Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2) CGILS-S11 results
|
|
|
- Noel Barker
- 10 years ago
- Views:
Transcription
1 Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2) CGILS-S11 results Stephan de Roode Delft University of Technology (TUD), Delft, Netherlands Mixed-layer model analysis: Melchior van Wessem (student, TUD) DALES development: Thijs Heus (MPI-Hamburg, Germany) Chiel van Heerwaarden (Un. Wageningen, Netherlands) Steef Boing (Delft University of Technology) McICA code: Robert Pincus (NOAA) Bjorn Stevens (MPI-Hamburg) Many thanks to the CGILS-LES group for helpful suggestions!
2 Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2) Open source code (GIT) KNMI, University of Wageningen, Delft Technical University of Technology (Thijs Heus: MPI-Hamburg) Benefits to users: Additions of new physics routines McICA Radiation: Pincus and Stevens 29, implemented by Thijs Heus CGILS-radiation scheme close to be fully operational in DALES v3.2 Coupled Surface Energy Balance model: van Heerwaarden, Wageningen University However, it requires a lot of dedication to keep up with the modifications increase in the number of switches
3 CGILS Simulation details Simulation time 1 days adaptive time step, dtmax = 1 secs radiation time step = 6 secs Domain size 4.8 x 4.8 x 4 km 3, 96 x 96 x 128 grid points (Δz = 25 m in lower part) Total CPU hours on 32 processors 27 hours
4 CGILS Inversion height z inv t = w e + w subs ( z = z inv )
5 CGILS Cloud liquid water path (LWP)
6 CGILS Cloud cover
7 more evaporation Turbulent Surface Fluxes
8 Top Of Atmosphere Net Radiative Fluxes
9 CGILS Hourly-averaged vertical mean profiles during the last 5 hours
10 CGILS Hourly-averaged turbulent fluxes during the last 5 hours
11 Steady state solutions Example: longwave radiative cooling at cloud top w e Δθ L ΔF /( ρc p ) Steady state θ L t = z/z i Requires constant flux wθ L z = <wθ l > (mk/s)
12 Steady state solutions Example: no precipitation w e Δq T Steady state q T t = z/z i Requires constant flux wq T z = <wq t > (m/s)
13 z/z i w e Δθ L ΔF /( ρc p ) Steady state solutions: <w θ v > <wθ > (mk/s) l 1.2 z/z i wθ L +11 wq T 1.8 w e Δq T.4.2 wθ L +18 wq T z/z i <wq > (m/s) t <wθ v > (mk/s) no decoupling
14 Steady state solutions Example: longwave radiative cooling large-scale horizontal advection 1.2 w e Δθ L 1 z/z i ΔF /( ρc p ) turbulent flux divergence balances advective cooling wθ L z = U θ L z large scale <wθ l > (mk/s)
15 w e Δθ L ΔF /( ρc p ) Steady state solutions: <w θ v > z/z i.6 z/z i <wθ > (mk/s) l w e Δq T z/z i <wθ v > (mk/s).5 wθ L +11 wq T wθ L +18 wq T <wq t > (m/s)
16 Steady state solutions & decoupling No decoupling (#) if wθ V > at cloud base height z base So wθ L z base > B d A d wq T zbase Flux divergence: wθ L z = wθ L wθ z L base < z base B d A d wq T z base + wθ L z base (#) This is a weak criterion. In fact, the flux can be slightly negative without the BL getting decoupled
17 Steady state solutions & decoupling Steady state if wθ L z = B d A d wq T z base + wθ L z base = U θ L x large scale
18 Steady state solutions & decoupling Steady state if wθ L z = B d A d wq T z base + wθ L z base = U θ L x large scale 15 height where <wθ v >= 1 5 CGILS Large-scale advection (K/h)
19 Steady state solutions & decoupling Decoupling due to large-scale advection alone not very likely However, two other processes cause steeper <w θ v > gradients In the subcloud layer: evaporation of drizzle longwave radiative cooling
20 CGILS: Inversion jumps (after 1 days) 2 ASTEX -2 Δq t [g/kg] -4-6 buoyancy reversal criterion ** S11 CTL P2K EUROCS -8 DYCOMS II Δ θ l [K]
21 Mixed-layer model BL mean ψ ML t entrainment flux ( ) = w e ψ FA ψ ML surface flux c D U ML ψ ψ ML + ΔS ψ z i ( ) source/sink θ L,FA q T,FA z/z inv.6 z/z inv.6 q T,ML.4 θ L,ML q T, θ L, liq. wat. pot. temp. θ L (K) total water content q T (g/kg)
22 Mixed-layer model BL mean ψ ML t entrainment flux ( ) = w e ψ FA ψ ML surface flux c D U ML ψ ψ ML + ΔS ψ z i ( ) source/sink z inv t = w e + w subs = w e Dz i
23 Mixed-layer model BL mean ψ ML t entrainment flux ( ) = w e ψ FA ψ ML surface flux c D U ML ψ ψ ML + ΔS ψ z i ( ) source/sink z inv t = w e + w subs = w e Dz i Closure (#) : w e = A ΔF rad θ L,FA θ L,ML (#) This closure is inspired by Moeng (2). Other closures need humidity jumps, cloud base height etc.
24 Mixed-layer model BL mean ψ ML t entrainment flux ( ) = w e ψ FA ψ ML surface flux c D U ML ψ ψ ML + ΔS ψ z i ( ) source/sink z inv t = w e + w subs = w e Dz i Closure: w e = A ΔF rad θ L,FA θ L,ML Upper BC: θ L,FA ( z) = θ L, + Γ θ z q T,FA = q T, + Δq T
25 Mixed-layer model solutions z inv t = w e + w subs = w e Dz i Closure: w e = A ΔF rad θ L,FA θ L,ML Approximation: (surface jump much smaller than inversion jump) θ L, θ L,ML << Γ θ z i Equilibrium height for the boundary layer z i = AΔF rad DΓ θ
26 CGILS Conclusions S11 goes to an equilibrium state Longwave radiative cooling, entrainment warming and large-scale advection Evaporation, entrainment drying, and large-scale advection Radiation in a future climate Hardly any change in radiation at top of the atmosphere if SST + 2K Outlook Do shallow cumulus and stratus runs Check influence advection scheme
How To Model An Ac Cloud
Development of an Elevated Mixed Layer Model for Parameterizing Altocumulus Cloud Layers S. Liu and S. K. Krueger Department of Meteorology University of Utah, Salt Lake City, Utah Introduction Altocumulus
Clouds and Convection
Max-Planck-Institut Clouds and Convection Cathy Hohenegger, Axel Seifert, Bjorn Stevens, Verena Grützun, Thijs Heus, Linda Schlemmer, Malte Rieck Max-Planck-Institut Shallow convection Deep convection
Description of zero-buoyancy entraining plume model
Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium Supplementary information Martin S. Singh & Paul A. O Gorman S1 CRM simulations Here we give more
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Kate Thayer-Calder and Dave Randall Colorado State University October 24, 2012 NOAA's 37th Climate Diagnostics and Prediction Workshop Convective
The formation of wider and deeper clouds through cold-pool dynamics
The formation of wider and deeper clouds through cold-pool dynamics Linda Schlemmer, Cathy Hohenegger e for Meteorology, Hamburg 2013-09-03 Bergen COST Meeting Linda Schlemmer 1 / 27 1 Motivation 2 Simulations
Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux
Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux Cloud-resolving modelling : perspectives Improvement of models, new ways of using them, renewed views And
An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models
An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models Steven Krueger1 and Peter Bogenschutz2 1University of Utah, 2National
1D shallow convective case studies and comparisons with LES
1D shallow convective case studies and comparisons with CNRM/GMME/Méso-NH 24 novembre 2005 1 / 17 Contents 1 5h-6h time average vertical profils 2 2 / 17 Case description 5h-6h time average vertical profils
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility Arunchandra S. Chandra Pavlos Kollias Department of Atmospheric
SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment
SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment Mark Webb, Adrian Lock (Met Office), Sandrine Bony (IPSL), Chris Bretherton (UW), Tsuyoshi Koshiro, Hideaki Kawai (MRI), Thorsten Mauritsen
Ecosystem-land-surface-BL-cloud coupling as climate changes
Ecosystem-land-surface-BL-cloud coupling as climate changes Alan K. Betts Atmospheric Research, [email protected] CMMAP August 19, 2009 Outline of Talk Land-surface climate: - surface, BL & cloud coupling
Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches Joao Teixeira
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low
Stability and Cloud Development. Stability in the atmosphere AT350. Why did this cloud form, whereas the sky was clear 4 hours ago?
Stability and Cloud Development AT350 Why did this cloud form, whereas the sky was clear 4 hours ago? Stability in the atmosphere An Initial Perturbation Stable Unstable Neutral If an air parcel is displaced
Chapter 6 - Cloud Development and Forms. Interesting Cloud
Chapter 6 - Cloud Development and Forms Understanding Weather and Climate Aguado and Burt Interesting Cloud 1 Mechanisms that Lift Air Orographic lifting Frontal Lifting Convergence Localized convective
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency In Sik Kang Seoul National University Young Min Yang (UH) and Wei Kuo Tao (GSFC) Content 1. Conventional
Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models
Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models S. A. Klein National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics
Fundamentals of Climate Change (PCC 587): Water Vapor
Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water Water is a remarkable molecule Water vapor
A new positive cloud feedback?
A new positive cloud feedback? Bjorn Stevens Max-Planck-Institut für Meteorologie KlimaCampus, Hamburg (Based on joint work with Louise Nuijens and Malte Rieck) Slide 1/31 Prehistory [W]ater vapor, confessedly
Convective Clouds. Convective clouds 1
Convective clouds 1 Convective Clouds Introduction Convective clouds are formed in vertical motions that result from the instability of the atmosphere. This instability can be caused by: a. heating at
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota Outline 1) Statistical results from SGP and AZORES 2) Challenge and Difficult
Sub-grid cloud parametrization issues in Met Office Unified Model
Sub-grid cloud parametrization issues in Met Office Unified Model Cyril Morcrette Workshop on Parametrization of clouds and precipitation across model resolutions, ECMWF, Reading, November 2012 Table of
High Resolution Modeling, Clouds, Precipitation and Climate
High Resolution Modeling, Clouds, Precipitation and Climate Pier Siebesma, Ramon Mendez Gomez, Jerome Schalkwijk, Stephan de Roode Jisk Attema, Jessica Loreaux, Geert Lenderink, Harm Jonker 1. Precipitation
Fog and Cloud Development. Bows and Flows of Angel Hair
Fog and Cloud Development Bows and Flows of Angel Hair 1 Ch. 5: Condensation Achieving Saturation Evaporation Cooling of Air Adiabatic and Diabatic Processes Lapse Rates Condensation Condensation Nuclei
Suvarchal Kumar Cheedela
Single Column Models and Low Cloud Feedbacks Suvarchal Kumar Cheedela Berichte zur Erdsystemforschung Reports on Earth System Science 148 2014 Berichte zur Erdsystemforschung 148 2014 Single Column Models
Cloud Development and Forms. LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection. Orographic Cloud. The Orographic Cloud
Introduction to Climatology GEOGRAPHY 300 Cloud Development and Forms Tom Giambelluca University of Hawai i at Mānoa LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection Cloud Development
Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium
GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L08802, doi:10.1029/2007gl033029, 2008 Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium D. J. Posselt, 1 S. C. van
Turbulence in Continental Stratocumulus, Part I: External Forcings and Turbulence Structures
Boundary-Layer Meteorol DOI 10.1007/s10546-013-9873-3 ARTICLE Turbulence in Continental Stratocumulus, Part I: External Forcings and Turbulence Structures Ming Fang BruceA.Albrecht Virendra P. Ghate Pavlos
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary
Cloud Radiation and the Law of Attraction
Convec,on, cloud and radia,on Convection redistributes the thermal energy yielding (globally-averaged), a mean lapse rate of ~ -6.5 o C/km. Radiative processes tend to produce a more negative temperature
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang
Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A.
376 THE SIMULATION OF TROPICAL CONVECTIVE SYSTEMS William M. Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A. ABSTRACT IN NUMERICAL
The impact of parametrized convection on cloud feedback.
The impact of parametrized convection on cloud feedback. Mark Webb, Adrian Lock (Met Office) Thanks also to Chris Bretherton (UW), Sandrine Bony (IPSL),Jason Cole (CCCma), Abderrahmane Idelkadi (IPSL),
Chapter 6: Cloud Development and Forms
Chapter 6: Cloud Development and Forms (from The Blue Planet ) Why Clouds Form Static Stability Cloud Types Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling.
Limitations of Equilibrium Or: What if τ LS τ adj?
Limitations of Equilibrium Or: What if τ LS τ adj? Bob Plant, Laura Davies Department of Meteorology, University of Reading, UK With thanks to: Steve Derbyshire, Alan Grant, Steve Woolnough and Jeff Chagnon
Turbulence-microphysics interactions in boundary layer clouds
Turbulence-microphysics interactions in boundary layer clouds Wojciech W. Grabowski 1 with contributions from D. Jarecka 2, H. Morrison 1, H. Pawlowska 2, J.Slawinska 3, L.-P. Wang 4 A. A. Wyszogrodzki
RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE. Peter J. Lamb. Cooperative Institute for Mesoscale Meteorological Studies
RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE by Peter J. Lamb Cooperative Institute for Mesoscale Meteorological Studies and School of Meteorology The University of Oklahoma
Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model simulations of TWP ICE
Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 734 754, April 2012 A Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model
Formation & Classification
CLOUDS Formation & Classification DR. K. K. CHANDRA Department of forestry, Wildlife & Environmental Sciences, GGV, Bilaspur What is Cloud It is mass of tiny water droplets or ice crystals or both of size
Use of numerical weather forecast predictions in soil moisture modelling
Use of numerical weather forecast predictions in soil moisture modelling Ari Venäläinen Finnish Meteorological Institute Meteorological research [email protected] OBJECTIVE The weather forecast models
Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer
Atmos. Chem. Phys., 14, 4515 453, 214 www.atmos-chem-phys.net/14/4515/214/ doi:1.5194/acp-14-4515-214 Author(s) 214. CC Attribution 3. License. Atmospheric Chemistry and Physics Open Access Role of the
MOGREPS status and activities
MOGREPS status and activities by Warren Tennant with contributions from Rob Neal, Sarah Beare, Neill Bowler & Richard Swinbank Crown copyright Met Office 32 nd EWGLAM and 17 th SRNWP meetings 1 Contents
A Review on the Uses of Cloud-(System-)Resolving Models
A Review on the Uses of Cloud-(System-)Resolving Models Jeffrey D. Duda Since their advent into the meteorological modeling world, cloud-(system)-resolving models (CRMs or CSRMs) have become very important
AOSC 621 Lesson 15 Radiative Heating/Cooling
AOSC 621 Lesson 15 Radiative Heating/Cooling Effect of radiation on clouds: fog 2 Clear-sky cooling/heating rate: longwave CO2 O3 H2O 3 Clear-sky heating rate: shortwave Standard atmosphere Heating due
Interactive Simulation and Visualization of Atmospheric Large-Eddy Simulations
Interactive Simulation and Visualization of Atmospheric Large-Eddy Simulations E. J. Griffith 1, F. H. Post 1, T. Heus 2, H.J.J. Jonker 2 Technical Report VIS 2009-02 1 Data Visualization Group, Delft
Common Cloud Names, Shapes, and Altitudes:
Common Cloud Names, Shapes, and Altitudes: Low Clouds Middle Clouds High Clouds Genus Cumulus Cumulonimbus (extend through all 3 levels) Stratus Stratocumulus Altocumulus Altostratus Nimbostratus (extend
Titelmasterformat durch Klicken. bearbeiten
Evaluation of a Fully Coupled Atmospheric Hydrological Modeling System for the Sissili Watershed in the West African Sudanian Savannah Titelmasterformat durch Klicken June, 11, 2014 1 st European Fully
Atmospheric Stability & Cloud Development
Atmospheric Stability & Cloud Development Stable situations a small change is resisted and the system returns to its previous state Neutral situations a small change is neither resisted nor enlarged Unstable
Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions
Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions M. Bianchi Janetti 1, F. Ochs 1 and R. Pfluger 1 1 University of Innsbruck, Unit for Energy Efficient Buildings,
Turbulent mixing in clouds latent heat and cloud microphysics effects
Turbulent mixing in clouds latent heat and cloud microphysics effects Szymon P. Malinowski1*, Mirosław Andrejczuk2, Wojciech W. Grabowski3, Piotr Korczyk4, Tomasz A. Kowalewski4 and Piotr K. Smolarkiewicz3
Mass flux fluctuation in a cloud resolving simulation with diurnal forcing
Mass flux fluctuation in a cloud resolving simulation with diurnal forcing Jahanshah Davoudi Norman McFarlane, Thomas Birner Physics department, University of Toronto Mass flux fluctuation in a cloud resolving
Clouds for pilots. Ed Williams. http://williams.best.vwh.net/
Clouds for pilots Ed Williams http://williams.best.vwh.net/ Clouds are important to pilots! Many of our weather problems are associated with clouds: Fog Thunderstorms Cloud In flight icing Cloud physics
Cloud Correction and its Impact on Air Quality Simulations
Cloud Correction and its Impact on Air Quality Simulations Arastoo Pour Biazar 1, Richard T. McNider 1, Andrew White 1, Bright Dornblaser 3, Kevin Doty 1, Maudood Khan 2 1. University of Alabama in Huntsville
This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air. 2. Processes that cause instability and cloud development
Stability & Cloud Development This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air 2. Processes that cause instability and cloud development Stability & Movement A rock,
Fog and low cloud ceilings in the northeastern US: climatology and dedicated field study
Fog and low cloud ceilings in the northeastern US: climatology and dedicated field study Robert Tardif National Center for Atmospheric Research Research Applications Laboratory 1 Overview of project Objectives:
Mixing Heights & Smoke Dispersion. Casey Sullivan Meteorologist/Forecaster National Weather Service Chicago
Mixing Heights & Smoke Dispersion Casey Sullivan Meteorologist/Forecaster National Weather Service Chicago Brief Introduction Fire Weather Program Manager Liaison between the NWS Chicago office and local
Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography
Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu
Mixed-phase layer clouds
Mixed-phase layer clouds Chris Westbrook and Andrew Barrett Thanks to Anthony Illingworth, Robin Hogan, Andrew Heymsfield and all at the Chilbolton Observatory What is a mixed-phase cloud? Cloud below
Energy & Conservation of Energy. Energy & Radiation, Part I. Monday AM, Explain: Energy. Thomas Birner, ATS, CSU
Monday AM, Explain: Energy MONDAY: energy in and energy out on a global scale Energy & Conservation of Energy Energy & Radiation, Part I Energy concepts: What is energy? Conservation of energy: Can energy
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM Hugh Morrison and Wojciech Grabowski NCAR* (MMM Division, NESL) Marat Khairoutdinov Stony Brook University
39th International Physics Olympiad - Hanoi - Vietnam - 2008. Theoretical Problem No. 3
CHANGE OF AIR TEMPERATURE WITH ALTITUDE, ATMOSPHERIC STABILITY AND AIR POLLUTION Vertical motion of air governs many atmospheric processes, such as the formation of clouds and precipitation and the dispersal
CFD Based Air Flow and Contamination Modeling of Subway Stations
CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George
TOPIC: CLOUD CLASSIFICATION
INDIAN INSTITUTE OF TECHNOLOGY, DELHI DEPARTMENT OF ATMOSPHERIC SCIENCE ASL720: Satellite Meteorology and Remote Sensing TERM PAPER TOPIC: CLOUD CLASSIFICATION Group Members: Anil Kumar (2010ME10649) Mayank
The Importance of Understanding Clouds
NASA Facts National Aeronautics and Space Administration www.nasa.gov The Importance of Understanding Clouds One of the most interesting features of Earth, as seen from space, is the ever-changing distribution
Radiative effects of clouds, ice sheet and sea ice in the Antarctic
Snow and fee Covers: Interactions with the Atmosphere and Ecosystems (Proceedings of Yokohama Symposia J2 and J5, July 1993). IAHS Publ. no. 223, 1994. 29 Radiative effects of clouds, ice sheet and sea
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP X. Wu Department of Geological and Atmospheric Sciences Iowa State University Ames, Iowa X.-Z.
Clouds, Fog, & Precipitation
firecatching.blogspot.com Kids.brittanica.com Clouds and fog are physically the same just location is different Fog is considered a stratus cloud at or near the surface What does one see when looking at
Cloud-Resolving Simulations of Convection during DYNAMO
Cloud-Resolving Simulations of Convection during DYNAMO Matthew A. Janiga and Chidong Zhang University of Miami, RSMAS 2013 Fall ASR Workshop Outline Overview of observations. Methodology. Simulation results.
Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model
Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model H. Guo, J. E. Penner, M. Herzog, and X. Liu Department of Atmospheric,
Not all clouds are easily classified! Cloud Classification schemes. Clouds by level 9/23/15
Cloud Classification schemes 1) classified by where they occur (for example: high, middle, low) 2) classified by amount of water content and vertical extent (thick, thin, shallow, deep) 3) classified by
Clouds. A simple scientific explanation for the weather-curious. By Kira R. Erickson
Clouds A simple scientific explanation for the weather-curious By Kira R. Erickson Table of Contents 1 3 4 INTRO 2 Page 3 How Clouds Are Formed Types of Clouds Clouds and Weather More Information Page
Indian Ocean and Monsoon
Indo-French Workshop on Atmospheric Sciences 3-5 October 2013, New Delhi (Organised by MoES and CEFIPRA) Indian Ocean and Monsoon Satheesh C. Shenoi Indian National Center for Ocean Information Services
