Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux
|
|
|
- Melanie Underwood
- 10 years ago
- Views:
Transcription
1 Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux
2 Cloud-resolving modelling : perspectives Improvement of models, new ways of using them, renewed views And also trementous increase in computing power more resolution and/or larger domain size and time integration CRMs in GCMs (Randall et al. 2003) Global CRM (NICAM, Tomita et al. 2005) High-resolution regional simulations (CASCADE UK project) MJO, Monsoon... couplings between convective and larger-scale circulations LES over very large domains, grey zone (Pier & colleagues) parametrization issues DNS to study convective BL (Jonker et al.), stratocumulus entrainment (ask Bjorn) Basic cloud and climate related issues Diurnal cycle over land, deep convection and cold pools Direct numerical simulation (DNS) of the convective boundary layer (Source : Harm Jonker)
3 Academic frameworks to address basic climate issues Climatic feedbacks associated with low clouds CGILS Zhang et al. (2013), Bretherton et al. (2013) exploring the impact of idealized climate change perturbations (LES & SCM) LES : 10 to 20 day runs, quasi-equilibrium state. negative cloud feedback well-mixed coastal stratus/stratocumulus regime positive feedback for shallow cumulus and stratocumulus regime Subtle compensating effects Weak temperature gradient prescribing a mean temperature profile rather than mean vertical velocity Sobel and Bretherton (2000) Formulated within a CRM (Raymond et al. 2005) Ongoing activity CRM, SCM Convective radiative equilibrium Kerry Emanuel's lecture yesterday, address climate issues
4 Convective-Radiative Equilibrium 90's : CRMs, sensitivity of mean column to SST 10's : sensitivity of rain intensity (Muller et al. 2011), to CO2 increase (Romps 2010), aggregation (Jeevanjee and Romps 2013,...) New emphases : shallow clouds, cold pools, consideration of domain size Tompkins and Craig (1998) See summary, comparison Of CRE-type CRM studies in Tao et al. (1999) Organization (mesoscale structuration) of convection. interactions between radiation, convection & surface fluxes involving surface wind feedback. Impact of horizontally inhomogeneous radiation : longer lasting clouds, enhanced convergence into cloudy region. 100 km
5 Diurnal cycle of convective activity over land
6 PHASE OF THE DIURNAL HARMONIC IN 3 GCMs OBSERVATIONS Yang & Slingo (MWR, 2001) hour (local solar time) ARPEGE NWP model Piriou (2002) IFS NWP model Beljaars (2002) UNIFIED CLIMATE model Yang & Slingo (MWR, 2001) 10 years ago : GCMs wrong in the «same way»
7 Diurnal cycle of convective activity over land Progress: e.g. Hourdin et al. (2013) IPSL model Improved convective BL, introduction of cold pools, stochastic triggering Rio et al. (2009, 2013), Granpeix and Lafore (2010), Rochetin et al. (2013) But still an issue in most models, GCM and RCM Numerous recent studies (e.g. in CMIP5 simulations) Nikulin et al. (2012)
8 Deep convective activity over land : local scale considerations Guichard et al. (2004)
9 Guichard et al. (2004) Cf also Hohenegger et al. (2009), with impact on land-atmosphere interactions
10 Deep convective activity over land : local scale considerations Importance of cold pools for deep convection development Lothon et al. (2011), Guichard et al. (2012)
11 Deep convective activity over land : local-scale considerations Importance of cold pools for deep convection development over land Khairoutdinov et al. (2006) Boing et al (2012), Couvreux et al. (2012) over ocean Tompkins (2000), Zuidema et al. (2013) temperature anomaly close to the surface (K) vertical velocity z = 500m Illustrations from LES runs of the case study presented in Couvreux et al. (2012) Still numerous questions : e.g. dynamic versus thermodynamic mechanism over ocean, cold pool critical or not to initial deep convection triggering over land in LES/CRM (?)
12 Diurnal cycle of convective activity over land : interactions with larger scale-motions MSG imagery 4 km grid cold pool spreading Marsham et al. (2013) : West African monsoon in CASCADE simulations using or not a convection scheme major change in the monsoon circulation induced by changes in the diurnal cycle of deep convection ventilation by cold pools BL air : weaker horizontal mass flux from monsoon flow, but more mass flux from convectively-generated cold pools
13 Wind speed at the surface 9h 12 h 17 h 18 h Further use... wind erosion in the Sahel (Caviars project, Marticorena et al., convectively generated gust front are also critical to dust uplift) 9h 12h 17h 18h Daytime growth of the CBL : mean wind speed weakens (mixing of upper & lower winds) Late afternoon : convectively-generated cold pools spread at the surface with strong winds at their leading edges
14 t = 1 h domaine : 10 W-10 E, 10 N-20 N, 40 days monsoon 2006 Ug computed for 100 km x 100 km squares PDF of Ug (gustiness) explicit deep convection runs Ug2 = U2 Uo2 parametrized deep convection runs squares including rainy pixels fully dry squares (using CASCADE runs outputs provided by Univ. Leeds)
15 SUMMARY LES & CRM : specific features * Fine-scale, limited area models, allowing to simulate explicitely mesoscale dynamics associated with convective clouds. * These models use parametrizations to represent subgrid processes (turbulence, microphysics, radiative processes). * Unlike GCMs: explicit coupling between convective motions & physical processes (strength) Several decades of work to develop these models Numerous steps of evaluations and intercomparisons Actively participated to provide new knowledge, understanding on cloud related processes Start to be used more effectively to guide parametrization development These models are not black boxes nor frozen Ongoing work to improve them to make them well suited to answer specific questions e.g. Surface-atmosphere coupling land - boundary-layer convection - cloud interactions land surface scheme (Patton et al. 2005) radiative processes (Pincus and Stevens 2013) Ocean mixed layer model However, their current capabilities allow now to address major scientific questions involving Interactions among processes operating on a wide range of scale More computing power makes life easier but great science is also achieve with less
16 Thank you! Bonne continuation! complexity associated with strong and distinct interactions among processes larger-scale state and circulations radiative processes microphysics convective clouds turbulence surface and boundary layer processes
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Kate Thayer-Calder and Dave Randall Colorado State University October 24, 2012 NOAA's 37th Climate Diagnostics and Prediction Workshop Convective
The formation of wider and deeper clouds through cold-pool dynamics
The formation of wider and deeper clouds through cold-pool dynamics Linda Schlemmer, Cathy Hohenegger e for Meteorology, Hamburg 2013-09-03 Bergen COST Meeting Linda Schlemmer 1 / 27 1 Motivation 2 Simulations
An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models
An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models Steven Krueger1 and Peter Bogenschutz2 1University of Utah, 2National
A Review on the Uses of Cloud-(System-)Resolving Models
A Review on the Uses of Cloud-(System-)Resolving Models Jeffrey D. Duda Since their advent into the meteorological modeling world, cloud-(system)-resolving models (CRMs or CSRMs) have become very important
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low
SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment
SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment Mark Webb, Adrian Lock (Met Office), Sandrine Bony (IPSL), Chris Bretherton (UW), Tsuyoshi Koshiro, Hideaki Kawai (MRI), Thorsten Mauritsen
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency In Sik Kang Seoul National University Young Min Yang (UH) and Wei Kuo Tao (GSFC) Content 1. Conventional
Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches Joao Teixeira
How To Model An Ac Cloud
Development of an Elevated Mixed Layer Model for Parameterizing Altocumulus Cloud Layers S. Liu and S. K. Krueger Department of Meteorology University of Utah, Salt Lake City, Utah Introduction Altocumulus
1D shallow convective case studies and comparisons with LES
1D shallow convective case studies and comparisons with CNRM/GMME/Méso-NH 24 novembre 2005 1 / 17 Contents 1 5h-6h time average vertical profils 2 2 / 17 Case description 5h-6h time average vertical profils
Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models
Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models S. A. Klein National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics
The impact of parametrized convection on cloud feedback.
The impact of parametrized convection on cloud feedback. Mark Webb, Adrian Lock (Met Office) Thanks also to Chris Bretherton (UW), Sandrine Bony (IPSL),Jason Cole (CCCma), Abderrahmane Idelkadi (IPSL),
Convective Vertical Velocities in GFDL AM3, Cloud Resolving Models, and Radar Retrievals
Convective Vertical Velocities in GFDL AM3, Cloud Resolving Models, and Radar Retrievals Leo Donner and Will Cooke GFDL/NOAA, Princeton University DOE ASR Meeting, Potomac, MD, 10-13 March 2013 Motivation
Clouds and Convection
Max-Planck-Institut Clouds and Convection Cathy Hohenegger, Axel Seifert, Bjorn Stevens, Verena Grützun, Thijs Heus, Linda Schlemmer, Malte Rieck Max-Planck-Institut Shallow convection Deep convection
Sub-grid cloud parametrization issues in Met Office Unified Model
Sub-grid cloud parametrization issues in Met Office Unified Model Cyril Morcrette Workshop on Parametrization of clouds and precipitation across model resolutions, ECMWF, Reading, November 2012 Table of
Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models Yefim L. Kogan Cooperative Institute
Evaluation of precipitation simulated over mid-latitude land by CPTEC AGCM single-column model
Evaluation of precipitation simulated over mid-latitude land by CPTEC AGCM single-column model Enver Ramírez Gutiérrez 1, Silvio Nilo Figueroa 2, Paulo Kubota 2 1 CCST, 2 CPTEC INPE Cachoeira Paulista,
CRM simula+ons with parameterized large- scale dynamics using +me- dependent forcings from observa+ons
CRM simula+ons with parameterized large- scale dynamics using +me- dependent forcings from observa+ons Shuguang Wang, Adam Sobel, Zhiming Kuang Zhiming & Kerry s workshop Harvard, March 2012 In tropical
Cloud-Resolving Simulations of Convection during DYNAMO
Cloud-Resolving Simulations of Convection during DYNAMO Matthew A. Janiga and Chidong Zhang University of Miami, RSMAS 2013 Fall ASR Workshop Outline Overview of observations. Methodology. Simulation results.
MOGREPS status and activities
MOGREPS status and activities by Warren Tennant with contributions from Rob Neal, Sarah Beare, Neill Bowler & Richard Swinbank Crown copyright Met Office 32 nd EWGLAM and 17 th SRNWP meetings 1 Contents
Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium
GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L08802, doi:10.1029/2007gl033029, 2008 Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium D. J. Posselt, 1 S. C. van
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota Outline 1) Statistical results from SGP and AZORES 2) Challenge and Difficult
Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model
Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model H. Guo, J. E. Penner, M. Herzog, and X. Liu Department of Atmospheric,
Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2) CGILS-S11 results
Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2) CGILS-S11 results Stephan de Roode Delft University of Technology (TUD), Delft, Netherlands Mixed-layer model analysis: Melchior van Wessem (student,
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM Hugh Morrison and Wojciech Grabowski NCAR* (MMM Division, NESL) Marat Khairoutdinov Stony Brook University
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility Arunchandra S. Chandra Pavlos Kollias Department of Atmospheric
Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography
Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu
Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model simulations of TWP ICE
Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 734 754, April 2012 A Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang
Description of zero-buoyancy entraining plume model
Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium Supplementary information Martin S. Singh & Paul A. O Gorman S1 CRM simulations Here we give more
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP X. Wu Department of Geological and Atmospheric Sciences Iowa State University Ames, Iowa X.-Z.
Limitations of Equilibrium Or: What if τ LS τ adj?
Limitations of Equilibrium Or: What if τ LS τ adj? Bob Plant, Laura Davies Department of Meteorology, University of Reading, UK With thanks to: Steve Derbyshire, Alan Grant, Steve Woolnough and Jeff Chagnon
Turbulence-microphysics interactions in boundary layer clouds
Turbulence-microphysics interactions in boundary layer clouds Wojciech W. Grabowski 1 with contributions from D. Jarecka 2, H. Morrison 1, H. Pawlowska 2, J.Slawinska 3, L.-P. Wang 4 A. A. Wyszogrodzki
Suvarchal Kumar Cheedela
Single Column Models and Low Cloud Feedbacks Suvarchal Kumar Cheedela Berichte zur Erdsystemforschung Reports on Earth System Science 148 2014 Berichte zur Erdsystemforschung 148 2014 Single Column Models
RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE. Peter J. Lamb. Cooperative Institute for Mesoscale Meteorological Studies
RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE by Peter J. Lamb Cooperative Institute for Mesoscale Meteorological Studies and School of Meteorology The University of Oklahoma
Atmospheric Processes
Atmospheric Processes Steven Sherwood Climate Change Research Centre, UNSW Yann Arthus-Bertrand / Altitude Where do atmospheric processes come into AR5 WGI? 1. The main feedbacks that control equilibrium
Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS
Introduction Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS Zhanqing Li and Seoung-Soo Lee University of Maryland NOAA/NCEP/EMC Collaborators
Improving Low-Cloud Simulation with an Upgraded Multiscale Modeling Framework
Improving Low-Cloud Simulation with an Upgraded Multiscale Modeling Framework Kuan-Man Xu and Anning Cheng NASA Langley Research Center Hampton, Virginia Motivation and outline of this talk From Teixeira
Cumulus Convection, Climate Sensitivity, and Heightened Imperatives for Physically Robust Cumulus Parameterizations in Climate Models
Cumulus Convection, Climate Sensitivity, and Heightened Imperatives for Physically Robust Cumulus Parameterizations in Climate Models Leo Donner GFDL/NOAA, Princeton University NCAR, 11 February 2014 Key
Cloud-resolving simulation of TOGA-COARE using parameterized largescale
Cloud-resolving simulation of TOGA-COARE using parameterized largescale dynamics Shuguang Wang 1, Adam H. Sobel 2, and Zhiming Kuang 3 -------------- Shuguang Wang, Department of Applied Physics and Applied
Titelmasterformat durch Klicken. bearbeiten
Evaluation of a Fully Coupled Atmospheric Hydrological Modeling System for the Sissili Watershed in the West African Sudanian Savannah Titelmasterformat durch Klicken June, 11, 2014 1 st European Fully
Theory of moist convection in statistical equilibrium
Theory of moist convection in statistical equilibrium By analogy with Maxwell-Boltzmann statistics Bob Plant Department of Meteorology, University of Reading, UK With thanks to: George Craig, Brenda Cohen,
CMIP6 Recommendations from The Cloud Feedback Model Inter-comparison Project CFMIP. Building bridges between cloud communities
CMIP6 Recommendations from The Cloud Feedback Model Inter-comparison Project CFMIP Building bridges between cloud communities CFMIP Committee members Mark Webb, Chris Bretherton, Sandrine Bony, Steve Klein,
Simulations of Clouds and Sensitivity Study by Wearther Research and Forecast Model for Atmospheric Radiation Measurement Case 4
Simulations of Clouds and Sensitivity Study by Wearther Research and Forecast Model for Atmospheric Radiation Measurement Case 4 Jingbo Wu and Minghua Zhang Institute for Terrestrial and Planetary Atmospheres
Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition
Thirteenth ARM Science Team Meeting Proceedings, Broomfield, Colorado, March 31-April 4, 23 Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary
Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models: COST Action ES0905 Final Report
Atmosphere 2015, 6, 88-147; doi:10.3390/atmos6010088 OPEN ACCESS atmosphere ISSN 2073-4433 www.mdpi.com/journal/atmosphere Project Report Basic Concepts for Convection Parameterization in Weather Forecast
Why aren t climate models getting better? Bjorn Stevens, UCLA
Why aren t climate models getting better? Bjorn Stevens, UCLA Four Hypotheses 1. Our premise is false, models are getting better. 2. We don t know what better means. 3. It is difficult, models have rough
Real-time Ocean Forecasting Needs at NCEP National Weather Service
Real-time Ocean Forecasting Needs at NCEP National Weather Service D.B. Rao NCEP Environmental Modeling Center December, 2005 HYCOM Annual Meeting, Miami, FL COMMERCE ENVIRONMENT STATE/LOCAL PLANNING HEALTH
Chapter 7 Stability and Cloud Development. Atmospheric Stability
Chapter 7 Stability and Cloud Development Atmospheric Stability 1 Cloud Development - stable environment Stable air (parcel) - vertical motion is inhibited if clouds form, they will be shallow, layered
High Resolution Modeling, Clouds, Precipitation and Climate
High Resolution Modeling, Clouds, Precipitation and Climate Pier Siebesma, Ramon Mendez Gomez, Jerome Schalkwijk, Stephan de Roode Jisk Attema, Jessica Loreaux, Geert Lenderink, Harm Jonker 1. Precipitation
A new positive cloud feedback?
A new positive cloud feedback? Bjorn Stevens Max-Planck-Institut für Meteorologie KlimaCampus, Hamburg (Based on joint work with Louise Nuijens and Malte Rieck) Slide 1/31 Prehistory [W]ater vapor, confessedly
Improving Hydrological Predictions
Improving Hydrological Predictions Catherine Senior MOSAC, November 10th, 2011 How well do we simulate the water cycle? GPCP 10 years of Day 1 forecast Equatorial Variability on Synoptic scales (2-6 days)
Convective Clouds. Convective clouds 1
Convective clouds 1 Convective Clouds Introduction Convective clouds are formed in vertical motions that result from the instability of the atmosphere. This instability can be caused by: a. heating at
Lagrangian representation of microphysics in numerical models. Formulation and application to cloud geo-engineering problem
Lagrangian representation of microphysics in numerical models. Formulation and application to cloud geo-engineering problem M. Andrejczuk and A. Gadian University of Oxford University of Leeds Outline
Investigations on COSMO 2.8Km precipitation forecast
Investigations on COSMO 2.8Km precipitation forecast Federico Grazzini, ARPA-SIMC Emilia-Romagna Coordinator of physical aspects group of COSMO Outline Brief description of the COSMO-HR operational suites
WCRP Grand Challenge on. Clouds, Circulation and Climate Sensitivity
WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity http://www.wcrp-climate.org/index.php/gc-clouds Sandrine Bony (LMD/IPSL) & Bjorn Stevens (MPI) WCRP JSC-35, 30 June 2014, Heidelberg,
Mixed-phase layer clouds
Mixed-phase layer clouds Chris Westbrook and Andrew Barrett Thanks to Anthony Illingworth, Robin Hogan, Andrew Heymsfield and all at the Chilbolton Observatory What is a mixed-phase cloud? Cloud below
Usama Anber 1, Shuguang Wang 2, and Adam Sobel 1,2,3
Response of Atmospheric Convection to Vertical Wind Shear: Cloud Resolving Simulations with Parameterized Large-Scale Circulation. Part I: Specified Radiative Cooling. Usama Anber 1, Shuguang Wang 2, and
Indian Ocean and Monsoon
Indo-French Workshop on Atmospheric Sciences 3-5 October 2013, New Delhi (Organised by MoES and CEFIPRA) Indian Ocean and Monsoon Satheesh C. Shenoi Indian National Center for Ocean Information Services
Mass flux fluctuation in a cloud resolving simulation with diurnal forcing
Mass flux fluctuation in a cloud resolving simulation with diurnal forcing Jahanshah Davoudi Norman McFarlane, Thomas Birner Physics department, University of Toronto Mass flux fluctuation in a cloud resolving
Super-parametrization in climate and what do we learn from high-resolution
Super-parametrization in climate and what do we learn from high-resolution Marat Khairoutdinov Stony Brook University USA ECMWF Annual Seminar, 1-4 September 2015 scales-separation parameterized convection
On the diurnal cycle of deep convection, high-level cloud, and upper troposphere water vapor in the Multiscale Modeling Framework
Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008jd009905, 2008 On the diurnal cycle of deep convection, high-level cloud, and upper troposphere water vapor in the
Towards an NWP-testbed
Towards an NWP-testbed Ewan O Connor and Robin Hogan University of Reading, UK Overview Cloud schemes in NWP models are basically the same as in climate models, but easier to evaluate using ARM because:
