1, D. F. Young 2 1 Analytical Services and Materials, Inc. Hampton,
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Munn V. Shukla and P. K. Thapliyal Atmospheric Sciences Division Atmospheric and Oceanic Sciences Group Space Applications
2. VIIRS SDR Tuple and 2Dhistogram MIIC Server-side Filtering. 3. L2 CERES SSF OPeNDAP dds structure (dim_alias and fixed_dim)
MIIC Server-side Filtering Outline 1. DEMO Web User Interface (leftover from last meeting) 2. VIIRS SDR Tuple and 2Dhistogram MIIC Server-side Filtering 3. L2 CERES SSF OPeNDAP dds structure (dim_alias
Status of HPC infrastructure and NWP operation in JMA
Status of HPC infrastructure and NWP operation in JMA Toshiharu Tauchi Numerical Prediction Division, Japan Meteorological Agency 1 Contents Current HPC system and Operational suite Updates of Operational
IMPACT OF DRIZZLE AND 3D CLOUD STRUCTURE ON REMOTE SENSING OF CLOUD EFFECTIVE RADIUS
IMPACT OF DRIZZLE AND 3D CLOUD STRUCTURE ON REMOTE SENSING OF CLOUD EFFECTIVE RADIUS Tobias Zinner 1, Gala Wind 2, Steven Platnick 2, Andy Ackerman 3 1 Deutsches Zentrum für Luft- und Raumfahrt (DLR) Oberpfaffenhofen,
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University
Diurnal Cycle: Cloud Base Height clear sky
Diurnal Cycle: Cloud Base Height clear sky Helsinki CNN I Madrid, 16 Dezember 2002 1 Cabauw Geesthacht Cabauw Geesthacht Helsinki Helsinki Petersburg Potsdam Petersburg Potsdam CNN I CNN II Madrid, 16
Volcanic Ash Monitoring: Product Guide
Doc.No. Issue : : EUM/TSS/MAN/15/802120 v1a EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 2 June 2015 http://www.eumetsat.int WBS/DBS : EUMETSAT
Cloud/Hydrometeor Initialization in the 20-km RUC Using GOES Data
WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR BASIC SYSTEMS OPEN PROGRAMMME AREA GROUP ON INTEGRATED OBSERVING SYSTEMS EXPERT TEAM ON OBSERVATIONAL DATA REQUIREMENTS AND REDESIGN OF THE GLOBAL OBSERVING
Advances in Cloud Imager Remote Sensing
Advances in Cloud Imager Remote Sensing Andrew Heidinger NOAA/NESDIS/ORA Madison, Wisconsin With material from Mike Pavolonis, Robert Holz, Amato Evan and Fred Nagle STAR Science Symposium November 9,
An evaluation of FY-3C satellite data quality at ECMWF and the Met Office
767 An evaluation of FY-3C satellite data quality at ECMWF and the Met Office Qifeng Lu 1, Heather Lawrence 2, Niels Bormann 2, Steve English 2, Katie Lean 3, Nigel Atkinson 4, William Bell 4, Fabien Carminati
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR A. Maghrabi 1 and R. Clay 2 1 Institute of Astronomical and Geophysical Research, King Abdulaziz City For Science and Technology, P.O. Box 6086 Riyadh 11442,
A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009jd013422, 2010 A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS Roger Marchand, 1 Thomas Ackerman, 1 Mike
Cloud Grid Information Objective Dvorak Analysis (CLOUD) at the RSMC Tokyo - Typhoon Center
Cloud Grid Information Objective Dvorak Analysis (CLOUD) at the RSMC Tokyo - Typhoon Center Kenji Kishimoto, Masaru Sasaki and Masashi Kunitsugu Forecast Division, Forecast Department Japan Meteorological
Cloud verification: a review of methodologies and recent developments
Cloud verification: a review of methodologies and recent developments Anna Ghelli ECMWF Slide 1 Thanks to: Maike Ahlgrimm Martin Kohler, Richard Forbes Slide 1 Outline Cloud properties Data availability
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Mentor: Dr. Malcolm LeCompte Elizabeth City State University
Comparison of Cloud and Radiation Variability Reported by Surface Observers, ISCCP, and ERBS
Comparison of Cloud and Radiation Variability Reported by Surface Observers, ISCCP, and ERBS Joel Norris (SIO/UCSD) Cloud Assessment Workshop April 5, 2005 Outline brief satellite data description upper-level
T.A. Tarasova, and C.A.Nobre
SEASONAL VARIATIONS OF SURFACE SOLAR IRRADIANCES UNDER CLEAR-SKIES AND CLOUD COVER OBTAINED FROM LONG-TERM SOLAR RADIATION MEASUREMENTS IN THE RONDONIA REGION OF BRAZIL T.A. Tarasova, and C.A.Nobre Centro
Utilization of satellites and products at Met Office since ET-SUP7
Utilization of satellites and products at Met Office since ET-SUP7 Simon J. Keogh WMO ET-SUP8 14-17 April 2014. Table of Contents Current data usage for NWP including new data assimilated since ET-SUP7
Clouds and Convection
Max-Planck-Institut Clouds and Convection Cathy Hohenegger, Axel Seifert, Bjorn Stevens, Verena Grützun, Thijs Heus, Linda Schlemmer, Malte Rieck Max-Planck-Institut Shallow convection Deep convection
CALCULATION OF CLOUD MOTION WIND WITH GMS-5 IMAGES IN CHINA. Satellite Meteorological Center Beijing 100081, China ABSTRACT
CALCULATION OF CLOUD MOTION WIND WITH GMS-5 IMAGES IN CHINA Xu Jianmin Zhang Qisong Satellite Meteorological Center Beijing 100081, China ABSTRACT With GMS-5 images, cloud motion wind was calculated. For
Satellite Remote Sensing of Volcanic Ash
Marco Fulle www.stromboli.net Satellite Remote Sensing of Volcanic Ash Michael Pavolonis NOAA/NESDIS/STAR SCOPE Nowcasting 1 Meeting November 19 22, 2013 1 Outline Getty Images Volcanic ash satellite remote
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP X. Wu Department of Geological and Atmospheric Sciences Iowa State University Ames, Iowa X.-Z.
Product User Manual. SEVIRI dataset cloud products. Edition 1
EUMETSAT Satellite Application Facility on Climate Monitoring Product User Manual SEVIRI dataset cloud products Edition 1 DOI: 10.5676/EUMETSAT_SAF_CM/CLAAS/V001 Fractional Cloud Cover Joint Cloud property
How To Model An Ac Cloud
Development of an Elevated Mixed Layer Model for Parameterizing Altocumulus Cloud Layers S. Liu and S. K. Krueger Department of Meteorology University of Utah, Salt Lake City, Utah Introduction Altocumulus
METEOSAT 8 SEVIRI and NOAA AVHRR Cloud Products. A Climate Monitoring SAF Comparison Study. Meteorologi. Sheldon Johnston and Karl-Göran Karlsson
Nr 127, 2007 Meteorologi METEOSAT 8 SEVIRI and NOAA AVHRR Cloud Products A Climate Monitoring SAF Comparison Study Sheldon Johnston and Karl-Göran Karlsson Cover Image The difference between the mean cloudiness
Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models. Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD
Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD Solar Radiation Reaching the Surface Incoming solar radiation can be reflected,
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility Arunchandra S. Chandra Pavlos Kollias Department of Atmospheric
Data processing (3) Cloud and Aerosol Imager (CAI)
Data processing (3) Cloud and Aerosol Imager (CAI) 1) Nobuyuki Kikuchi, 2) Haruma Ishida, 2) Takashi Nakajima, 3) Satoru Fukuda, 3) Nick Schutgens, 3) Teruyuki Nakajima 1) National Institute for Environmental
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France
Retrieval of vertical cloud properties of deepconvective clouds by spectral radiance measurements
Faculty of Physics and Earth Sciences Retrieval of vertical cloud properties of deepconvective clouds by spectral radiance measurements Tobias Zinner Evi Jäkel, Sandra Kanter, Florian Ewald, Tobias Kölling
Best practices for RGB compositing of multi-spectral imagery
Best practices for RGB compositing of multi-spectral imagery User Service Division, EUMETSAT Introduction Until recently imagers on geostationary satellites were limited to 2-3 spectral channels, i.e.
TOPIC: CLOUD CLASSIFICATION
INDIAN INSTITUTE OF TECHNOLOGY, DELHI DEPARTMENT OF ATMOSPHERIC SCIENCE ASL720: Satellite Meteorology and Remote Sensing TERM PAPER TOPIC: CLOUD CLASSIFICATION Group Members: Anil Kumar (2010ME10649) Mayank
Improvement in the Assessment of SIRS Broadband Longwave Radiation Data Quality
Improvement in the Assessment of SIRS Broadband Longwave Radiation Data Quality M. E. Splitt University of Utah Salt Lake City, Utah C. P. Bahrmann Cooperative Institute for Meteorological Satellite Studies
Physical properties of mesoscale high-level cloud systems in relation to their atmospheric environment deduced from Sounders
Physical properties of mesoscale high-level cloud systems in relation to their atmospheric environment deduced from Sounders Claudia Stubenrauch, Sofia Protopapadaki, Artem Feofilov, Theodore Nicolas &
Fog and low cloud ceilings in the northeastern US: climatology and dedicated field study
Fog and low cloud ceilings in the northeastern US: climatology and dedicated field study Robert Tardif National Center for Atmospheric Research Research Applications Laboratory 1 Overview of project Objectives:
Simulations of Clouds and Sensitivity Study by Wearther Research and Forecast Model for Atmospheric Radiation Measurement Case 4
Simulations of Clouds and Sensitivity Study by Wearther Research and Forecast Model for Atmospheric Radiation Measurement Case 4 Jingbo Wu and Minghua Zhang Institute for Terrestrial and Planetary Atmospheres
