The impact of parametrized convection on cloud feedback.
|
|
|
- Job Wells
- 10 years ago
- Views:
Transcription
1 The impact of parametrized convection on cloud feedback. Mark Webb, Adrian Lock (Met Office) Thanks also to Chris Bretherton (UW), Sandrine Bony (IPSL),Jason Cole (CCCma), Abderrahmane Idelkadi (IPSL), Sarah Kang (UNIST), Tsuyoshi Koshiro (MRI), Hideaki Kawai (MRI), Tomoo Ogura (NIES), Romain Roehrig (CNRM), Yechul Shin (UNIST), Thorsten Mauritsen (MPI), Steve Sherwood (UNSW), Jessica Vial (IPSL), Masahiro Watanabe (AORI), Matthew Woelfle (UW), Ming Zhao (GFDL). CFMIP Meeting, Monterey, June 2015
2 Selected Process On/Off Klima Intercomparison Experiment (SPOOKIE) Aims Establish the relative contributions of different areas of model physics to inter-model spread in cloud feedbacks Approach Repeat CFMIP-2 AMIP/AMIP Uniform +4K SST perturbation experiments Switch off or simplify different model schemes in turn Pilot Experiments Start by switching off convective parametrization Crown copyright Met Office
3 Global Mean Cloud Feedback (Wm -2 K -1 ) (Including cloud masking) The Cloud Radiative Effect (CRE) is the difference in the net downward radiation at the top of the atmosphere with and without clouds. Here we diagnose the cloud feedback as the change in net CRE between amip and amip4k divided by the change in global surface temperature. This includes the climatological cloud masking effect on the non-cloud feedbacks.
4 Organisation of tropical cloud regimes Convection Trade Cumulus Stratocumulus X X? Schematic from Emanuel (1994) Crown copyright Met Office
5 amip4k Cloud Feedbacks over 30 O N/S Oceans Standard ConvOff We sort cloud regimes in the tropics using a composite index based on precipitation rate and Lower Tropospheric Stablity (LTS). We call this the Angular LTS/Precipitation Index (ALPI).
6 amip4k Cloud Feedbacks over 30 O N/S Oceans Standard ConvOff
7 amip4k Cloud Feedbacks over 30 O N/S Oceans Standard ConvOff
8 Standard Models ConvOff Models Black diamonds mark significant correlations with the net cloud feedbacks in same regime Grey squares mark significant correlations with the net cloud feedback area averaged over tropical oceans Moist Static Energy (MSE) is a measure of the energy in a parcel of air, including sensible heat due to temperature, latent heat due to water vapour and potential energy due to height. MSE = C P T + L v q + gz C P is the specific heat of air at constant pressure T is temperature L v is the latent heat of vaporization q is the specific humidity g is the acceleration due to gravity z is the height above the surface
9 Standard Models ConvOff Models Black diamonds mark significant correlations with the net cloud feedbacks in same regime Grey squares mark significant correlations with the net cloud feedback area averaged over tropical oceans
10 Why might models with less MSE near the top of the PBL have more positive cloud feedbacks? Sherwood et al and Zhao 2014 argue that precipitation efficiency plays an important role in cloud feedback. Sherwood et al defines the bulk precipitation efficiency in terms of the upward transport of water vapour from the boundary layer to the free troposphere required to maintain a given surface precipitation rate. In GCMs such transports are due to lower tropospheric mixing by small scale processes such as parametrized convection or turbulence and by large scale mixing associated with the resolved large scale circulation. Sherwood et al argue that models with stronger lower tropospheric mixing will have a stronger drying of the boundary layer, and that this drying effect will strengthen more in the warming climate, resulting in stronger low cloud reductions and more positive cloud feedbacks. Reduced MSE near the top of the PBL in higher sensitivity models could then be a consequence of stronger lower-tropospheric mixing in accordance with the arguments of Sherwood et al. Crown copyright Met Office
11 What processes other than parametrized convection regulate lower tropospheric mixing? Inter-model differences in parametrized convection and its precipitation efficiency cannot explain the overall range in cloud feedbacks in the models examined here. Zhao, 2014 defines precipitation efficiently slightly differently to Sherwood et al. and makes a distinction between precipitation efficiency associated with convective schemes and large scale cloud/precipitation schemes. Might inter-model spread in lower tropospheric mixing and cloud feedback instead be explained by inter-model differences in the precipitation efficiency associated with the large scale cloud and precipitation schemes? Crown copyright Met Office
12 Standard ConvOff Black diamonds mark significant correlations with the net cloud feedbacks in same regime Grey squares mark significant correlations with the net cloud feedback area averaged over tropical oceans
13 Why might less present-day mid-level cloud lead to more positive low cloud feedback? In radiative-convective equilibrium, convection adjusts to provide enough heating to balance longwave radiative cooling in the free troposphere. Models which easily form precipitating clouds in the mid troposphere will rain out efficiently to the surface. Models which form mid level clouds less easily will need to condense higher up to provide the required latent heat release in the free troposphere. Precipitation from higher clouds has further to fall and more time to evaporate, offsetting latent heating and requiring a stronger upward transport of water vapour to maintain the surface precipitation rate. Hence having less mid level cloud in models might result in stronger lower tropospheric mixing, an enhanced drying of the PBL in the warmer climate, and more strongly positive cloud feedbacks.
14 Testing our ideas future experiments. The large scale precipitation efficiency in models could be reduced by modifying the cloud microphysics to make it harder to rain from mid-level clouds. Alternatively, cloud condensation at mid levels could be suppressed by reevaporating cloud water. Reducing ice fall speeds would also reduce precipitation efficiency. If the ideas outlined above are correct, then these experiments would be expected to reduce precipitation efficiency, increase upward transports of water vapour and boundary layer drying, reduce MSE near the top of the boundary layer and strengthen positive low level cloud feedbacks.
15 Summary ConvOff experiments reproduce positive subtropical cloud feedback. They show strong convergence in tropical deep convective longwave cloud feedbacks but increased spread in net cloud feedback in the trades. Differences in parametrized convection can have a substantial impact on global cloud feedback in some models, but do not explain the overall range. Higher sensitivity models in both standard and ConvOff ensembles have: Less moist static energy near boundary layer top Less mid-level cloud in trades / deep convection regimes We have developed some ideas which may explain these results and will test them in future process suppression experiments. Such experiments could form the basis for SPOOKIE phase 2. Crown copyright Met Office
SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment
SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment Mark Webb, Adrian Lock (Met Office), Sandrine Bony (IPSL), Chris Bretherton (UW), Tsuyoshi Koshiro, Hideaki Kawai (MRI), Thorsten Mauritsen
CMIP6 Recommendations from The Cloud Feedback Model Inter-comparison Project CFMIP. Building bridges between cloud communities
CMIP6 Recommendations from The Cloud Feedback Model Inter-comparison Project CFMIP Building bridges between cloud communities CFMIP Committee members Mark Webb, Chris Bretherton, Sandrine Bony, Steve Klein,
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Kate Thayer-Calder and Dave Randall Colorado State University October 24, 2012 NOAA's 37th Climate Diagnostics and Prediction Workshop Convective
Description of zero-buoyancy entraining plume model
Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium Supplementary information Martin S. Singh & Paul A. O Gorman S1 CRM simulations Here we give more
Fundamentals of Climate Change (PCC 587): Water Vapor
Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water Water is a remarkable molecule Water vapor
Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux
Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux Cloud-resolving modelling : perspectives Improvement of models, new ways of using them, renewed views And
Stability and Cloud Development. Stability in the atmosphere AT350. Why did this cloud form, whereas the sky was clear 4 hours ago?
Stability and Cloud Development AT350 Why did this cloud form, whereas the sky was clear 4 hours ago? Stability in the atmosphere An Initial Perturbation Stable Unstable Neutral If an air parcel is displaced
A new positive cloud feedback?
A new positive cloud feedback? Bjorn Stevens Max-Planck-Institut für Meteorologie KlimaCampus, Hamburg (Based on joint work with Louise Nuijens and Malte Rieck) Slide 1/31 Prehistory [W]ater vapor, confessedly
Formation & Classification
CLOUDS Formation & Classification DR. K. K. CHANDRA Department of forestry, Wildlife & Environmental Sciences, GGV, Bilaspur What is Cloud It is mass of tiny water droplets or ice crystals or both of size
How To Model An Ac Cloud
Development of an Elevated Mixed Layer Model for Parameterizing Altocumulus Cloud Layers S. Liu and S. K. Krueger Department of Meteorology University of Utah, Salt Lake City, Utah Introduction Altocumulus
Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography
Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu
Chapter 7 Stability and Cloud Development. Atmospheric Stability
Chapter 7 Stability and Cloud Development Atmospheric Stability 1 Cloud Development - stable environment Stable air (parcel) - vertical motion is inhibited if clouds form, they will be shallow, layered
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency In Sik Kang Seoul National University Young Min Yang (UH) and Wei Kuo Tao (GSFC) Content 1. Conventional
Atmospheric Processes
Atmospheric Processes Steven Sherwood Climate Change Research Centre, UNSW Yann Arthus-Bertrand / Altitude Where do atmospheric processes come into AR5 WGI? 1. The main feedbacks that control equilibrium
Atmospheric Stability & Cloud Development
Atmospheric Stability & Cloud Development Stable situations a small change is resisted and the system returns to its previous state Neutral situations a small change is neither resisted nor enlarged Unstable
Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium
GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L08802, doi:10.1029/2007gl033029, 2008 Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium D. J. Posselt, 1 S. C. van
The formation of wider and deeper clouds through cold-pool dynamics
The formation of wider and deeper clouds through cold-pool dynamics Linda Schlemmer, Cathy Hohenegger e for Meteorology, Hamburg 2013-09-03 Bergen COST Meeting Linda Schlemmer 1 / 27 1 Motivation 2 Simulations
Clouds. A simple scientific explanation for the weather-curious. By Kira R. Erickson
Clouds A simple scientific explanation for the weather-curious By Kira R. Erickson Table of Contents 1 3 4 INTRO 2 Page 3 How Clouds Are Formed Types of Clouds Clouds and Weather More Information Page
RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE. Peter J. Lamb. Cooperative Institute for Mesoscale Meteorological Studies
RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE by Peter J. Lamb Cooperative Institute for Mesoscale Meteorological Studies and School of Meteorology The University of Oklahoma
Earth s Cloud Feedback
Earth s Cloud Feedback Clouds are visible masses of liquid droplets and/or frozen crystals that remain suspended in the atmosphere. Molecule by molecule, water in a solid or liquid phase is 1000 times
This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air. 2. Processes that cause instability and cloud development
Stability & Cloud Development This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air 2. Processes that cause instability and cloud development Stability & Movement A rock,
Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction
Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.
Ecosystem-land-surface-BL-cloud coupling as climate changes
Ecosystem-land-surface-BL-cloud coupling as climate changes Alan K. Betts Atmospheric Research, [email protected] CMMAP August 19, 2009 Outline of Talk Land-surface climate: - surface, BL & cloud coupling
Clouds, Circulation, and Climate Sensitivity
Clouds, Circulation, and Climate Sensitivity Hui Su 1, Jonathan H. Jiang 1, Chengxing Zhai 1, Janice T. Shen 1 David J. Neelin 2, Graeme L. Stephens 1, Yuk L. Yung 3 1 Jet Propulsion Laboratory, California
THE CURIOUS CASE OF THE PLIOCENE CLIMATE. Chris Brierley, Alexey Fedorov and Zhonghui Lui
THE CURIOUS CASE OF THE PLIOCENE CLIMATE Chris Brierley, Alexey Fedorov and Zhonghui Lui Outline Introduce the warm early Pliocene Recent Discoveries in the Tropics Reconstructing the early Pliocene SSTs
Chapter 6 - Cloud Development and Forms. Interesting Cloud
Chapter 6 - Cloud Development and Forms Understanding Weather and Climate Aguado and Burt Interesting Cloud 1 Mechanisms that Lift Air Orographic lifting Frontal Lifting Convergence Localized convective
CHAPTER 2 Energy and Earth
CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect
Cloud Development and Forms. LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection. Orographic Cloud. The Orographic Cloud
Introduction to Climatology GEOGRAPHY 300 Cloud Development and Forms Tom Giambelluca University of Hawai i at Mānoa LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection Cloud Development
Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model simulations of TWP ICE
Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 734 754, April 2012 A Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model
Chapter 6: Cloud Development and Forms
Chapter 6: Cloud Development and Forms (from The Blue Planet ) Why Clouds Form Static Stability Cloud Types Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling.
Limitations of Equilibrium Or: What if τ LS τ adj?
Limitations of Equilibrium Or: What if τ LS τ adj? Bob Plant, Laura Davies Department of Meteorology, University of Reading, UK With thanks to: Steve Derbyshire, Alan Grant, Steve Woolnough and Jeff Chagnon
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary
Goal: Understand the conditions and causes of tropical cyclogenesis and cyclolysis
Necessary conditions for tropical cyclone formation Leading theories of tropical cyclogenesis Sources of incipient disturbances Extratropical transition Goal: Understand the conditions and causes of tropical
Clouds. Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada
Clouds Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada Outline of this Lecture Overview of clouds Warm cloud formation Precipitation formation
Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models
Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models S. A. Klein National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota Outline 1) Statistical results from SGP and AZORES 2) Challenge and Difficult
TOPIC: CLOUD CLASSIFICATION
INDIAN INSTITUTE OF TECHNOLOGY, DELHI DEPARTMENT OF ATMOSPHERIC SCIENCE ASL720: Satellite Meteorology and Remote Sensing TERM PAPER TOPIC: CLOUD CLASSIFICATION Group Members: Anil Kumar (2010ME10649) Mayank
Number of activated CCN as a key property in cloud-aerosol interactions. Or, More on simplicity in complex systems
Number of activated CCN as a key property in cloud-aerosol interactions Or, More on simplicity in complex systems 1 Daniel Rosenfeld and Eyal Freud The Hebrew University of Jerusalem, Israel Uncertainties
Suvarchal Kumar Cheedela
Single Column Models and Low Cloud Feedbacks Suvarchal Kumar Cheedela Berichte zur Erdsystemforschung Reports on Earth System Science 148 2014 Berichte zur Erdsystemforschung 148 2014 Single Column Models
8.5 Comparing Canadian Climates (Lab)
These 3 climate graphs and tables of data show average temperatures and precipitation for each month in Victoria, Winnipeg and Whitehorse: Figure 1.1 Month J F M A M J J A S O N D Year Precipitation 139
Fog and Cloud Development. Bows and Flows of Angel Hair
Fog and Cloud Development Bows and Flows of Angel Hair 1 Ch. 5: Condensation Achieving Saturation Evaporation Cooling of Air Adiabatic and Diabatic Processes Lapse Rates Condensation Condensation Nuclei
The Importance of Understanding Clouds
NASA Facts National Aeronautics and Space Administration www.nasa.gov The Importance of Understanding Clouds One of the most interesting features of Earth, as seen from space, is the ever-changing distribution
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM Hugh Morrison and Wojciech Grabowski NCAR* (MMM Division, NESL) Marat Khairoutdinov Stony Brook University
Convective Clouds. Convective clouds 1
Convective clouds 1 Convective Clouds Introduction Convective clouds are formed in vertical motions that result from the instability of the atmosphere. This instability can be caused by: a. heating at
Climate Models: Uncertainties due to Clouds. Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography
Climate Models: Uncertainties due to Clouds Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography Global mean radiative forcing of the climate system for
WCRP Grand Challenge on. Clouds, Circulation and Climate Sensitivity
WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity http://www.wcrp-climate.org/index.php/gc-clouds Sandrine Bony (LMD/IPSL) & Bjorn Stevens (MPI) WCRP JSC-35, 30 June 2014, Heidelberg,
Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations. Final Report
Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations Final Report Principal Investigator: Xiaoqing Wu, Department of Geological and Atmospheric Sciences, Iowa State
Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition
Thirteenth ARM Science Team Meeting Proceedings, Broomfield, Colorado, March 31-April 4, 23 Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective
Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A.
376 THE SIMULATION OF TROPICAL CONVECTIVE SYSTEMS William M. Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A. ABSTRACT IN NUMERICAL
Water, Phase Changes, Clouds
TUESDAY: air & water & clouds Water, Phase Changes, Clouds How can freezing make something warmer? 'warm air can hold more water' why? How do clouds form? The (extraordinary) properties of Water Physical
Cloud Radiation and the Law of Attraction
Convec,on, cloud and radia,on Convection redistributes the thermal energy yielding (globally-averaged), a mean lapse rate of ~ -6.5 o C/km. Radiative processes tend to produce a more negative temperature
Common Cloud Names, Shapes, and Altitudes:
Common Cloud Names, Shapes, and Altitudes: Low Clouds Middle Clouds High Clouds Genus Cumulus Cumulonimbus (extend through all 3 levels) Stratus Stratocumulus Altocumulus Altostratus Nimbostratus (extend
Usama Anber 1, Shuguang Wang 2, and Adam Sobel 1,2,3
Response of Atmospheric Convection to Vertical Wind Shear: Cloud Resolving Simulations with Parameterized Large-Scale Circulation. Part I: Specified Radiative Cooling. Usama Anber 1, Shuguang Wang 2, and
The Surface Energy Budget
The Surface Energy Budget The radiation (R) budget Shortwave (solar) Radiation Longwave Radiation R SW R SW α α = surface albedo R LW εσt 4 ε = emissivity σ = Stefan-Boltzman constant T = temperature Subsurface
Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth
Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)
AOSC 621 Lesson 15 Radiative Heating/Cooling
AOSC 621 Lesson 15 Radiative Heating/Cooling Effect of radiation on clouds: fog 2 Clear-sky cooling/heating rate: longwave CO2 O3 H2O 3 Clear-sky heating rate: shortwave Standard atmosphere Heating due
Evaluating GCM clouds using instrument simulators
Evaluating GCM clouds using instrument simulators University of Washington September 24, 2009 Why do we care about evaluation of clouds in GCMs? General Circulation Models (GCMs) project future climate
Air Masses and Fronts
Air Masses and Fronts Air Masses The weather of the United States east of the Rocky Mountains is dominated by large masses of air that travel south from the wide expanses of land in Canada, and north from
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP X. Wu Department of Geological and Atmospheric Sciences Iowa State University Ames, Iowa X.-Z.
Titelmasterformat durch Klicken. bearbeiten
Evaluation of a Fully Coupled Atmospheric Hydrological Modeling System for the Sissili Watershed in the West African Sudanian Savannah Titelmasterformat durch Klicken June, 11, 2014 1 st European Fully
CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles
CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles I. Air Temperature: Five important factors influence air temperature: A. Insolation B. Latitude C. Surface types D. Coastal vs. interior
A Review on the Uses of Cloud-(System-)Resolving Models
A Review on the Uses of Cloud-(System-)Resolving Models Jeffrey D. Duda Since their advent into the meteorological modeling world, cloud-(system)-resolving models (CRMs or CSRMs) have become very important
ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure,
ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure, density, and composition of the atmosphere constitutes atmospheric structure. These quantities also vary with season and location
Energy Pathways in Earth s Atmosphere
BRSP - 10 Page 1 Solar radiation reaching Earth s atmosphere includes a wide spectrum of wavelengths. In addition to visible light there is radiation of higher energy and shorter wavelength called ultraviolet
An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models
An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models Steven Krueger1 and Peter Bogenschutz2 1University of Utah, 2National
Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches Joao Teixeira
Not all clouds are easily classified! Cloud Classification schemes. Clouds by level 9/23/15
Cloud Classification schemes 1) classified by where they occur (for example: high, middle, low) 2) classified by amount of water content and vertical extent (thick, thin, shallow, deep) 3) classified by
Stratosphere-Troposphere Exchange in the Tropics. Masatomo Fujiwara Hokkaido University, Japan (14 March 2006)
Stratosphere-Troposphere Exchange in the Tropics Masatomo Fujiwara Hokkaido University, Japan (14 March 2006) Contents 1. Structure of Tropical Atmosphere 2. Water Vapor in the Stratosphere 3. General
Water vapour and greenhouse effect
GEOFIZIKA VOL. 16-17 1999-2000 Short communication UDC 551.571.4 Water vapour and greenhouse effect Ferenz Rákóczi and Zsuzsanna Iványi Department of Meteorology, Eötvös Loránd University Pázmány P. 1.,
Clouds for pilots. Ed Williams. http://williams.best.vwh.net/
Clouds for pilots Ed Williams http://williams.best.vwh.net/ Clouds are important to pilots! Many of our weather problems are associated with clouds: Fog Thunderstorms Cloud In flight icing Cloud physics
Clouds and the Energy Cycle
August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and
Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models Yefim L. Kogan Cooperative Institute
Sub-grid cloud parametrization issues in Met Office Unified Model
Sub-grid cloud parametrization issues in Met Office Unified Model Cyril Morcrette Workshop on Parametrization of clouds and precipitation across model resolutions, ECMWF, Reading, November 2012 Table of
Evaluation of precipitation simulated over mid-latitude land by CPTEC AGCM single-column model
Evaluation of precipitation simulated over mid-latitude land by CPTEC AGCM single-column model Enver Ramírez Gutiérrez 1, Silvio Nilo Figueroa 2, Paulo Kubota 2 1 CCST, 2 CPTEC INPE Cachoeira Paulista,
Temperature affects water in the air.
KEY CONCEPT Most clouds form as air rises and cools. BEFORE, you learned Water vapor circulates from Earth to the atmosphere Warm air is less dense than cool air and tends to rise NOW, you will learn How
