Combining Satellite High Frequency Microwave Radiometer & Surface Cloud Radar Data for Determination of Large Scale 3 D Cloud IWC 서은경
|
|
|
- Justina Holmes
- 10 years ago
- Views:
Transcription
1 11/21/2008 제9회 기상레이더 워크숍 Combining Satellite High Frequency Microwave Radiometer & Surface Cloud Radar Data for Determination of Large Scale 3 D Cloud IWC 서은경 공주대학교 지구과학교육과 Objective: To retrieve large scale 3 D cloud IWC by combining data from NOAA satellite Advanced Microwave Sounding Unit B TBs and ground based cloud radar
2 Outline Motivation Objectives and Approach How to construct a supporting database from radar for satellite retrieval? Importance of database: manifolds problem How to make a consistent framework btw Radar and Satellite? From point to area measurement in a consistent framework Ice particle Design Radar Reflectivity IWC Relation Construction of vertical Ice Clouds TB IWP Relations at AMSU B channels TB IWP Relations on TB EOF domain Comparison of MMCR and AMSU B IWC profiles Conclusions
3 Motivation Single Column Models (supported by the Atmospheric Radiation Measurement) are used to test physical parameterizations. As forcing terms, SCMs need advection tendency of condensates besides advections of T, q, Point measurements of cloud water alone are not sufficient to derive these advection terms MMCR Satellite data provide areal coverage of water condensates es can potentially be used to derive these terms (together with other data)
4 Objectives and Approach Objectives By combining i surface radar and satellite data, Ice water path over a large area Vertical ice water content distribution over a large area 3 D ice water content distribution can be utilized to calculate ice water advection terms for single column model inputs Approach Surface radar (MMCR) provides detailed, high quality characteristics of vertical ice water content distribution Satellite (NOAA AMSU B) provides broad horizontal coverage Use surface radar data to generate database for satellite retrievals, and then use satellite data to broaden the area coverage From point measurement to area measurement in a consistent framework
5 How to construct a supporting database for satellite retrieval? observation NOAA AMSU B TB Supporting Database Linkage btw TB Ice Model Simulations? Cloud Observations? No ice Ice Retrieval Algorithm Consistency check btw TB and TB? Ice Retrieval To overcome the lack of in situ observations of IWC profiles, we take the advantage of surface radar observations
6 Importance of database: manifolds problem TB observations TB simulations i Ch 1 Ch 1 Ch 5 Ch 5 Representativeness? Ch 2 Ch 2 Ch 3 Ch 4 Ch 3 Ch 4
7 How to make a consistent framework btw Radar and Satellite? (1) Both instruments are looking at the same clouds. share the same microphysical and radiative properties. Radar MMCR At the SGP site 35 GHz (8.6 mm) Zenith pointing (90 m) Reflectivity & Doppler Data from surface to 20 km ALT Continuous observation in time (9 second) * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** *** * * * * * * * * * * * * * * * * Satellite AMSU B 89, 150, 183.3±1, 183.3±3, 183.3±7 GHz 16 km resolution at nadir, ~2000 km swath width, cross scan Twice daily coverage per satellite (currently 3 NOAA satellites + SSMIS)
8 How to make a consistent framework btw Radar and Satellite? (2) MMCR reflectivity profile Find Z IWC relation ice microphysics single scattering MMCR Radar reflectivity IWC profile Database TB IWC profile relation Radiative transfer model
9 From point to area measurement in a consistent framework Ice particle il types Including various Ice Particle Shapes instead of solid ice particle (Liu 2004) A sector and a dendrite type for snowflakes rosettes with 3 to 6 hexagonal columns Hyemsfield et al. (2002) 100 μm: bullet rosettes and aggregates
10 From point to area measurement in a consistent framework Particle size distribution ib ti & density Particle Size Distributions based on in situ measurements of synoptically generated midlatitude ice clouds (Heymsfield et al. 2003a,b) density a gamma distribution of order μ, slope λ
11 From point to area measurement in a consistent framework Slope of the particle size distribution ib ti
12 From point to area measurement in a consistent framework Backscattering cross section To calculate backscattering cross section for the defined nonspherical ice particles, the Discrete Dipole Approximation (DDA) model is used (Liu 2004). At 35 GHz (MMCR frequency)
13 From point to area measurement in a consistent framework Radar Reflectivity tiit IWC relation From the backscattering cross section (s), the radar reflectivity can obtained from and. Frame B 10 0 By using the DDA model for the six types of cloud ice particle shapes, the Z IWC relation is derived as: IWC = Z where IWC is in g m 3 and Z in mm 6 m 3. Frame A: this study s Z IWC relations DDA calculations Frame B: Liu & Illingworth(2000) Z IWC Lorenz Mie calculations IWC (g m -3 ) 10-1 Frame A 10-2 type-a snowflakes type-b snowflakes 3-bulltet rosettes Z (dbz) 4-bullet rosettes 5-bullet rosettes 6-bullet rosettes mean for the six ice types Liu and Illingworth [2000] Mace et al. [2002] Figure. The relationships between Z and IWC.
14 From point to area measurement in a consistent framework Construction of vertical ice clouds (a) mean radar reflectivity 14 To overcome the lack of in situ 12 observations of vertical IWC 8 6 structure, we take the advantage 4 2 of surface radar observations Based on the major EOFs of MMCR radar reflectivity profiles, synthetic radar reflectivity profiles are constructed into IWC profiles. These IWC profiles serve as the inputs to a radiative transfer model dl that links TBs and IWC profiles. height(km) heig eight(km) height(km) ) (b) standard deviation 14 ) dbze dbze (c) the first EOF eigenvalues: 49% 56% (e) the third EOF eigenvalues: 11% 8% MMCR radar reflectivity height(km) heig eight(km) height(km) (d) the second EOF eigenvalues: 22% 35% (f) the fourth EOF eigenvalues: 5% 1% synthetic radar reflectivity Figure. (a) Mean, (b) standard deviation, (c-f) major EOF profiles for the observed MMCR profiles (solid lines) and the generated radar reflectivity profiles (dotted lines). The first and second numbers in the bottom of (c-f) denote the eigenvalues for the observed and generated radar reflectivity profiles.
15 From point to area measurement in a consistent framework TB IWP Relations on TB EOF domain Figure. Large circles denote AMSU B TB's at the ARM SGP site. Small circles and crosses represent AMSU B TB's, whose departure from clear sky background brightness temperatures at 89 GHz are between 25 K and 50 K and greater than 50 K, respectively, over a 10 deg x 10 deg box centered at the SGP site during March 2003.
16 Comparison of MMCR and AMSU B IWC profiles Satellite retrievals MMCR retrievals
17 Conclusions A framework to retrieve ice water path over a broad area is presented by combining observations of a surface cloud radar and satellite microwave measurements in a physically consistent way. For construction ti of model database, this study adapted d newly available ice microphysical properties from recent in situ observations and treated the single scattering properties based on DDA simulations of realistic nonspherical ice particles A new radar reflectivity ice water content relation ( IWC = 0.078Z ) was derived.
MCMC-Based Assessment of the Error Characteristics of a Surface-Based Combined Radar - Passive Microwave Cloud Property Retrieval
MCMC-Based Assessment of the Error Characteristics of a Surface-Based Combined Radar - Passive Microwave Cloud Property Retrieval Derek J. Posselt University of Michigan Jay G. Mace University of Utah
Radiometer Physics GmbH Discrimination of cloud and rain liquid water path by groundbased polarized microwave radiometry
Radiometer Physics GmbH Discrimination of cloud and rain liquid water path by groundbased polarized microwave radiometry Harald Czekala RPG Radiometer Physics GmbH AOGS Meeting, Singapore, July 6, 2004
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility Arunchandra S. Chandra Pavlos Kollias Department of Atmospheric
Cloud Thickness Estimation from GOES-8 Satellite Data Over the ARM-SGP Site
Cloud Thickness Estimation from GOES-8 Satellite Data Over the ARM-SGP Site V. Chakrapani, D. R. Doelling, and A. D. Rapp Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics
Microwave observations in the presence of cloud and precipitation
Microwave observations in the presence of cloud and precipitation Alan Geer Thanks to: Bill Bell, Peter Bauer, Fabrizio Baordo, Niels Bormann Slide 1 ECMWF/EUMETSAT satellite course 2015: Microwave 2 Slide
The Effect of Droplet Size Distribution on the Determination of Cloud Droplet Effective Radius
Eleventh ARM Science Team Meeting Proceedings, Atlanta, Georgia, March 9-, The Effect of Droplet Size Distribution on the Determination of Cloud Droplet Effective Radius F.-L. Chang and Z. Li ESSIC/Department
Diurnal Cycle: Cloud Base Height clear sky
Diurnal Cycle: Cloud Base Height clear sky Helsinki CNN I Madrid, 16 Dezember 2002 1 Cabauw Geesthacht Cabauw Geesthacht Helsinki Helsinki Petersburg Potsdam Petersburg Potsdam CNN I CNN II Madrid, 16
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang
Cloud Profiling at the Lindenberg Observatory
Cloud Profiling at the Lindenberg Observatory Ulrich Görsdorf DWD, Cloud Profiling with a Ka-Band radar at the Lindenberg Observatory Ulrich Görsdorf DWD, MIRA 35.5 GHz (8 mm) Radar (Ka-Band) Coherent
Modeling, Simulation and Comparison Study of Cirrus Clouds Ice Crystals
Modeling, Simulation and Comparison Study of Cirrus Clouds Ice Crystals Jorge M. Villa *a, Sandra L. Cruz-Pol* a, José Colom-Ustáriz* a, Stephen M. Sekelsky ** b a Dept. of Electrical and Computer Engineering,
The study of cloud and aerosol properties during CalNex using newly developed spectral methods
The study of cloud and aerosol properties during CalNex using newly developed spectral methods Patrick J. McBride, Samuel LeBlanc, K. Sebastian Schmidt, Peter Pilewskie University of Colorado, ATOC/LASP
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University
Passive Remote Sensing of Clouds from Airborne Platforms
Passive Remote Sensing of Clouds from Airborne Platforms Why airborne measurements? My instrument: the Solar Spectral Flux Radiometer (SSFR) Some spectrometry/radiometry basics How can we infer cloud properties
Remote sensing of cirrus cloud vertical size profile using MODIS data
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008jd011327, 2009 Remote sensing of cirrus cloud vertical size profile using MODIS data Xingjuan Wang, 1 K. N. Liou, 1 Steve S. C. Ou, 1 G. G. Mace,
Remote Sensing of Clouds from Polarization
Remote Sensing of Clouds from Polarization What polarization can tell us about clouds... and what not? J. Riedi Laboratoire d'optique Atmosphérique University of Science and Technology Lille / CNRS FRANCE
Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models
Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models S. A. Klein National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics
16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future
16 th IOCCG Committee annual meeting Plymouth, UK 15 17 February 2011 The Meteor 3M Mt satellite mission: Present status and near future plans MISSION AIMS Satellites of the series METEOR M M are purposed
Profiles of Low-Level Stratus Cloud Microphysics Deduced from Ground-Based Measurements
42 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 20 Profiles of Low-Level Stratus Cloud Microphysics Deduced from Ground-Based Measurements XIQUAN DONG* AND GERALD G. MACE Meteorology Department,
IMPACT OF DRIZZLE AND 3D CLOUD STRUCTURE ON REMOTE SENSING OF CLOUD EFFECTIVE RADIUS
IMPACT OF DRIZZLE AND 3D CLOUD STRUCTURE ON REMOTE SENSING OF CLOUD EFFECTIVE RADIUS Tobias Zinner 1, Gala Wind 2, Steven Platnick 2, Andy Ackerman 3 1 Deutsches Zentrum für Luft- und Raumfahrt (DLR) Oberpfaffenhofen,
Arctic Cloud Microphysics Retrievals from Surface-Based Remote Sensors at SHEBA
1544 J O U R N A L O F A P P L I E D M E T E O R O L O G Y VOLUME 44 Arctic Cloud Microphysics Retrievals from Surface-Based Remote Sensors at SHEBA MATTHEW D. SHUPE Cooperative Institute for Research
Cloud detection by using cloud cost for AIRS: Part 1
cloud cost for the Advanced Infrared Radiometer Sounder (Part I) - A simulation study - August 19, 2002 Yoshiaki Takeuchi Japan Meteorological Agency EUMETSAT NWP-SAF Visiting Scientist to Met Office,
Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains
Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains G. Feingold and W. L. Eberhard National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder,
Since launch in April of 2006, CloudSat has provided
A Multipurpose Radar Simulation Package: QuickBeam BY J. M. HAYNES, R. T. MARCHAND, Z. LUO, A. BODAS-SALCEDO, AND G. L. STEPHENS Since launch in April of 2006, CloudSat has provided the first near-global
CALCULATION OF CLOUD MOTION WIND WITH GMS-5 IMAGES IN CHINA. Satellite Meteorological Center Beijing 100081, China ABSTRACT
CALCULATION OF CLOUD MOTION WIND WITH GMS-5 IMAGES IN CHINA Xu Jianmin Zhang Qisong Satellite Meteorological Center Beijing 100081, China ABSTRACT With GMS-5 images, cloud motion wind was calculated. For
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations 22 September 2011 Hervé LE GLEAU, Marcel DERRIEN Centre de météorologie Spatiale. Lannion Météo-France 1 Fog or low level clouds?
Convective Vertical Velocities in GFDL AM3, Cloud Resolving Models, and Radar Retrievals
Convective Vertical Velocities in GFDL AM3, Cloud Resolving Models, and Radar Retrievals Leo Donner and Will Cooke GFDL/NOAA, Princeton University DOE ASR Meeting, Potomac, MD, 10-13 March 2013 Motivation
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Mentor: Dr. Malcolm LeCompte Elizabeth City State University
Technical note on MISR Cloud-Top-Height Optical-depth (CTH-OD) joint histogram product
Technical note on MISR Cloud-Top-Height Optical-depth (CTH-OD) joint histogram product 1. Intend of this document and POC 1.a) General purpose The MISR CTH-OD product contains 2D histograms (joint distributions)
Towards an NWP-testbed
Towards an NWP-testbed Ewan O Connor and Robin Hogan University of Reading, UK Overview Cloud schemes in NWP models are basically the same as in climate models, but easier to evaluate using ARM because:
Stratosphere-Troposphere Exchange in the Tropics. Masatomo Fujiwara Hokkaido University, Japan (14 March 2006)
Stratosphere-Troposphere Exchange in the Tropics Masatomo Fujiwara Hokkaido University, Japan (14 March 2006) Contents 1. Structure of Tropical Atmosphere 2. Water Vapor in the Stratosphere 3. General
Weather Radar Basics
Weather Radar Basics RADAR: Radio Detection And Ranging Developed during World War II as a method to detect the presence of ships and aircraft (the military considered weather targets as noise) Since WW
GOES-R AWG Cloud Team: ABI Cloud Height
GOES-R AWG Cloud Team: ABI Cloud Height June 8, 2010 Presented By: Andrew Heidinger 1 1 NOAA/NESDIS/STAR 1 Outline Executive Summary Algorithm Description ADEB and IV&V Response Summary Requirements Specification
Cloud Climatology for New Zealand and Implications for Radiation Fields
Cloud Climatology for New Zealand and Implications for Radiation Fields G. Pfister, R.L. McKenzie, J.B. Liley, A. Thomas National Institute of Water and Atmospheric Research, Lauder, New Zealand M.J. Uddstrom
MICROPHYSICS COMPLEXITY EFFECTS ON STORM EVOLUTION AND ELECTRIFICATION
MICROPHYSICS COMPLEXITY EFFECTS ON STORM EVOLUTION AND ELECTRIFICATION Blake J. Allen National Weather Center Research Experience For Undergraduates, Norman, Oklahoma and Pittsburg State University, Pittsburg,
Simulations of Clouds and Sensitivity Study by Wearther Research and Forecast Model for Atmospheric Radiation Measurement Case 4
Simulations of Clouds and Sensitivity Study by Wearther Research and Forecast Model for Atmospheric Radiation Measurement Case 4 Jingbo Wu and Minghua Zhang Institute for Terrestrial and Planetary Atmospheres
RPG MWR PRO TN03 2012 09 Page 1 / 12 www.radiometer physics.de Radiometer Physics GmbH +49 2225 99981 0
Applications Tropospheric profiling of temperature, humidity and liquid water High resolution boundary layer temperature profiles, better resolution than balloons Input for weather and climate models (data
A comparison of NOAA/AVHRR derived cloud amount with MODIS and surface observation
A comparison of NOAA/AVHRR derived cloud amount with MODIS and surface observation LIU Jian YANG Xiaofeng and CUI Peng National Satellite Meteorological Center, CMA, CHINA outline 1. Introduction 2. Data
REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL
REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL D. Santos (1), M. J. Costa (1,2), D. Bortoli (1,3) and A. M. Silva (1,2) (1) Évora Geophysics
Sub-grid cloud parametrization issues in Met Office Unified Model
Sub-grid cloud parametrization issues in Met Office Unified Model Cyril Morcrette Workshop on Parametrization of clouds and precipitation across model resolutions, ECMWF, Reading, November 2012 Table of
A model to observation approach to evaluating cloud microphysical parameterisations using polarimetric radar
A model to observation approach to evaluating cloud microphysical parameterisations using polarimetric radar Monika Pfeifer G. Craig, M. Hagen, C. Keil Polarisation Doppler Radar POLDIRAD Rain Graupel
A Microwave Retrieval Algorithm of Above-Cloud Electric Fields
A Microwave Retrieval Algorithm of Above-Cloud Electric Fields Michael J. Peterson The University of Utah Chuntao Liu Texas A & M University Corpus Christi Douglas Mach Global Hydrology and Climate Center
Radar Interferometric and Polarimetric Possibilities for Determining Sea Ice Thickness
Radar Interferometric and Polarimetric Possibilities for Determining Sea Ice Thickness by Scott Hensley, Ben Holt, Sermsak Jaruwatanadilok, Jeff Steward, Shadi Oveisgharan Delwyn Moller, Jim Reis, Andy
Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing
Lecture 2 How does Light Interact with the Environment? Treasure Hunt Find and scan all 11 QR codes Choose one to watch / read in detail Post the key points as a reaction to http://www.scoop.it/t/env202-502-w2
Precipitation Remote Sensing
Precipitation Remote Sensing Huade Guan Prepared for Remote Sensing class Earth & Environmental Science University of Texas at San Antonio November 14, 2005 Outline Background Remote sensing technique
Passive Microwave Remote Sensing for Sea Ice Thickness Retrieval Using Neural Network and Genetic Algorithm
Progress In Electromagnetics Research Symposium, Beijing, China, March 23 27, 2009 229 Passive Microwave Remote Sensing for Sea Ice Thickness Retrieval Using Neural Network and Genetic Algorithm H. J.
Mixed-phase layer clouds
Mixed-phase layer clouds Chris Westbrook and Andrew Barrett Thanks to Anthony Illingworth, Robin Hogan, Andrew Heymsfield and all at the Chilbolton Observatory What is a mixed-phase cloud? Cloud below
ABSTRACT INTRODUCTION
Observing Fog And Low Cloud With A Combination Of 78GHz Cloud Radar And Laser Met Office: Darren Lyth 1, John Nash. Rutherford Appleton Laboratory: M.Oldfield ABSTRACT Results from two demonstration tests
Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product
Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product Michael J. Lewis Ph.D. Student, Department of Earth and Environmental Science University of Texas at San Antonio ABSTRACT
Summary Report on National and Regional Projects set-up in Russian Federation to integrate different Ground-based Observing Systems
WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR INSTRUMENT AND METHODS OF OBSERVATION OPAG-UPPER AIR EXPERT TEAM ON REMOTE SENSING UPPER-AIR TECHNOLOGY AND TECHNIQUES First Session Geneva, Switzerland,
Multiangle cloud remote sensing from
Multiangle cloud remote sensing from POLDER3/PARASOL Cloud phase, optical thickness and albedo F. Parol, J. Riedi, S. Zeng, C. Vanbauce, N. Ferlay, F. Thieuleux, L.C. Labonnote and C. Cornet Laboratoire
A SURVEY OF CLOUD COVER OVER MĂGURELE, ROMANIA, USING CEILOMETER AND SATELLITE DATA
Romanian Reports in Physics, Vol. 66, No. 3, P. 812 822, 2014 ATMOSPHERE PHYSICS A SURVEY OF CLOUD COVER OVER MĂGURELE, ROMANIA, USING CEILOMETER AND SATELLITE DATA S. STEFAN, I. UNGUREANU, C. GRIGORAS
Overview of the IR channels and their applications
Ján Kaňák Slovak Hydrometeorological Institute [email protected] Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation
Remote Sensing of Contrails and Aircraft Altered Cirrus Clouds
Remote Sensing of Contrails and Aircraft Altered Cirrus Clouds R. Palikonda 1, P. Minnis 2, L. Nguyen 1, D. P. Garber 1, W. L. Smith, r. 1, D. F. Young 2 1 Analytical Services and Materials, Inc. Hampton,
VIIRS-CrIS mapping. NWP SAF AAPP VIIRS-CrIS Mapping
NWP SAF AAPP VIIRS-CrIS Mapping This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement
Satellite Remote Sensing of Volcanic Ash
Marco Fulle www.stromboli.net Satellite Remote Sensing of Volcanic Ash Michael Pavolonis NOAA/NESDIS/STAR SCOPE Nowcasting 1 Meeting November 19 22, 2013 1 Outline Getty Images Volcanic ash satellite remote
Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract
Clear Sky Radiance (CSR) Product from MTSAT-1R UESAWA Daisaku* Abstract The Meteorological Satellite Center (MSC) has developed a Clear Sky Radiance (CSR) product from MTSAT-1R and has been disseminating
A comparison of simulated cloud radar output from the multiscale modeling framework global climate model with CloudSat cloud radar observations
Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008jd009790, 2009 A comparison of simulated cloud radar output from the multiscale modeling framework global climate
Contrails, contrail cirrus and hole-punch clouds
Contrails, contrail cirrus and hole-punch clouds Philip R.A. Brown, Andy Heymsfield, Jean-Francois Gayet Cloud Microphysics Instrumentation Workshop, Seaside, OR, 25-27 June 2010 Issues Aviation impacts
Active and Passive Microwave Remote Sensing
Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Munn V. Shukla and P. K. Thapliyal Atmospheric Sciences Division Atmospheric and Oceanic Sciences Group Space Applications
Cloud Radiation and the Law of Attraction
Convec,on, cloud and radia,on Convection redistributes the thermal energy yielding (globally-averaged), a mean lapse rate of ~ -6.5 o C/km. Radiative processes tend to produce a more negative temperature
Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model
Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model H. Guo, J. E. Penner, M. Herzog, and X. Liu Department of Atmospheric,
Clouds, Fog, & Precipitation
firecatching.blogspot.com Kids.brittanica.com Clouds and fog are physically the same just location is different Fog is considered a stratus cloud at or near the surface What does one see when looking at
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota Outline 1) Statistical results from SGP and AZORES 2) Challenge and Difficult
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR A. Maghrabi 1 and R. Clay 2 1 Institute of Astronomical and Geophysical Research, King Abdulaziz City For Science and Technology, P.O. Box 6086 Riyadh 11442,
Physical properties of mesoscale high-level cloud systems in relation to their atmospheric environment deduced from Sounders
Physical properties of mesoscale high-level cloud systems in relation to their atmospheric environment deduced from Sounders Claudia Stubenrauch, Sofia Protopapadaki, Artem Feofilov, Theodore Nicolas &
Presented by Stella Melo Environment Canada, Science and Technology, Cloud Physics and Severe Weather Research Section
Validation/Verification of the microphysical and dynamic characteristics of Arctic Cloud systems: what infrastructure is required to meet the challenge? Presented by Stella Melo Environment Canada, Science
Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon
Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.
