Convective Clouds. Convective clouds 1
|
|
|
- Julius Richard
- 10 years ago
- Views:
Transcription
1 Convective clouds 1 Convective Clouds Introduction Convective clouds are formed in vertical motions that result from the instability of the atmosphere. This instability can be caused by: a. heating at the bottom of an air layer; b. cooling at the top of an air layer; c. lifting or saturation of a potentially unstable layer; d. a combination of all the above. Over land the diurnal variation of convective clouds is often clearly visible. On clear mornings, when the sun is able to heat the earth s surface the conditions for Cumulus formation are favourable. If the instability and relative humidity is large enough Cumulus clouds begin to form early. There is no Cu-formation is the atmosphere is only slightly unstable or stable and the relative humidity is low. After reaching a maximum in the afternoon the Cu activity decreases and finally the clouds dissolve in the late afternoon or early evening. Over sea the diurnal variation of Cu-formation usually is very small. If there is any activity it is near the end of the night. The ascending motions of convection decrease or stop when these motions encounter stable layers, or especially inversions. The form into which Cu-clouds develop mainly depends on the vertical distance between the condensation level (the level where temperature equals the dew point) and the cloud base of the stable layer, from the stability and the thickness (vertical distance from top to bottom) of this layer: if it is very stable the cumulus tops may be forced to spread horizontally. If the layer is not very thick only some tops will spread horizontally and some will shoot through the layer and may continue to grow. Observations have shown that the initiation of convection and its weather is only seldom a local phenomenon. On satellite photos it is often apparent that convective conditions are occurring simultaneously over extensive areas and are a result of the vertical structure of an air mass and the characteristics of the actual dominant large-scale weather systems. The convection process In Figure 1 the environmental lapse rate (γ) in the early morning (at the time of the minimum temperature) is indicated by the thick in the θ s,p-diagram; the dew point curve is indicated by the thick dashed line. If an air parcel with temperature T and dew point T d was lifted from the surface, then on level A it could reach its lifting condensation level (LCL). On that level the temperature of the air parcel is lower than the temperature of the environment so that it will sink back and condensation will not occur. Absorption of radiation at the surface will increase the surface temperature (T 1, T 3 etc.) creating unstable conditions in the lowest layers of the atmosphere. Therefore air parcels will rise and subsequently cool dry adiabatically; as a result the environmental lapse rate near the surface will change (e.g. the curve at T 3 ). The LCL will increase but the temperature of the environment at this level will be higher than the temperature of the air parcel so that no clouds will form.
2 Convective clouds 2 Figure 1. Changes in the environmental lapse rate during the day. The dew point temperature will change only slightly: usually some water, e.g. dew on the soil or on vegetation will evaporate into the atmosphere and mix with the lowest air layers. It appears that as a rule the dew point will slightly increase except when the near-surface air is too dry. A good estimate of the surface dew point that will be reached can be made by drawing on the θ s,p-diagram the average maximum mixing ratio line (<χ> in Figure 1) of a layer with a thickness of 50 mb from the surface upwards using equal areas ; the intersection of the line with the surface pressure isobar will give the dew point. When T 3 is reached an air parcel with temperature T 3 and dew point T d3 will lift from the surface. However, before it reaches LCL3 the air parcel again has reached a temperature by cooling that is lower than the temperature of the environment, hence LCL3 will not be reached. Ongoing radiation will increase the temperature even further and T 4 will be reached. Air parcels that rise from the surface will reach level C where the line <χ> is intersected (LCL4); at that height condensation will occur and consecutive ascent will be along a saturated-adiabat. In the case of Figure 1 the environmental lapse rate above level C is located to the left of the saturated adiabat the situation is unstable (in this case is het conditionally unstable). Hence as soon as the temperature T 4 has been reached cumuliform clouds will appear. The value of the surface temperature where convective clouds start to develop is called the convection-temperature (T c ), level C is called the convective condensation level (CCL). In Figure 1 the dry adiabat through T c and the average maximum mixing ratio line <χ> intersect in the convective condensation level. As long as the atmosphere is colder than the rising air parcel, i.e. in Figure 1 as long as the saturated adiabat γ s is located to the right of the environmental lapse rate (γ) the parcel will continue to rise until the intersection of γ s with γ (level D). At this height the vertical motion will
3 Convective clouds 3 stop. The area between γ s and γ between levels C and D is a measure for the amount of energy (in J/kg) available for the parcel to rise (increase its potential energy). This area is called CAPE (Convective Available Potential Energy). The formation of convective clouds In the previous text the explanation of rising air parcels changed into an explanation of convective clouds. With the so-called parcel method the assumption was made that the processes within the parcel were adiabatic and that the atmosphere was not perturbed by the motion of the parcel If a whole layer is involved these assumptions may not be true: a. in measurements within Cu clouds the saturated adiabatic lapse (γ s ) rate is never observed; temperatures and amount of water are lower than expected from the parcel method; the lapse rate within the cloud is often larger than γ s, b. rising large air parcels create downdrafts in the surrounding air, c. evaporation takes place at cloud boundaries. Entrainment The effects mentioned under a are a result that the rising air also mixes with environmental air while also some air from the parcel is expelled. The characteristics of the air in the parcel will change continuously. This phenomenon is called "entrainment". The consequences of entrainment are: a. Sometimes the environmental lapse rate suggests strong formation of cumulus or even showers; in practice only small cumulus (Cu humilis) will form and no showers develop. b. The radiosonde data suggest the cloud tops to be at the intersection of γ and γ s (D in Figure 1); in reality cloud tops may be considerably lower. If the radiosonde data indicate cloud tops at a level higher than 500 mb, then almost always showers will form if the average relative humidity between the CCL and the 500 mb level is larger than 75%. If the average relative humidity is less than 30% then showers are very unlikely. These rules only cover a part of the possible cumulus clouds: it is very well possible to have showers with clouds not even reaching the 500 mb level. Nevertheless these rules illustrate the influence of entrainment. Compensating downdrafts A large amount of air that ascends rapidly creates in the immediate environment compensating downward motions. These downdrafts reduce the temperature difference between cloud and environment; hence they also decrease the amount of CAPE (Figure 2). AB is the environmental lapse rate, AC is the saturated-adiabat. On level P the temperature difference between cloud and environment is T C -T D. As a results of the downdraft air surrounding the cloud is brought from level P 1 to level P dry-adiabatically, reaching a temperature T E. From the figure it appears that T C -T E < T C -T D. Therefore the downdraft also lowers the cloud tops. Evaporation Especially at the top of the ascending cumulus clouds turbulent mixing with the environment will occur; there most evaporation will take place. The energy needed for evaporation is supplied by cooling of the cloud top. Suddenly the dissipating top may vanish completely. However, evaporating cumulus tops will moisten the dry layer making it easier for consecutive cloud tops to survive and grow. From observations it appears that shortly after the top of a cumulus congestus dissipates a shower may form. In this case cloud droplets of a critical size for active coalescence were first moved to the cloud top with the rest of the air. The evaporative cooling at the top either creates a
4 Convective clouds 4 downdraft or reduces the upward motions enabling these cloud droplets to descend into the cloud and start the coalescence and precipitation processes. Figure 2. The effect of downdraft around a rising cloud. Forecasting convective clouds Considering the diurnal behaviour of the formation of convective clouds a forecast made at e.g. 08 UTC for the afternoon of the same day must contain a statement of the chance of the formation of cumuliform clouds. Figure 1 serves as a starting point: a. determine the maximum mixing ratio <χ> averaged over the lowest 50 mb using the dew point curve of the radiosonde data of 00 UTC; the intersection of this line with the environmental lapse rate will give you the CCL; b. from the CCL follow the dry adiabat to the surface pressure isobar and read T C ; when this temperature is reached convective clouds will appear; c. decide if the air temperature will exceed T C ; and if so at what time this will happen. The diurnal temperature changes in the same air mass of previous days may be an important indication; d. if T C will be exceeded then the height of the cloud base must be determined. This should coincide with the CCL because that is where condensation will start; due to a required supersaturation the cloud base may be somewhat higher. Furthermore, during ascend some entrainment will occur decreasing the humidity of the air parcel and increasing the cloud base slightly above the CCL. The cloud base may also be higher than the CCL because air parcels may not lift directly once T C has been reached: a so-called superadiabatic lapse rate is the result. The air parcel sticks to the surface and only starts ascending when the wind disconnects it from the earth s surface. Therefore a wind speed of a few knots is necessary. If such an air parcel having T > T C leaves the surface, it will follow a different dry adiabat which intersects <χ> at a higher level than the CCL. On average the cloud base is approximately 25 mb higher than the CCL. An empirical formula for the height of the CCL (in m) is h CCL (m) = 125 (T - T d ) where T and T d are the temperature and dew point at the surface, respectively. e. Theoretically the cloud top is located in D (Figure 1). In practice, due to the effects mentioned before, the cloud top is at least 25 mb below level D. f. Forecasting the cloud cover (N) of the convective clouds is not easy. In practice the situation of the previous days, if similar, will give some guidance. An empirical rule, giving
5 Convective clouds 5 a rough indication is: N 4 UCCL = where U CCL is the relative humidity (in %) at the CCL. For forecasting precipitation from convective clouds it is important to realize that a cloud can only produce precipitation if the cloud layer is thick enough and/or the temperature in the upper part of the cloud is low enough. In the Netherlands cumulus clouds must have a considerable vertical extent and the 0 C-level must be exceeded in order to produce precipitation. If the cloud top exceeds the -7 C-level and the relative humidity between the CCL and the cloud top height is large enough, then surely showers are possible. The higher the cloud top and the larger the area of instability on the thermodynamic diagram the more intense the precipitation will be. An important aspect in considering the environmental lapse rate is the fact that there is less development of convective clouds in and area with anticyclonically curved isobars. Of course subsiding motions are important, especially when a subsidence inversion is present which may gradually sink and oppose the vertical development of cumuliform clouds. After reaching the maximum temperature convection will diminish gradually and will stop once a surface inversion develops. Remaining clouds will evaporate creating downdrafts because of evaporative cooling of the air. Cumulus clouds will dissolve and now Sc cumulogenitus may be observed. Cloud dissipation will occur more rapidly if the air is dry. Especially in the winter cumuliform clouds, originating over the North Sea, may remain present during the night. With strong NW-winds these clouds may penetrate a considerable distance inland before dissolving. Forecasting thunderstorms The most important conditions for the formation of thunderstorms are: - A large amount of CAPE that can be released by door convection. - Vertical windshear over the entire convective layer. The intensity of thunderstorms depends on the number of clouds where CAPE is released: many small clouds or a few large ones. Windshear has the following effects: - in the absence of shear, updrafts and downdrafts will coincide. Initially the cloud will grow and the updrafts become stronger; next precipitation will fall from the upper parts of the cloud. The precipitation will fall trough the region with updrafts, weakening the updrafts (evaporative cooling) and the cloud dissipates rapidly. - if the wind speed, but not the wind direction, varies with height, then updrafts are directed at an angle with the vertical and precipitation will fall next to the updraft region. Updrafts and downdrafts exist next to one another and the cloud will not dissipate as quickly as in the situation without windshear. Updrafts may be stopped by lateral spreading of cold air when the downdrafts reach the surface. - if there is shear both in wind direction and wind speed then complex mesoscale systems may develop. These may live for several hours, more or less independent of surface heating. Forecasting thunderstorms For the forecast of thunderstorms a number of rules and indices have been developed. A brief overview is presented here.
6 - Indication for thunderstorms from the cloud top height: - top below 4000 m: thunderstorms not likely - top between 4000 and 5000 m: thunderstorms is likely - top over 5000 m: thunderstorms very likely. Convective clouds 6 - Boyden Index The Boyden Index (I) can be calculated from the radiosonde data: I = (Z-200) - T Here Z is the thickness of the hpa layer (in dam!) and T is the temperature (in C) at 700 hpa. Thunderstorms are likely if I >= This index is only valid in or near Western Europe. - Total Totals Index This index is commonly used as a severe weather indicator and is defined by: TT = T T d,850-2 T 500 TT Index < 45 weak moderate > 55 strong - S Index This index is primarily used to indicate thunderstorm potential from April through September. It is defined by: S{TT} = TT - (T-T d ) K where TT is the Total Totals Index (see above) and K is defined as 0 when T T when T T 500 > 22 and < 25 6 when T T S{TT} < 40 none possible > 46 likely - KO index Defined by: KO = [(Θ e,500 + Θ e,700 )/2] - [(Θ e,850 + Θ e,1000 )/2] where Θ e,ppp is the potential equivalent temperature at level ppp hpa. NB Θ e,ppp can be found in the RAOB Data window as ept. This index was developed to estimate thunderstorm potential in Europe. It is more sensitive to moisture than other more traditional indices and is best used in cooler, moist climates. If the surface pressure is below 1000 hpa then Θ e, surface is used. KO Index > 6 weak 2-6 moderate < 2 strong
7 Convective clouds 7 - Lifted Index A stability index used to determine thunderstorm potential. The LI is calculated by lifting an air parcel adiabatically from a level 50 hpa above the surface to 500 hpa. The difference between the temperature of the air parcel and the environmental temperature at 500 hpa represents the LI. LI > -3 weak -3 to -5 moderate < -5 strong - K Index Defined by: KI = T T T d,850 - (T T d,700 ) KI < 20 none weak: isolated thunderstorms moderate: widely scattered thunderstorms moderate: scattered thunderstorms > 35 strong: numerous thunderstorms The above indices must always be used in conjunction with large-scale indicators of thunderstorms. Extra convective energy may depend on: - Position and movement of upper-air troughs or lows. Thunderstorms are usually found along or just in front of upper-air troughs or lows. - The existence and movement of low-level convergence lines, such as fronts. - Elevated areas may receive extra heating. Other useful synoptic tools are: - Analysis of the dew point and/or Θ w. Tongues with high dew points or Θ w may help to define areas with a high risk of thunderstorms; - Difference in Θ w on 500 and 850 hpa - Cyclonic curvature of surface isobars. Conditions favourable for heavy thunderstorms: Heavy showers are mesoscale systems that might develop into heavy thunderstorms. It is important to note that: - some of the heaviest and most extensive thunderstorm activity did not occur before hours after the temp showed a warm layer over a convective layer. Such a warm layer may prevent the release of convective energy, thereby building up the amount of energy which is subsequently released explosively. - In heavy thunderstorms the dew point is often higher than 13 C and may even reach 18 C. At 850 hpa analogous values for Θ w are found. Winds are from the SE to SSW with speeds between kts in a narrow tongue. - Advection of dry air at mid-atmospheric levels. With potential instability Θ w at 500 hpa may 2-5 C lower than at 850 hpa. Winds at 500 hpa must have veered degrees relative to the winds at 850 hpa, speeds kts. - Further veering above 500 hpa, with 300 hpa winds from SSW-W and speeds of kts are good conditions to have the downdrafts in a favourable position for generating heavy thunderstorms.
This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air. 2. Processes that cause instability and cloud development
Stability & Cloud Development This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air 2. Processes that cause instability and cloud development Stability & Movement A rock,
Stability and Cloud Development. Stability in the atmosphere AT350. Why did this cloud form, whereas the sky was clear 4 hours ago?
Stability and Cloud Development AT350 Why did this cloud form, whereas the sky was clear 4 hours ago? Stability in the atmosphere An Initial Perturbation Stable Unstable Neutral If an air parcel is displaced
Chapter 6 - Cloud Development and Forms. Interesting Cloud
Chapter 6 - Cloud Development and Forms Understanding Weather and Climate Aguado and Burt Interesting Cloud 1 Mechanisms that Lift Air Orographic lifting Frontal Lifting Convergence Localized convective
Chapter 7 Stability and Cloud Development. Atmospheric Stability
Chapter 7 Stability and Cloud Development Atmospheric Stability 1 Cloud Development - stable environment Stable air (parcel) - vertical motion is inhibited if clouds form, they will be shallow, layered
WEATHER THEORY Temperature, Pressure And Moisture
WEATHER THEORY Temperature, Pressure And Moisture Air Masses And Fronts Weather Theory- Page 77 Every physical process of weather is a result of a heat exchange. The standard sea level temperature is 59
Atmospheric Stability & Cloud Development
Atmospheric Stability & Cloud Development Stable situations a small change is resisted and the system returns to its previous state Neutral situations a small change is neither resisted nor enlarged Unstable
How do Scientists Forecast Thunderstorms?
How do Scientists Forecast Thunderstorms? Objective In the summer, over the Great Plains, weather predictions often call for afternoon thunderstorms. While most of us use weather forecasts to help pick
Fog and Cloud Development. Bows and Flows of Angel Hair
Fog and Cloud Development Bows and Flows of Angel Hair 1 Ch. 5: Condensation Achieving Saturation Evaporation Cooling of Air Adiabatic and Diabatic Processes Lapse Rates Condensation Condensation Nuclei
Chapter 6: Cloud Development and Forms
Chapter 6: Cloud Development and Forms (from The Blue Planet ) Why Clouds Form Static Stability Cloud Types Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling.
Tephigrams: What you need to know
Tephigrams: What you need to know Contents An Introduction to Tephigrams...3 Can be as complicated as you like!...4 What pilots need to know...5 Some fundamentals...6 Air...6 Why does the air cool as it
UNIT VII--ATMOSPHERIC STABILITY AND INSTABILITY
UNIT VII--ATMOSPHERIC STABILITY AND INSTABILITY The stability or instability of the atmosphere is a concern to firefighters. This unit discusses how changes in the atmosphere affect fire behavior, and
Formation & Classification
CLOUDS Formation & Classification DR. K. K. CHANDRA Department of forestry, Wildlife & Environmental Sciences, GGV, Bilaspur What is Cloud It is mass of tiny water droplets or ice crystals or both of size
Cloud Development and Forms. LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection. Orographic Cloud. The Orographic Cloud
Introduction to Climatology GEOGRAPHY 300 Cloud Development and Forms Tom Giambelluca University of Hawai i at Mānoa LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection Cloud Development
The Importance of Understanding Clouds
NASA Facts National Aeronautics and Space Administration www.nasa.gov The Importance of Understanding Clouds One of the most interesting features of Earth, as seen from space, is the ever-changing distribution
1. a. Surface Forecast Charts (USA and Ontario and Quebec) http://www.rap.ucar.edu/weather/
COMPUTER ASSISTED METEOROLOGY Frank Pennauer This contribution gives the available computer data sources, how to access them and use this data for predicting Soaring weather conditions will be discussed
SKEW-T, LOG-P DIAGRAM ANALYSIS PROCEDURES
SKEW-T, LOG-P DIAGRAM ANALYSIS PROCEDURES I. THE SKEW-T, LOG-P DIAGRAM The primary source for information contained in this appendix was taken from the Air Weather Service Technical Report TR-79/006. 1
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Kate Thayer-Calder and Dave Randall Colorado State University October 24, 2012 NOAA's 37th Climate Diagnostics and Prediction Workshop Convective
8.5 Comparing Canadian Climates (Lab)
These 3 climate graphs and tables of data show average temperatures and precipitation for each month in Victoria, Winnipeg and Whitehorse: Figure 1.1 Month J F M A M J J A S O N D Year Precipitation 139
Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A.
376 THE SIMULATION OF TROPICAL CONVECTIVE SYSTEMS William M. Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A. ABSTRACT IN NUMERICAL
Air Masses and Fronts
Air Masses and Fronts Air Masses The weather of the United States east of the Rocky Mountains is dominated by large masses of air that travel south from the wide expanses of land in Canada, and north from
Storms Short Study Guide
Name: Class: Date: Storms Short Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. A(n) thunderstorm forms because of unequal heating
Analyze Weather in Cold Regions and Mountainous Terrain
Analyze Weather in Cold Regions and Mountainous Terrain Terminal Learning Objective Action: Analyze weather of cold regions and mountainous terrain Condition: Given a training mission that involves a specified
Fundamentals of Climate Change (PCC 587): Water Vapor
Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water Water is a remarkable molecule Water vapor
WEATHER AND CLIMATE practice test
WEATHER AND CLIMATE practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What role does runoff play in the water cycle? a. It is the process in
Name Period 4 th Six Weeks Notes 2015 Weather
Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the
Clouds. A simple scientific explanation for the weather-curious. By Kira R. Erickson
Clouds A simple scientific explanation for the weather-curious By Kira R. Erickson Table of Contents 1 3 4 INTRO 2 Page 3 How Clouds Are Formed Types of Clouds Clouds and Weather More Information Page
Convective Weather Maps
Guide to using Convective Weather Maps Oscar van der Velde www.lightningwizard.com last modified: August 27th, 2007 Reproduction of this document or parts of it is allowed with permission. This document
Clouds for pilots. Ed Williams. http://williams.best.vwh.net/
Clouds for pilots Ed Williams http://williams.best.vwh.net/ Clouds are important to pilots! Many of our weather problems are associated with clouds: Fog Thunderstorms Cloud In flight icing Cloud physics
Chapter 6 Atmospheric Aerosol and Cloud Processes Spring 2015 Cloud Physics Initiation and development of cloud droplets Special interest: Explain how droplet formation results in rain in approximately
2. The map below shows high-pressure and low-pressure weather systems in the United States.
1. Which weather instrument has most improved the accuracy of weather forecasts over the past 40 years? 1) thermometer 3) weather satellite 2) sling psychrometer 4) weather balloon 6. Wind velocity is
If wispy, no significant icing or turbulence. If dense or in bands turbulence is likely. Nil icing risk. Cirrocumulus (CC)
Cirrus (CI) Detached clouds in the form of delicate white filaments or white patches or narrow bands. These clouds have a fibrous or hair like appearance, or a silky sheen or both. with frontal lifting
The Ideal Gas Law. Gas Constant. Applications of the Gas law. P = ρ R T. Lecture 2: Atmospheric Thermodynamics
Lecture 2: Atmospheric Thermodynamics Ideal Gas Law (Equation of State) Hydrostatic Balance Heat and Temperature Conduction, Convection, Radiation Latent Heating Adiabatic Process Lapse Rate and Stability
Not all clouds are easily classified! Cloud Classification schemes. Clouds by level 9/23/15
Cloud Classification schemes 1) classified by where they occur (for example: high, middle, low) 2) classified by amount of water content and vertical extent (thick, thin, shallow, deep) 3) classified by
Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium
GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L08802, doi:10.1029/2007gl033029, 2008 Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium D. J. Posselt, 1 S. C. van
CHAPTER 3. The sun and the seasons. Locating the position of the sun
zenith 90 summer solstice 75 equinox 52 winter solstice 29 altitude angles observer Figure 3.1: Solar noon altitude angles for Melbourne SOUTH winter midday shadow WEST summer midday shadow summer EAST
UNIT 6a TEST REVIEW. 1. A weather instrument is shown below.
UNIT 6a TEST REVIEW 1. A weather instrument is shown below. Which weather variable is measured by this instrument? 1) wind speed 3) cloud cover 2) precipitation 4) air pressure 2. Which weather station
ENVIRONMENTAL STRUCTURE AND FUNCTION: CLIMATE SYSTEM Vol. II - Low-Latitude Climate Zones and Climate Types - E.I. Khlebnikova
LOW-LATITUDE CLIMATE ZONES AND CLIMATE TYPES E.I. Khlebnikova Main Geophysical Observatory, St. Petersburg, Russia Keywords: equatorial continental climate, ITCZ, subequatorial continental (equatorial
Temperature affects water in the air.
KEY CONCEPT Most clouds form as air rises and cools. BEFORE, you learned Water vapor circulates from Earth to the atmosphere Warm air is less dense than cool air and tends to rise NOW, you will learn How
39th International Physics Olympiad - Hanoi - Vietnam - 2008. Theoretical Problem No. 3
CHANGE OF AIR TEMPERATURE WITH ALTITUDE, ATMOSPHERIC STABILITY AND AIR POLLUTION Vertical motion of air governs many atmospheric processes, such as the formation of clouds and precipitation and the dispersal
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota Outline 1) Statistical results from SGP and AZORES 2) Challenge and Difficult
Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition
Thirteenth ARM Science Team Meeting Proceedings, Broomfield, Colorado, March 31-April 4, 23 Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective
J4.1 CENTRAL NORTH CAROLINA TORNADOES FROM THE 16 APRIL 2011 OUTBREAK. Matthew Parker* North Carolina State University, Raleigh, North Carolina
J4.1 CENTRAL NORTH CAROLINA TORNADOES FROM THE 16 APRIL 2011 OUTBREAK Matthew Parker* North Carolina State University, Raleigh, North Carolina Jonathan Blaes NOAA/National Weather Service, Raleigh, North
Basics of weather interpretation
Basics of weather interpretation Safety at Sea Seminar, April 2 nd 2016 Dr. Gina Henderson Oceanography Dept., USNA [email protected] Image source: http://earthobservatory.nasa.gov/naturalhazards/view.php?id=80399,
HIGH RESOLUTION SATELLITE IMAGERY OF THE NEW ZEALAND AREA: A VIEW OF LEE WAVES*
Weather and Climate (1982) 2: 23-29 23 HIGH RESOLUTION SATELLITE IMAGERY OF THE NEW ZEALAND AREA: A VIEW OF LEE WAVES* C. G. Revell New Zealand Meteorological Service, Wellington ABSTRACT Examples of cloud
Satellites, Weather and Climate Module 2b: Cloud identification & classification. SSEC MODIS Today
Satellites, Weather and Climate Module 2b: Cloud identification & classification SSEC MODIS Today Our Cloud Watching and Identification Goals describe cloud classification system used by meteorologists
In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. aero quarterly qtr_01 10
In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. 22 avoiding convective Weather linked to Ice-crystal Icing engine events understanding
Goal: Understand the conditions and causes of tropical cyclogenesis and cyclolysis
Necessary conditions for tropical cyclone formation Leading theories of tropical cyclogenesis Sources of incipient disturbances Extratropical transition Goal: Understand the conditions and causes of tropical
FOR SUBSCRIBERS ONLY! - TRIAL PASSWORD USERS MAY NOT REPRODUCE AND DISTRIBUTE PRINTABLE MATERIALS OFF THE SOLPASS WEBSITE!
FOR SUBSCRIBERS ONLY! - TRIAL PASSWORD USERS MAY NOT REPRODUCE AND DISTRIBUTE PRINTABLE MATERIALS OFF THE SOLPASS WEBSITE! 1 NAME DATE GRADE 5 SCIENCE SOL REVIEW WEATHER LABEL the 3 stages of the water
Hurricanes. Characteristics of a Hurricane
Hurricanes Readings: A&B Ch. 12 Topics 1. Characteristics 2. Location 3. Structure 4. Development a. Tropical Disturbance b. Tropical Depression c. Tropical Storm d. Hurricane e. Influences f. Path g.
Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction
Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.
Number of activated CCN as a key property in cloud-aerosol interactions. Or, More on simplicity in complex systems
Number of activated CCN as a key property in cloud-aerosol interactions Or, More on simplicity in complex systems 1 Daniel Rosenfeld and Eyal Freud The Hebrew University of Jerusalem, Israel Uncertainties
Cumulifor m clouds develop as air slowly rises over Lake Powell in Utah.
Cumulifor m clouds develop as air slowly rises over Lake Powell in Utah. Figure 6.1 Dew forms on clear nightswhen objects on the surface cool to a temperature below the dew point. If these beads of water
Satellite Weather And Climate (SWAC) Satellite and cloud interpretation
Satellite Weather And Climate (SWAC) Satellite and cloud interpretation Vermont State Climatologist s Office University of Vermont Dr. Lesley-Ann Dupigny-Giroux Vermont State Climatologist [email protected]
Activity 4 Clouds Over Your Head Level 1
Activity 4 Clouds Over Your Head Level 1 1 Objectives: Students will become familiar with the four main types of clouds: stratus, cirrus, cumulus, and cumulonimbus and their characteristics. Students will
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.
Chapter 4 Atmospheric Pressure and Wind
Chapter 4 Atmospheric Pressure and Wind Understanding Weather and Climate Aguado and Burt Pressure Pressure amount of force exerted per unit of surface area. Pressure always decreases vertically with height
Common Cloud Names, Shapes, and Altitudes:
Common Cloud Names, Shapes, and Altitudes: Low Clouds Middle Clouds High Clouds Genus Cumulus Cumulonimbus (extend through all 3 levels) Stratus Stratocumulus Altocumulus Altostratus Nimbostratus (extend
CGC1D1: Interactions in the Physical Environment Factors that Affect Climate
Name: Date: Day/Period: CGC1D1: Interactions in the Physical Environment Factors that Affect Climate Chapter 12 in the Making Connections textbook deals with Climate Connections. Use pages 127-144 to fill
Chapter 3: Weather Map. Weather Maps. The Station Model. Weather Map on 7/7/2005 4/29/2011
Chapter 3: Weather Map Weather Maps Many variables are needed to described weather conditions. Local weathers are affected by weather pattern. We need to see all the numbers describing weathers at many
Mixing Heights & Smoke Dispersion. Casey Sullivan Meteorologist/Forecaster National Weather Service Chicago
Mixing Heights & Smoke Dispersion Casey Sullivan Meteorologist/Forecaster National Weather Service Chicago Brief Introduction Fire Weather Program Manager Liaison between the NWS Chicago office and local
Humidity, Condensation, Clouds, and Fog. Water in the Atmosphere
Humidity, Condensation, Clouds, and Fog or Water in the Atmosphere The Hydrologic Cycle Where the Water Exists on Earth Evaporation From the Oceans and Land The Source of Water Vapor for the Atmosphere
ES 106 Laboratory # 6 MOISTURE IN THE ATMOSPHERE
ES 106 Laboratory # 6 MOISTURE IN THE ATMOSPHERE 6-1 Introduction By observing, recording, and analyzing weather conditions, meteorologists attempt to define the principles that control the complex interactions
1D shallow convective case studies and comparisons with LES
1D shallow convective case studies and comparisons with CNRM/GMME/Méso-NH 24 novembre 2005 1 / 17 Contents 1 5h-6h time average vertical profils 2 2 / 17 Case description 5h-6h time average vertical profils
How To Model An Ac Cloud
Development of an Elevated Mixed Layer Model for Parameterizing Altocumulus Cloud Layers S. Liu and S. K. Krueger Department of Meteorology University of Utah, Salt Lake City, Utah Introduction Altocumulus
Name: OBJECTIVES Correctly define: WEATHER BASICS: STATION MODELS: MOISTURE: PRESSURE AND WIND: Weather
Name: OBJECTIVES Correctly define: air mass, air pressure, anemometer, barometer, cyclone, dew point, front, isobar, isotherm, meteorology, precipitation, psychrometer, relative humidity, saturated, transpiration
7613-1 - Page 1. Weather Unit Exam Pre-Test Questions
Weather Unit Exam Pre-Test Questions 7613-1 - Page 1 Name: 1) Equal quantities of water are placed in four uncovered containers with different shapes and left on a table at room temperature. From which
Overview of the IR channels and their applications
Ján Kaňák Slovak Hydrometeorological Institute [email protected] Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation
Temperature. PJ Brucat
PJ Brucat Temperature - the measure of average kinetic energy (KE) of a gas, liquid, or solid. KE is energy of motion. KE = ½ mv 2 where m=mass and v=velocity (speed) 1 All molecules have KE whether solid,
Meteorology: Weather and Climate
Meteorology: Weather and Climate Large Scale Weather Systems Lecture 1 Tropical Cyclones: Location and Structure Prof. Roy Thompson Crew building Large-scale Weather Systems Tropical cyclones (1-2) Location,
Cloud seeding. Frequently Asked Questions. What are clouds and how are they formed? How do we know cloud seeding works in Tasmania?
What are clouds and how are they formed? Clouds are composed of water droplets and sometimes ice crystals. Clouds form when air that is rich in moisture near the Earth s surface rises higher into the atmosphere,
CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles
CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles I. Air Temperature: Five important factors influence air temperature: A. Insolation B. Latitude C. Surface types D. Coastal vs. interior
Executions and Techniques on SIGMET Consulting Information
Executions and Techniques on SIGMET Consulting Information Qiang Xuemin April, 2011 Beijing Main topic To briefly introduce the executions and techniques on SIGMET information which have been successfully
Supercell Thunderstorm Structure and Evolution
Supercell Thunderstorm Structure and Evolution Supercellular Convection Most uncommon, but most dangerous storm type Produces almost all instances of very large hail and violent (EF4-EF5) tornadoes Highly
6 th Grade Science Assessment: Weather & Water Select the best answer on the answer sheet. Please do not make any marks on this test.
Select the be answer on the answer sheet. Please do not make any marks on this te. 1. Weather is be defined as the A. changes that occur in cloud formations from day to day. B. amount of rain or snow that
Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity
Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure
Guy Carpenter Asia-Pacific Climate Impact Centre, School of energy and Environment, City University of Hong Kong
Diurnal and Semi-diurnal Variations of Rainfall in Southeast China Judy Huang and Johnny Chan Guy Carpenter Asia-Pacific Climate Impact Centre School of Energy and Environment City University of Hong Kong
Read and study the following information. After reading complete the review questions. Clouds
Name: Pd: Read and study the following information. After reading complete the review questions. Clouds What are clouds? A cloud is a large collection of very tiny droplets of water or ice crystals. The
Chapter 3: Weather Map. Station Model and Weather Maps Pressure as a Vertical Coordinate Constant Pressure Maps Cross Sections
Chapter 3: Weather Map Station Model and Weather Maps Pressure as a Vertical Coordinate Constant Pressure Maps Cross Sections Weather Maps Many variables are needed to described dweather conditions. Local
Weather Map Symbols, Abbreviations, and Features
Weather Map Symbols, Abbreviations, and Features Table of Contents 1. Symbols... 2 Pressure Systems/Fronts... 2 Precipitation... 3 Wind Speed... 4 Center pressures (on Surface Maps)... 4 2. Abbreviations...
Description of zero-buoyancy entraining plume model
Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium Supplementary information Martin S. Singh & Paul A. O Gorman S1 CRM simulations Here we give more
WeatherBug Vocabulary Bingo
Type of Activity: Game: Interactive activity that is competitive, and allows students to learn at the same time. Activity Overview: WeatherBug Bingo is a fun and engaging game for you to play with students!
How do I measure the amount of water vapor in the air?
How do I measure the amount of water vapor in the air? Materials 2 Centigrade Thermometers Gauze Fan Rubber Band Tape Overview Water vapor is a very important gas in the atmosphere and can influence many
A new positive cloud feedback?
A new positive cloud feedback? Bjorn Stevens Max-Planck-Institut für Meteorologie KlimaCampus, Hamburg (Based on joint work with Louise Nuijens and Malte Rieck) Slide 1/31 Prehistory [W]ater vapor, confessedly
WV IMAGES. Christo Georgiev. NIMH, Bulgaria. Satellite Image Interpretation and Applications EUMeTrain Online Course, 10 30 June 2011
WV IMAGES Satellite Image Interpretation and Applications EUMeTrain Online Course, 10 30 June 2011 Christo Georgiev NIMH, Bulgaria INTRODICTION The radiometer SEVIRI of Meteosat Second Generation (MSG)
Weather Theory. Chapter 11. Introduction
Chapter 11 Weather Theory Introduction Weather is an important factor that influences aircraft performance and flying safety. It is the state of the atmosphere at a given time and place, with respect to
Water, Phase Changes, Clouds
TUESDAY: air & water & clouds Water, Phase Changes, Clouds How can freezing make something warmer? 'warm air can hold more water' why? How do clouds form? The (extraordinary) properties of Water Physical
Lecture 7a: Cloud Development and Forms
Lecture 7a: Cloud Development and Forms Why Clouds Form Cloud Types (from The Blue Planet ) Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling. Four Ways
ATMS 310 Jet Streams
ATMS 310 Jet Streams Jet Streams A jet stream is an intense (30+ m/s in upper troposphere, 15+ m/s lower troposphere), narrow (width at least ½ order magnitude less than the length) horizontal current
UNIT IV--TEMPERATURE-MOISTURE RELATIONSHIP
UNIT IV--TEMPERATURE-MOISTURE RELATIONSHIP Weather is the most variable and often the most critical determinant of fire behavior. This is the first of several units that will deal with weather and its
Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography
Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu
THIRD GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES
THIRD GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF THIRD GRADE WATER WEEK 1. PRE: Comparing the different components of the water cycle. LAB: Contrasting water with hydrogen
Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model simulations of TWP ICE
Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 734 754, April 2012 A Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model
Ecosystem-land-surface-BL-cloud coupling as climate changes
Ecosystem-land-surface-BL-cloud coupling as climate changes Alan K. Betts Atmospheric Research, [email protected] CMMAP August 19, 2009 Outline of Talk Land-surface climate: - surface, BL & cloud coupling
EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION
EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION The Weather Envoy consists of two parts: the Davis Vantage Pro 2 Integrated Sensor Suite (ISS) and the
Clouds and the Energy Cycle
August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and
Seasonal Temperature Variations
Seasonal and Daily Temperatures Fig. 3-CO, p. 54 Seasonal Temperature Variations What causes the seasons What governs the seasons is the amount of solar radiation reaching the ground What two primary factors
TOPIC: CLOUD CLASSIFICATION
INDIAN INSTITUTE OF TECHNOLOGY, DELHI DEPARTMENT OF ATMOSPHERIC SCIENCE ASL720: Satellite Meteorology and Remote Sensing TERM PAPER TOPIC: CLOUD CLASSIFICATION Group Members: Anil Kumar (2010ME10649) Mayank
Cloud Radiation and the Law of Attraction
Convec,on, cloud and radia,on Convection redistributes the thermal energy yielding (globally-averaged), a mean lapse rate of ~ -6.5 o C/km. Radiative processes tend to produce a more negative temperature
