SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations
|
|
|
- Louisa Thomas
- 10 years ago
- Views:
Transcription
1 SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations 22 September 2011 Hervé LE GLEAU, Marcel DERRIEN Centre de météorologie Spatiale. Lannion Météo-France 1
2 Fog or low level clouds? It is irrealistic to claim that we can identify fog only using satellite data: we do not know if the cloud observed from satellite is reaching the ground. -> I will therefore not present fog mapping from satellite. -> Instead: I will first detail the cloud products extracted from MSG/SEVIRI satellite imagery using the NWCSAF software, concentrating on the fog or low level clouds category. I will then show an example of data fusion with NWCSAF cloud products to map fog risk. 2
3 Plan SAFNWC context Main features of SAFNWC/MSG cloud algorithms Cma cloud mask CT cloud type CTTH cloud top temperature and height Summary of validation results Illustration with fog/low cloud situations: (including example of automatic use for fog risk mapping) Outlook 3
4 SAFNWC context -SAFNWC delivers software to process data from MSG and polar platforms (METOP/NOAA) registered users, including 29 European NMS and 3 SAFs (OSISAF, CMSAF, LSASAF) -SAFNWC/MSG SW includes three cloud products (CMa, CT, CTTH) developed by Météo-France/Lannion -Detailed description of cloud algorithms and validation results available from -SAFNC/MSG SW v2011 will be used during this presentation. 4
5 CMa algorithm: first step CMa First step: Clouds and snow are first detected in each pixel of the image using multispectral theshold techiques : Thresholds are computed using : o Atlas: height map land/sea mask o Climatological maps: SST continental visible reflectance o NWP short range forecast data (at MF, Arpege 1.5 deg used): surface temperature, integrated atmospheric precipitable water Thresholds tuned to radiometer s spectral characteristics with Radiative Transfer Models in cloud free conditions (6S,RTTOV). 5
6 Illustration of night-time low cloud identification T10.8μm T3.9μm T8.7μm T10.8μm 6
7 Illustration of night-time low cloud identification Low clouds T10.8μm T3.9μm T8.7μm T10.8μm 7
8 Illustration of daytime low cloud identification VIS 0.6μm T3.9μm-T10.8μm VIS 1.6μm 8
9 Illustration of daytime low cloud identification Low clouds VIS 0.6μm T3.9μm-T10.8μm VIS 1.6μm 9
10 Illustration of daytime low cloud identification Low clouds VIS 0.6μm T3.9μm-T10.8μm Snow VIS 1.6μm 10
11 CMa algorithm: second step CMa Second step: (only available since version v2009 (available to users in march)) Temporal analysis and region-growing technique are applied to detect low clouds at day-night transition and fast moving clouds: For fast moving clouds: detect T10.8μm changes within 15 minutes For low clouds in day-night transition: the areas, cloudy 1hour before, that have unchanged T10.8μm, T12.0μm and T8.7μm during last hour are said cloudy + spatial extension of these cloudy areas to adjacent areas having similar Vis06μm reflectance and T10.8μm 11
12 Illustration of improvement with temporal analysis h sooner 80 Cloud mask + temporal scheme superimposed on BRF 0.6 μm 12
13 CMa: decrease of false alarm over snow (night) The following problem has been reported by users: «At night during winter cold events, cloud-free snow-coved grounds may be wrongly classified as clouds». These wrong detection are due to any of three tests applied to T10.8μm, T3.9μm-T10.8μm or T8.7μm-T10.8μm An empirical approach has been applied to solve the problem (v2011): relax thresholds when cold snow-coved grounds are expected 13
14 CMa: decrease of false alarm over snow (night) Diagnose where strong nocturnal cooling may occur altitude < 1500m and (Ts nwp < 263K or Ts nwp < 268K and Snow occur. > 5) Relax three thresholds -T108thr -5.0K if T108thr 255K or T108thr -5.0K -.4(255.-T108thr) if T108thr < 255K -T87T108thr +0.4K if T108thr<250K -T39T18thr=MAX(T39T10.8thr, -0.5x T108thr+129.0) if 250K T108thr 255K or T39T18thr=-0.15x T108thr if T108thr<250K Clear restoral when detected by T108thr test at any illumination, or Visible test or T39T108thr test at daytime or twilight: If t108thr < 250K and T7.3-T10.8> 0.5K 14
15 CMa: decrease of false alarm over snow (night) 15
16 CMa: decrease of false alarm over snow (night) 16
17 CT algorithm Cloudy pixels are classified according their radiative characteristics: Semi-transparent and fractional clouds are distinguished from low/medium/high clouds using spectral features: low T10.8μm-T12.0μm, low T8.7μm-T10.8μm high T10.8μm-T3.9μm (night), high R0.6μm (day) Low, mid-level and high clouds are then separated by comparing their T10.8μm to combination of NWP forecast temperature at various pressure levels [850, 700, 500 hpa and at tropopause levels]. 17
18 CT: decrease low/mid-level cloud confusion Low clouds may be wrongly classified as mid-level clouds in the presence of a thermal inversion. Two approaches are used to minimise the confusion: mid-level clouds are reclassified as low clouds if T10.8μm- WV73μm is «large» mid-level clouds are reclassified as low clouds if a low level thermal inversion is detected in the NWP fields input by the user and if T8.7μm-T10.8μm is lower than a threshold (decreasing with viewing angles) The improvement is illustrated over central Europe on 21 st December
19 CT: decrease low/mid-level cloud confusion V2010 V
20 CTTH algorithm Vertical temperature & humidity profile forecast by NWP needed TOA radiances from the top of overcast opaque clouds put at various pressure levels are simulated with RTTOV (NWP vertical profiles are temporally interpolated to each slot) Cloud top pressure is first extracted using RTTOV simulated radiances; Method depending on cloud type. Cloud top temperature & height are derived from their pressure (using vertical temperature & humidity profile forecast by NWP). 20
21 CTTH algorithm For opaque clouds (known from CT) The cloud top pressure corresponds to the best fit between the simulated and measured 10.8μm radiances For semi-transparent clouds : Derived from a window channel 10.8μm and a sounding channel (13.4μm, 7.3μm or 6.2μm) For broken low clouds No technique has yet been implemented. 21
22 Illustration of opaque clouds cloud top pressure retrieval 22
23 Measured brightness temperature Illustration of opaque clouds cloud top pressure retrieval 23
24 Measured brightness temperature Retrieved cloud top pressure Illustration of opaque clouds cloud top pressure retrieval 24
25 Illustration of opaque clouds cloud top pressure retrieval in case thermal inversion 25
26 Illustration of opaque clouds cloud top pressure retrieval in case thermal inversion Measured brightness temperature 26
27 Retrieved cloud top pressure Illustration of opaque clouds cloud top pressure retrieval in case thermal inversion Measured brightness temperature 27
28 Illustration of opaque clouds cloud top pressure retrieval in case thermal inversion 28
29 Illustration of opaque clouds cloud top pressure retrieval in case thermal inversion Measured brightness temperature 29
30 (in case of dry air between 850 and 600) (ie, relative humidity lower than 30%) Illustration of opaque clouds cloud top pressure retrieval in case thermal inversion Measured brightness temperature 30
31 (in case of dry air between 850 and 600) (ie, relative humidity lower than 30%) Retrieved cloud top pressure Illustration of opaque clouds cloud top pressure retrieval in case thermal inversion Measured brightness temperature 31
32 CTTH pressure example 32
33 Summary of CMa validation with SYNOP 500 manned continental station over Europe from 10th Decembre 2010 to 21st March 2011 Following cloudiness are compared: SEVIRI: average cloudiness in a 5x5 target SYNOP: total observed cloudiness POD (%) FAR (%) Daytime Night-time Twilight High FAR partly due to error in night-time human cloud observation. Lower POD mainly due to low cloud underdetection 33
34 Summary of CT visual inspection (related to low cloud) Stability of CT classifier to illumination Low clouds may be occasionaly undetected at night-time (especially oceanic rather warm Sc advected above not too cold ground) Low cloud identication at day-night transition: mainly solved in v2009. Over land, tendency to classify low clouds as mid-level (in case strong thermal inversion): mainly solved in v2010 Night-time confusion of snow as clouds: mainly solved in v
35 Validation of low cloud CTTH with ground-based radar September 2003-October 2004 Following cloud top height are compared: derived from cloud radar (95Ghz) from SIRTA (LMD, near Paris) computed from SEVIRI (CTH_SEVIRI - CTH_radar > 0) = SEVIRI CTH overestimation Cloud type Mean (km) STD (km) Low opaque Low opaque if thermal inversion observed in NWP
36 14/02/08: documented by Maria Putsay (Hungary) on Eumetsat web Image gallery 14/02/ h25 36
37 14/02/08: documented by Maria Putsay (Hungary) on Eumetsat web Image gallery 14/02/ h00 37
38 14/02/08: documented by Maria Putsay (Hungary) on Eumetsat web Image gallery 14/02/ h40 38
39 14/02/08: documented by Maria Putsay (Hungary) on Eumetsat web Image gallery 14/02/ h00 39
40 Exemple of automated use for fog risk mapping A combined use of: SAFNWC/MSG CT, rain accumulation and NWP analysis (air humidity (2m), wind (10m)) 40
41 Outlook Future upgrade of NWCSAF SW: -inclusion of microphysical product: --cloud phase, --effective radius size, --optical thickness, --water/ice water path -ready for MTG: --more channels and better spatial resolution -long-term development: separation between stratiform and cumuliform clouds: --for low clouds : the separation of small cumulus and stratiform clouds will be useful for fog risk estimation. 41
42 For further information For more information on NWCSAF: For further information of NWCSAF software (freely available): Near-real time NWCSAF products can be visualized on: 42
THE USE OF THE HIGH RESOLUTION VISIBLE IN SAFNWC/MSG CLOUD MASK
THE USE OF THE HIGH RESOLUTION VISIBLE IN SAFNWC/MSG CLOUD MASK Marcel Derrien, Hervé Le Gléau, Marie-Paule Raoul METEO-FRANCE, Centre de Météorologie Spatiale, Avenue de Lorraine, BP 50547, Lannion, France
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect Tuuli Perttula, FMI + Thanks to: Nadia Fourrié, Lydie Lavanant, Florence Rabier and Vincent Guidard, Météo
Improved diagnosis of low-level cloud from MSG SEVIRI data for assimilation into Met Office limited area models
Improved diagnosis of low-level cloud from MSG SEVIRI data for assimilation into Met Office limited area models Peter N. Francis, James A. Hocking & Roger W. Saunders Met Office, Exeter, U.K. Abstract
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Munn V. Shukla and P. K. Thapliyal Atmospheric Sciences Division Atmospheric and Oceanic Sciences Group Space Applications
Product User Manual. SEVIRI dataset cloud products. Edition 1
EUMETSAT Satellite Application Facility on Climate Monitoring Product User Manual SEVIRI dataset cloud products Edition 1 DOI: 10.5676/EUMETSAT_SAF_CM/CLAAS/V001 Fractional Cloud Cover Joint Cloud property
Nowcasting applications. [email protected] Hungarian Meteorological Service
Nowcasting applications Putsay Mária, M [email protected] Hungarian Meteorological Service Principles of Satellite Meteorology, Online Course, 20 September 2011 Outlines Satellite images Derived products
METEOSAT 8 SEVIRI and NOAA AVHRR Cloud Products. A Climate Monitoring SAF Comparison Study. Meteorologi. Sheldon Johnston and Karl-Göran Karlsson
Nr 127, 2007 Meteorologi METEOSAT 8 SEVIRI and NOAA AVHRR Cloud Products A Climate Monitoring SAF Comparison Study Sheldon Johnston and Karl-Göran Karlsson Cover Image The difference between the mean cloudiness
Validation of SEVIRI cloud-top height retrievals from A-Train data
Validation of SEVIRI cloud-top height retrievals from A-Train data Chu-Yong Chung, Pete N Francis, and Roger Saunders Contents Introduction MO GeoCloud AVAC-S Long-term monitoring Comparison with OCA Summary
Satellite remote sensing using AVHRR, ATSR, MODIS, METEOSAT, MSG
Satellite remote sensing using AVHRR, ATSR, MODIS, METEOSAT, MSG Ralf Meerkötter, Luca Bugliaro, Knut Dammann, Gerhard Gesell, Christine König, Waldemar Krebs, Hermann Mannstein, Bernhard Mayer, presented
Overview of the IR channels and their applications
Ján Kaňák Slovak Hydrometeorological Institute [email protected] Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation
Outline of RGB Composite Imagery
Outline of RGB Composite Imagery Data Processing Division, Data Processing Department Meteorological Satellite Center (MSC) JMA Akihiro SHIMIZU 29 September, 2014 Updated 6 July, 2015 1 Contents What s
Volcanic Ash Monitoring: Product Guide
Doc.No. Issue : : EUM/TSS/MAN/15/802120 v1a EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 2 June 2015 http://www.eumetsat.int WBS/DBS : EUMETSAT
Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract
Clear Sky Radiance (CSR) Product from MTSAT-1R UESAWA Daisaku* Abstract The Meteorological Satellite Center (MSC) has developed a Clear Sky Radiance (CSR) product from MTSAT-1R and has been disseminating
The APOLLO cloud product statistics Web service The APOLLO cloud product statistics Web service
The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in
MSG MPEF Products focus on GII Simon Elliott Meteorological Operations Division [email protected]
MSG MPEF focus on GII Simon Elliott Meteorological Operations Division [email protected] MSG Application Workshop, 15-19 March 2010, Alanya, Türkiye Slide: 1 1. What is the MPEF? Meteorological
The APOLLO cloud product statistics Web service
The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in
MSG-SEVIRI cloud physical properties for model evaluations
Rob Roebeling Weather Research Thanks to: Hartwig Deneke, Bastiaan Jonkheid, Wouter Greuell, Jan Fokke Meirink and Erwin Wolters (KNMI) MSG-SEVIRI cloud physical properties for model evaluations Cloud
How To Understand Cloud Properties From Satellite Imagery
P1.70 NIGHTTIME RETRIEVAL OF CLOUD MICROPHYSICAL PROPERTIES FOR GOES-R Patrick W. Heck * Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison Madison, Wisconsin P.
AATSR Technical Note. Improvements to the AATSR IPF relating to Land Surface Temperature Retrieval and Cloud Clearing over Land
AATSR Technical Note Improvements to the AATSR IPF relating to Land Surface Temperature Retrieval and Cloud Clearing over Land Author: Andrew R. Birks RUTHERFORD APPLETON LABORATORY Chilton, Didcot, Oxfordshire
Cloud detection and clearing for the MOPITT instrument
Cloud detection and clearing for the MOPITT instrument Juying Warner, John Gille, David P. Edwards and Paul Bailey National Center for Atmospheric Research, Boulder, Colorado ABSTRACT The Measurement Of
Cloud Masking and Cloud Products
Cloud Masking and Cloud Products MODIS Operational Algorithm MOD35 Paul Menzel, Steve Ackerman, Richard Frey, Kathy Strabala, Chris Moeller, Liam Gumley, Bryan Baum MODIS Cloud Masking Often done with
Best practices for RGB compositing of multi-spectral imagery
Best practices for RGB compositing of multi-spectral imagery User Service Division, EUMETSAT Introduction Until recently imagers on geostationary satellites were limited to 2-3 spectral channels, i.e.
REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL
REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL D. Santos (1), M. J. Costa (1,2), D. Bortoli (1,3) and A. M. Silva (1,2) (1) Évora Geophysics
ECMWF Aerosol and Cloud Detection Software. User Guide. version 1.2 20/01/2015. Reima Eresmaa ECMWF
ECMWF Aerosol and Cloud User Guide version 1.2 20/01/2015 Reima Eresmaa ECMWF This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France
3.4 Cryosphere-related Algorithms
3.4 Cryosphere-related Algorithms GLI Algorithm Description 3.4.-1 3.4.1 CTSK1 A. Algorithm Outline (1) Algorithm Code: CTSK1 (2) Product Code: CLFLG_p (3) PI Name: Dr. Knut Stamnes (4) Overview of Algorithm
Synoptic assessment of AMV errors
NWP SAF Satellite Application Facility for Numerical Weather Prediction Visiting Scientist mission report Document NWPSAF-MO-VS-038 Version 1.0 4 June 2009 Synoptic assessment of AMV errors Renato Galante
EUMETSAT Satellite Programmes
EUMETSAT Satellite Programmes Nowcasting Applications Developing Countries Marianne König [email protected] WSN-12 Rio de Janeiro 06-10 August 2012 27 Member States & 4 Cooperating States Member
GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Low Cloud and Fog
NOAA NESDIS CENTER for SATELLITE APPLICATIONS and RESEARCH GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Low Cloud and Fog Corey Calvert, UW/CIMSS Mike Pavolonis, NOAA/NESDIS/STAR
GOES-R AWG Cloud Team: ABI Cloud Height
GOES-R AWG Cloud Team: ABI Cloud Height June 8, 2010 Presented By: Andrew Heidinger 1 1 NOAA/NESDIS/STAR 1 Outline Executive Summary Algorithm Description ADEB and IV&V Response Summary Requirements Specification
CERES Edition 2 & Edition 3 Cloud Cover, Cloud Altitude and Temperature
CERES Edition 2 & Edition 3 Cloud Cover, Cloud Altitude and Temperature S. Sun-Mack 1, P. Minnis 2, Y. Chen 1, R. Smith 1, Q. Z. Trepte 1, F. -L. Chang, D. Winker 2 (1) SSAI, Hampton, VA (2) NASA Langley
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University
Active Fire Monitoring: Product Guide
Active Fire Monitoring: Product Guide Doc.No. Issue : : EUM/TSS/MAN/15/801989 v1c EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 14 April 2015 http://www.eumetsat.int
The impact of window size on AMV
The impact of window size on AMV E. H. Sohn 1 and R. Borde 2 KMA 1 and EUMETSAT 2 Abstract Target size determination is subjective not only for tracking the vector but also AMV results. Smaller target
Denis Botambekov 1, Andrew Heidinger 2, Andi Walther 1, and Nick Bearson 1
Denis Botambekov 1, Andrew Heidinger 2, Andi Walther 1, and Nick Bearson 1 1 - CIMSS / SSEC / University of Wisconsin Madison, WI, USA 2 NOAA / NESDIS / STAR @ University of Wisconsin Madison, WI, USA
Cloud Thickness Estimation from GOES-8 Satellite Data Over the ARM-SGP Site
Cloud Thickness Estimation from GOES-8 Satellite Data Over the ARM-SGP Site V. Chakrapani, D. R. Doelling, and A. D. Rapp Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics
Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon
Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational
VIIRS-CrIS mapping. NWP SAF AAPP VIIRS-CrIS Mapping
NWP SAF AAPP VIIRS-CrIS Mapping This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement
Cloud verification: a review of methodologies and recent developments
Cloud verification: a review of methodologies and recent developments Anna Ghelli ECMWF Slide 1 Thanks to: Maike Ahlgrimm Martin Kohler, Richard Forbes Slide 1 Outline Cloud properties Data availability
Cloud Climatology for New Zealand and Implications for Radiation Fields
Cloud Climatology for New Zealand and Implications for Radiation Fields G. Pfister, R.L. McKenzie, J.B. Liley, A. Thomas National Institute of Water and Atmospheric Research, Lauder, New Zealand M.J. Uddstrom
WV IMAGES. Christo Georgiev. NIMH, Bulgaria. Satellite Image Interpretation and Applications EUMeTrain Online Course, 10 30 June 2011
WV IMAGES Satellite Image Interpretation and Applications EUMeTrain Online Course, 10 30 June 2011 Christo Georgiev NIMH, Bulgaria INTRODICTION The radiometer SEVIRI of Meteosat Second Generation (MSG)
Technical note on MISR Cloud-Top-Height Optical-depth (CTH-OD) joint histogram product
Technical note on MISR Cloud-Top-Height Optical-depth (CTH-OD) joint histogram product 1. Intend of this document and POC 1.a) General purpose The MISR CTH-OD product contains 2D histograms (joint distributions)
Comparison of NOAA's Operational AVHRR Derived Cloud Amount to other Satellite Derived Cloud Climatologies.
Comparison of NOAA's Operational AVHRR Derived Cloud Amount to other Satellite Derived Cloud Climatologies. Sarah M. Thomas University of Wisconsin, Cooperative Institute for Meteorological Satellite Studies
Fog and low cloud ceilings in the northeastern US: climatology and dedicated field study
Fog and low cloud ceilings in the northeastern US: climatology and dedicated field study Robert Tardif National Center for Atmospheric Research Research Applications Laboratory 1 Overview of project Objectives:
TOPIC: CLOUD CLASSIFICATION
INDIAN INSTITUTE OF TECHNOLOGY, DELHI DEPARTMENT OF ATMOSPHERIC SCIENCE ASL720: Satellite Meteorology and Remote Sensing TERM PAPER TOPIC: CLOUD CLASSIFICATION Group Members: Anil Kumar (2010ME10649) Mayank
Advances in Cloud Imager Remote Sensing
Advances in Cloud Imager Remote Sensing Andrew Heidinger NOAA/NESDIS/ORA Madison, Wisconsin With material from Mike Pavolonis, Robert Holz, Amato Evan and Fred Nagle STAR Science Symposium November 9,
A SURVEY OF CLOUD COVER OVER MĂGURELE, ROMANIA, USING CEILOMETER AND SATELLITE DATA
Romanian Reports in Physics, Vol. 66, No. 3, P. 812 822, 2014 ATMOSPHERE PHYSICS A SURVEY OF CLOUD COVER OVER MĂGURELE, ROMANIA, USING CEILOMETER AND SATELLITE DATA S. STEFAN, I. UNGUREANU, C. GRIGORAS
Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction
Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction Jin Xu, Shinjae Yoo, Dantong Yu, Dong Huang, John Heiser, Paul Kalb Solar Energy Abundant, clean, and secure
Satellite Remote Sensing of Volcanic Ash
Marco Fulle www.stromboli.net Satellite Remote Sensing of Volcanic Ash Michael Pavolonis NOAA/NESDIS/STAR SCOPE Nowcasting 1 Meeting November 19 22, 2013 1 Outline Getty Images Volcanic ash satellite remote
A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009jd013422, 2010 A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS Roger Marchand, 1 Thomas Ackerman, 1 Mike
IMPACT OF DRIZZLE AND 3D CLOUD STRUCTURE ON REMOTE SENSING OF CLOUD EFFECTIVE RADIUS
IMPACT OF DRIZZLE AND 3D CLOUD STRUCTURE ON REMOTE SENSING OF CLOUD EFFECTIVE RADIUS Tobias Zinner 1, Gala Wind 2, Steven Platnick 2, Andy Ackerman 3 1 Deutsches Zentrum für Luft- und Raumfahrt (DLR) Oberpfaffenhofen,
Remote Sensing of Contrails and Aircraft Altered Cirrus Clouds
Remote Sensing of Contrails and Aircraft Altered Cirrus Clouds R. Palikonda 1, P. Minnis 2, L. Nguyen 1, D. P. Garber 1, W. L. Smith, r. 1, D. F. Young 2 1 Analytical Services and Materials, Inc. Hampton,
DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team
DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team Steve Ackerman, Richard Frey, Kathleen Strabala, Yinghui Liu, Liam Gumley, Bryan Baum,
A comparison of NOAA/AVHRR derived cloud amount with MODIS and surface observation
A comparison of NOAA/AVHRR derived cloud amount with MODIS and surface observation LIU Jian YANG Xiaofeng and CUI Peng National Satellite Meteorological Center, CMA, CHINA outline 1. Introduction 2. Data
Assimilation of cloudy infrared satellite observations: The Met Office perspective
Assimilation of cloudy infrared satellite observations: The Met Office perspective Ed Pavelin, Met Office International Symposium on Data Assimilation 2014, Munich Contents This presentation covers the
Satellite Weather And Climate (SWAC) Satellite and cloud interpretation
Satellite Weather And Climate (SWAC) Satellite and cloud interpretation Vermont State Climatologist s Office University of Vermont Dr. Lesley-Ann Dupigny-Giroux Vermont State Climatologist [email protected]
163 ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS
ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS Rita Pongrácz *, Judit Bartholy, Enikő Lelovics, Zsuzsanna Dezső Eötvös Loránd University,
USING THE GOES 3.9 µm SHORTWAVE INFRARED CHANNEL TO TRACK LOW-LEVEL CLOUD-DRIFT WINDS ABSTRACT
USING THE GOES 3.9 µm SHORTWAVE INFRARED CHANNEL TO TRACK LOW-LEVEL CLOUD-DRIFT WINDS Jason P. Dunion 1 and Christopher S. Velden 2 1 NOAA/AOML/Hurricane Research Division, 2 UW/CIMSS ABSTRACT Low-level
Towards an NWP-testbed
Towards an NWP-testbed Ewan O Connor and Robin Hogan University of Reading, UK Overview Cloud schemes in NWP models are basically the same as in climate models, but easier to evaluate using ARM because:
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR A. Maghrabi 1 and R. Clay 2 1 Institute of Astronomical and Geophysical Research, King Abdulaziz City For Science and Technology, P.O. Box 6086 Riyadh 11442,
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates C. N. Long Pacific Northwest National Laboratory Richland, Washington
DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team
DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team Steve Ackerman 1, Kathleen Strabala 1, Paul Menzel 1,2, Richard Frey 1, Chris Moeller 1,
Evaluation of the Nubiscope
Technical report; TR-291 Evaluation of the Nubiscope Wiel Wauben De Bilt, 2006 KNMI Technical report = technisch rapport; TR-291 De Bilt, 2006 PO Box 201 3730 AE De Bilt Wilhelminalaan 10 De Bilt The Netherlands
Chapter 7 Stability and Cloud Development. Atmospheric Stability
Chapter 7 Stability and Cloud Development Atmospheric Stability 1 Cloud Development - stable environment Stable air (parcel) - vertical motion is inhibited if clouds form, they will be shallow, layered
Received in revised form 24 March 2004; accepted 30 March 2004
Remote Sensing of Environment 91 (2004) 237 242 www.elsevier.com/locate/rse Cloud detection in Landsat imagery of ice sheets using shadow matching technique and automatic normalized difference snow index
ROAD WEATHER AND WINTER MAINTENANCE
Road Traffic Technology ROAD WEATHER AND WINTER MAINTENANCE METIS SSWM WMi ROAD WEATHER STATIONS ADVANCED ROAD WEATHER INFORMATION SYSTEM MAINTENANCE DECISION SUPPORT SYSTEM WINTER MAINTENANCE PERFORMANCE
ABSTRACT INTRODUCTION
Observing Fog And Low Cloud With A Combination Of 78GHz Cloud Radar And Laser Met Office: Darren Lyth 1, John Nash. Rutherford Appleton Laboratory: M.Oldfield ABSTRACT Results from two demonstration tests
Night Microphysics RGB Nephanalysis in night time
Copyright, JMA Night Microphysics RGB Nephanalysis in night time Meteorological Satellite Center, JMA What s Night Microphysics RGB? R : B15(I2 12.3)-B13(IR 10.4) Range : -4 2 [K] Gamma : 1.0 G : B13(IR
Comparison between current and future environmental satellite imagers on cloud classification using MODIS
Remote Sensing of Environment 108 (2007) 311 326 www.elsevier.com/locate/rse Comparison between current and future environmental satellite imagers on cloud classification using MODIS Zhenglong Li a,, Jun
Fourth Cloud Retrieval Evaluation Workshop 4-7 March 2014, Grainau, Germany
Extending error characterization of cloud masking: Exploring the validity and usefulness of the SPARC-type and Naïve Bayesian probabilistic cloud masking methods Fourth Cloud Retrieval Evaluation Workshop
Precipitation Remote Sensing
Precipitation Remote Sensing Huade Guan Prepared for Remote Sensing class Earth & Environmental Science University of Texas at San Antonio November 14, 2005 Outline Background Remote sensing technique
16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future
16 th IOCCG Committee annual meeting Plymouth, UK 15 17 February 2011 The Meteor 3M Mt satellite mission: Present status and near future plans MISSION AIMS Satellites of the series METEOR M M are purposed
Comparison of Cloud and Radiation Variability Reported by Surface Observers, ISCCP, and ERBS
Comparison of Cloud and Radiation Variability Reported by Surface Observers, ISCCP, and ERBS Joel Norris (SIO/UCSD) Cloud Assessment Workshop April 5, 2005 Outline brief satellite data description upper-level
WEATHER AND CLIMATE practice test
WEATHER AND CLIMATE practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What role does runoff play in the water cycle? a. It is the process in
RPG MWR PRO TN03 2012 09 Page 1 / 12 www.radiometer physics.de Radiometer Physics GmbH +49 2225 99981 0
Applications Tropospheric profiling of temperature, humidity and liquid water High resolution boundary layer temperature profiles, better resolution than balloons Input for weather and climate models (data
Sub-grid cloud parametrization issues in Met Office Unified Model
Sub-grid cloud parametrization issues in Met Office Unified Model Cyril Morcrette Workshop on Parametrization of clouds and precipitation across model resolutions, ECMWF, Reading, November 2012 Table of
NOAA NESDIS CENTER for SATELLITE APPLICATIONS and RESEARCH ALGORITHM THEORETICAL BASIS DOCUMENT. ABI Cloud Mask
NOAA NESDIS CENTER for SATELLITE APPLICATIONS and RESEARCH ALGORITHM THEORETICAL BASIS DOCUMENT ABI Cloud Mask Andrew Heidinger, NOAA/NESDIS/STAR William C. Straka III, SSEC/CIMSS Version 3.0 June 11,
A Microwave Retrieval Algorithm of Above-Cloud Electric Fields
A Microwave Retrieval Algorithm of Above-Cloud Electric Fields Michael J. Peterson The University of Utah Chuntao Liu Texas A & M University Corpus Christi Douglas Mach Global Hydrology and Climate Center
Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography
Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu
SATELLITE OBSERVATION OF THE DAILY VARIATION OF THIN CIRRUS
SATELLITE OBSERVATION OF THE DAILY VARIATION OF THIN CIRRUS Hermann Mannstein and Stephan Kox ATMOS 2012 Bruges, 2012-06-21 Folie 1 Why cirrus? Folie 2 Warum Eiswolken? Folie 3 Folie 4 Folie 5 Folie 6
Convective Clouds. Convective clouds 1
Convective clouds 1 Convective Clouds Introduction Convective clouds are formed in vertical motions that result from the instability of the atmosphere. This instability can be caused by: a. heating at
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility Arunchandra S. Chandra Pavlos Kollias Department of Atmospheric
Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula
Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula Mansour Almazroui Center of Excellence for Climate Change Research (CECCR) King Abdulaziz University, Jeddah, Saudi Arabia E-mail:
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.
Summary Report on National and Regional Projects set-up in Russian Federation to integrate different Ground-based Observing Systems
WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR INSTRUMENT AND METHODS OF OBSERVATION OPAG-UPPER AIR EXPERT TEAM ON REMOTE SENSING UPPER-AIR TECHNOLOGY AND TECHNIQUES First Session Geneva, Switzerland,
Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains
Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains G. Feingold and W. L. Eberhard National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder,
Introduction to the forecasting world Jukka Julkunen FMI, Aviation and military WS
Boundary layer challenges for aviation forecaster Introduction to the forecasting world Jukka Julkunen FMI, Aviation and military WS 3.12.2012 Forecast for general public We can live with it - BUT Not
How to Use the NOAA Enterprise Cloud Mask (ECM) Andrew Heidinger, Tom Kopp, Denis Botambekov and William Straka JPSS Cloud Team August 29, 2015
How to Use the NOAA Enterprise Cloud Mask (ECM) Andrew Heidinger, Tom Kopp, Denis Botambekov and William Straka JPSS Cloud Team August 29, 2015 Outline Describe ECM and its differences to VCM Describe
