Towards an NWP-testbed
|
|
|
- Justin Nicholson
- 10 years ago
- Views:
Transcription
1 Towards an NWP-testbed Ewan O Connor and Robin Hogan University of Reading, UK
2 Overview Cloud schemes in NWP models are basically the same as in climate models, but easier to evaluate using ARM because: NWP models are trying to simulate the actual weather observed They are run every day In Europe at least, NWP modelers are more interested in comparisons with ARM-like data than climate modelers (not true in US?) But can we use these comparisons to improve the physics? Can compare different models which have different parameterizations But each model uses different data assimilation system Cleaner test if the setup is identical except one aspect of physics SCM-testbed is the crucial addition to the NWP-testbed How do we set such a system up? Start by interfacing Cloudnet processing with ARM products Metrics: test both bias and skill (can only test bias of climate model) Diurnal compositing to evaluate boundary-layer physics
3 Level 1b Minimum instrument requirements at each site Cloud radar, lidar, microwave radiometer, rain gauge, model or sondes Radar Lidar
4 Level 1c Instrument Synergy product Example of target classification and data quality fields: Ice Aerosol Liquid Rain
5 Level 2a/2b Cloud products on (L2a) observational and (L2b) model grid Water content and cloud fraction L2a IWC on radar/lidar grid L2b Cloud fraction on model grid
6 Cloud fraction Chilbolton Observations Met Office Mesoscale Model ECMWF Global Model Meteo-France ARPEGE Model KNMI RACMO Model Swedish RCA model
7 Cloud fraction ARM SGP Observations NCEP GFS model ECMWF model ERA Interim Analyses Met Office Global Model
8 Cloud fraction in 7 models Mean & PDF for 2004 for Chilbolton, Paris and Cabauw 0-7 km All models except DWD underestimate mid-level cloud Some have separate radiatively inactive snow (ECMWF, DWD); Met Office has combined ice and snow but still underestimates cloud fraction Wide range of low cloud amounts in models Not enough overcast boxes, particularly in Met Office model Illingworth et al. (BAMS 2007)
9 Cloud fraction in 5 models Mean for ARM SGP All models again underestimate mid-level cloud Météo france shows improvement from 2005 to 2006
10 Cloud fraction components ECMWF model at ARM SGP for 2005 Mean cloud fraction underestimated. Improves slightly with the inclusion of snow. Clouds are forecast often enough, when snow is included, except in BL. Underestimate of the mid-level cloud fraction amounts, even when snow is included.
11 Seasonal variation ECMWF NCEP UK Met Office
12 Diurnal variation Model cloud fraction always lower than observed. Not enough boundary layer cloud during the day. Can we simply scale the model cloud fraction?
13 Winter 2004
14 Summer 2004
15 Omega at 500 mb Model cloud fraction always lower than observed. Not enough cloud in anticyclonic conditions, especially boundary layer cloud. Can we scale cloud fraction? Only in large-scale ascent.
16 Skill Scores Met Office Global model has much lower skill for high cloud fraction amounts. Most models show more skill in the mid-levels than in the BL. NB. Not all models are shown with the same forecast leadtime!
17 Skill Scores Met Office Global model has much lower skill for high cloud fraction amounts. Most models show more skill in the mid-levels than in the BL.
18 Skill score Six years of cloud fraction evaluation over SGP Clearly less skill in summer, often no better than persistence ERA Interim Reanalysis no different to forecast Any improvement in the cloud fraction forecast over time? For Météo France, yes..
19 Summary and future work Six years of evaluation over SGP (extending to nine) All models underestimate mid- and low-level cloud Skill may be robustly quantified: less skill in summer Infrastructure to interface ARM and Cloudnet data has been tested with cloud fraction, IWC/LWC ongoing So far Met Office, NCEP, ECMWF, Météo-France and ERA Interim processed. Analyses do not show much improvement over NWP forecasts. Next implement code at BNL, with other ARM sites and models. Question: have cloud forecasts improved in 10 years? Next compare with results from SCM-testbed We have the tools to quantify objectively improvements in both bias and skill with changed parameterizations in NWP models and SCMs. Other metrics of performance or compositing methods required?
20
21 Joint PDFs of cloud fraction b d a c Raw (1 hr) resolution 1 year from Murgtal DWD COSMO model 6-hr averaging or use a simple contingency table
22 Contingency tables Model cloud Observed cloud Observed clear-sky a: Cloud hit b: False alarm a = 7194 b = 4098 Model clear-sky c: Miss d: Clear-sky hit c = 4502 d = DWD model, Murgtal For given set of observed events, only 2 degrees of freedom in all possible forecasts (e.g. a & b), because 2 quantities fixed: - Number of events that occurred n =a +b +c +d - Base rate (observed frequency of occurrence) p =(a +c)/n
23 Skill versus lead time Only possible for UK Met Office 12-km model and German DWD 7-km model Steady decrease of skill with lead time Both models appear to improve between 2004 and 2007 Generally, UK model best over UK, German best over Germany An exception is Murgtal in 2007 (Met Office model wins)
24 Met Office DWD Forecast half life S( t) = S t / τ 0 2 Fit an inverse-exponential: S 0 is the initial score and τ 1/2 is the half-life Noticeably longer half-life fitted after 36 hours Same thing found for Met Office rainfall forecast (Roberts 2008) First timescale due to data assimilation and convective events Second due to more predictable large-scale weather systems 1/ 2
25 Why is half-life less for clouds than pressure? Different spatial scales? Convection? Average temporally before calculating skill scores: Absolute score and half-life increase with number of hours averaged
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang
Sub-grid cloud parametrization issues in Met Office Unified Model
Sub-grid cloud parametrization issues in Met Office Unified Model Cyril Morcrette Workshop on Parametrization of clouds and precipitation across model resolutions, ECMWF, Reading, November 2012 Table of
Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS
Introduction Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS Zhanqing Li and Seoung-Soo Lee University of Maryland NOAA/NCEP/EMC Collaborators
A SURVEY OF CLOUD COVER OVER MĂGURELE, ROMANIA, USING CEILOMETER AND SATELLITE DATA
Romanian Reports in Physics, Vol. 66, No. 3, P. 812 822, 2014 ATMOSPHERE PHYSICS A SURVEY OF CLOUD COVER OVER MĂGURELE, ROMANIA, USING CEILOMETER AND SATELLITE DATA S. STEFAN, I. UNGUREANU, C. GRIGORAS
Partnership to Improve Solar Power Forecasting
Partnership to Improve Solar Power Forecasting Venue: EUPVSEC, Paris France Presenter: Dr. Manajit Sengupta Date: October 1 st 2013 NREL is a national laboratory of the U.S. Department of Energy, Office
Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models. Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD
Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD Solar Radiation Reaching the Surface Incoming solar radiation can be reflected,
Investigations on COSMO 2.8Km precipitation forecast
Investigations on COSMO 2.8Km precipitation forecast Federico Grazzini, ARPA-SIMC Emilia-Romagna Coordinator of physical aspects group of COSMO Outline Brief description of the COSMO-HR operational suites
MSG-SEVIRI cloud physical properties for model evaluations
Rob Roebeling Weather Research Thanks to: Hartwig Deneke, Bastiaan Jonkheid, Wouter Greuell, Jan Fokke Meirink and Erwin Wolters (KNMI) MSG-SEVIRI cloud physical properties for model evaluations Cloud
How To Find Out How Much Cloud Fraction Is Underestimated
Parameterizing the difference in cloud fraction defined by area and by volume as observed with radar and lidar MALCOLM E. BROOKS 1 2, ROBIN J. HOGAN, AND ANTHONY J. ILLINGWORTH Department of Meteorology,
Application of Numerical Weather Prediction Models for Drought Monitoring. Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia
Application of Numerical Weather Prediction Models for Drought Monitoring Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia Contents 1. Introduction 2. Numerical Weather Prediction Models -
Guy Carpenter Asia-Pacific Climate Impact Centre, School of energy and Environment, City University of Hong Kong
Diurnal and Semi-diurnal Variations of Rainfall in Southeast China Judy Huang and Johnny Chan Guy Carpenter Asia-Pacific Climate Impact Centre School of Energy and Environment City University of Hong Kong
Mixed-phase layer clouds
Mixed-phase layer clouds Chris Westbrook and Andrew Barrett Thanks to Anthony Illingworth, Robin Hogan, Andrew Heymsfield and all at the Chilbolton Observatory What is a mixed-phase cloud? Cloud below
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect Tuuli Perttula, FMI + Thanks to: Nadia Fourrié, Lydie Lavanant, Florence Rabier and Vincent Guidard, Météo
Cloud verification: a review of methodologies and recent developments
Cloud verification: a review of methodologies and recent developments Anna Ghelli ECMWF Slide 1 Thanks to: Maike Ahlgrimm Martin Kohler, Richard Forbes Slide 1 Outline Cloud properties Data availability
Diurnal Cycle: Cloud Base Height clear sky
Diurnal Cycle: Cloud Base Height clear sky Helsinki CNN I Madrid, 16 Dezember 2002 1 Cabauw Geesthacht Cabauw Geesthacht Helsinki Helsinki Petersburg Potsdam Petersburg Potsdam CNN I CNN II Madrid, 16
Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models Yefim L. Kogan Cooperative Institute
How To Find Out How Much Cloud Fraction Is Underestimated
2248 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 62 Parameterizing the Difference in Cloud Fraction Defined by Area and by Volume as Observed with Radar and Lidar MALCOLM E. BROOKS,*
ASSESSMENT OF THE CAPABILITY OF WRF MODEL TO ESTIMATE CLOUDS AT DIFFERENT TEMPORAL AND SPATIAL SCALES
16TH WRF USER WORKSHOP, BOULDER, JUNE 2015 ASSESSMENT OF THE CAPABILITY OF WRF MODEL TO ESTIMATE CLOUDS AT DIFFERENT TEMPORAL AND SPATIAL SCALES Clara Arbizu-Barrena, David Pozo-Vázquez, José A. Ruiz-Arias,
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility Arunchandra S. Chandra Pavlos Kollias Department of Atmospheric
Physical properties of mesoscale high-level cloud systems in relation to their atmospheric environment deduced from Sounders
Physical properties of mesoscale high-level cloud systems in relation to their atmospheric environment deduced from Sounders Claudia Stubenrauch, Sofia Protopapadaki, Artem Feofilov, Theodore Nicolas &
High-resolution Regional Reanalyses for Europe and Germany
High-resolution Regional Reanalyses for Europe and Germany Christian Ohlwein 1,2, Jan Keller 1,4, Petra Friederichs 2, Andreas Hense 2, Susanne Crewell 3, Sabrina Bentzien 1,2, Christoph Bollmeyer 1,2,
Validation n 2 of the Wind Data Generator (WDG) software performance. Comparison with measured mast data - Flat site in Northern France
Validation n 2 of the Wind Data Generator (WDG) software performance Comparison with measured mast data - Flat site in Northern France Mr. Tristan Fabre* La Compagnie du Vent, GDF-SUEZ, Montpellier, 34967,
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations 22 September 2011 Hervé LE GLEAU, Marcel DERRIEN Centre de météorologie Spatiale. Lannion Météo-France 1 Fog or low level clouds?
Fire Weather Index: from high resolution climatology to Climate Change impact study
Fire Weather Index: from high resolution climatology to Climate Change impact study International Conference on current knowledge of Climate Change Impacts on Agriculture and Forestry in Europe COST-WMO
MOGREPS status and activities
MOGREPS status and activities by Warren Tennant with contributions from Rob Neal, Sarah Beare, Neill Bowler & Richard Swinbank Crown copyright Met Office 32 nd EWGLAM and 17 th SRNWP meetings 1 Contents
A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning.
A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning. 31st Annual International Symposium on Forecasting Lourdes Ramírez Santigosa Martín
Very High Resolution Arctic System Reanalysis for 2000-2011
Very High Resolution Arctic System Reanalysis for 2000-2011 David H. Bromwich, Lesheng Bai,, Keith Hines, and Sheng-Hung Wang Polar Meteorology Group, Byrd Polar Research Center The Ohio State University
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota Outline 1) Statistical results from SGP and AZORES 2) Challenge and Difficult
Cloud Profiling at the Lindenberg Observatory
Cloud Profiling at the Lindenberg Observatory Ulrich Görsdorf DWD, Cloud Profiling with a Ka-Band radar at the Lindenberg Observatory Ulrich Görsdorf DWD, MIRA 35.5 GHz (8 mm) Radar (Ka-Band) Coherent
A Microwave Retrieval Algorithm of Above-Cloud Electric Fields
A Microwave Retrieval Algorithm of Above-Cloud Electric Fields Michael J. Peterson The University of Utah Chuntao Liu Texas A & M University Corpus Christi Douglas Mach Global Hydrology and Climate Center
REGIONAL CLIMATE AND DOWNSCALING
REGIONAL CLIMATE AND DOWNSCALING Regional Climate Modelling at the Hungarian Meteorological Service ANDRÁS HORÁNYI (horanyi( [email protected]@met.hu) Special thanks: : Gabriella Csima,, Péter Szabó, Gabriella
Assimilation of cloudy infrared satellite observations: The Met Office perspective
Assimilation of cloudy infrared satellite observations: The Met Office perspective Ed Pavelin, Met Office International Symposium on Data Assimilation 2014, Munich Contents This presentation covers the
Clouds and Convection
Max-Planck-Institut Clouds and Convection Cathy Hohenegger, Axel Seifert, Bjorn Stevens, Verena Grützun, Thijs Heus, Linda Schlemmer, Malte Rieck Max-Planck-Institut Shallow convection Deep convection
High Resolution Modeling, Clouds, Precipitation and Climate
High Resolution Modeling, Clouds, Precipitation and Climate Pier Siebesma, Ramon Mendez Gomez, Jerome Schalkwijk, Stephan de Roode Jisk Attema, Jessica Loreaux, Geert Lenderink, Harm Jonker 1. Precipitation
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Kate Thayer-Calder and Dave Randall Colorado State University October 24, 2012 NOAA's 37th Climate Diagnostics and Prediction Workshop Convective
Improving Low-Cloud Simulation with an Upgraded Multiscale Modeling Framework
Improving Low-Cloud Simulation with an Upgraded Multiscale Modeling Framework Kuan-Man Xu and Anning Cheng NASA Langley Research Center Hampton, Virginia Motivation and outline of this talk From Teixeira
Why aren t climate models getting better? Bjorn Stevens, UCLA
Why aren t climate models getting better? Bjorn Stevens, UCLA Four Hypotheses 1. Our premise is false, models are getting better. 2. We don t know what better means. 3. It is difficult, models have rough
RPG Radiometer Deployment Experience
Radiometer Physics GmbH RPG Radiometer Physics GmbH - Birkenmaarstraße 10-53340 Meckenheim/Germany Tel.: +49-(0)2225/999810 Fax: +49-(0)2225/9998199 E-Mail: Dr. Thomas Rose [email protected] Achim
Solarstromprognosen für Übertragungsnetzbetreiber
Solarstromprognosen für Übertragungsnetzbetreiber Elke Lorenz, Jan Kühnert, Annette Hammer, Detlev Heienmann Universität Oldenburg 1 Outline grid integration of photovoltaic power (PV) in Germany overview
Validation of SEVIRI cloud-top height retrievals from A-Train data
Validation of SEVIRI cloud-top height retrievals from A-Train data Chu-Yong Chung, Pete N Francis, and Roger Saunders Contents Introduction MO GeoCloud AVAC-S Long-term monitoring Comparison with OCA Summary
II. Related Activities
(1) Global Cloud Resolving Model Simulations toward Numerical Weather Forecasting in the Tropics (FY2005-2010) (2) Scale Interaction and Large-Scale Variation of the Ocean Circulation (FY2006-2011) (3)
Improving Accuracy of Solar Forecasting February 14, 2013
Improving Accuracy of Solar Forecasting February 14, 2013 Solar Resource Forecasting Objectives: Improve accuracy of solar resource forecasts Enable widespread use of solar forecasts in power system operations
Chapter 2 False Alarm in Satellite Precipitation Data
Chapter 2 False Alarm in Satellite Precipitation Data Evaluation of satellite precipitation algorithms is essential for future algorithm development. This is why many previous studies are devoted to the
Combining Satellite High Frequency Microwave Radiometer & Surface Cloud Radar Data for Determination of Large Scale 3 D Cloud IWC 서은경
11/21/2008 제9회 기상레이더 워크숍 Combining Satellite High Frequency Microwave Radiometer & Surface Cloud Radar Data for Determination of Large Scale 3 D Cloud IWC 서은경 공주대학교 지구과학교육과 Objective: To retrieve large
Marko Markovic Department of Earth and Atmospheric Sciences. University of Quebec at Montreal
An Evaluation of the Surface Radiation Budget Over North America for a Suite of Regional Climate Models and Reanalysis Data, Part 1: Comparison to Surface Stations Observations Marko Markovic Department
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency In Sik Kang Seoul National University Young Min Yang (UH) and Wei Kuo Tao (GSFC) Content 1. Conventional
Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model
Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model H. Guo, J. E. Penner, M. Herzog, and X. Liu Department of Atmospheric,
Cloud/Hydrometeor Initialization in the 20-km RUC Using GOES Data
WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR BASIC SYSTEMS OPEN PROGRAMMME AREA GROUP ON INTEGRATED OBSERVING SYSTEMS EXPERT TEAM ON OBSERVATIONAL DATA REQUIREMENTS AND REDESIGN OF THE GLOBAL OBSERVING
Cloud-Resolving Simulations of Convection during DYNAMO
Cloud-Resolving Simulations of Convection during DYNAMO Matthew A. Janiga and Chidong Zhang University of Miami, RSMAS 2013 Fall ASR Workshop Outline Overview of observations. Methodology. Simulation results.
Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux
Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux Cloud-resolving modelling : perspectives Improvement of models, new ways of using them, renewed views And
Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley
University: Florida Institute of Technology Name of University Researcher Preparing Report: Sen Chiao NWS Office: Las Vegas Name of NWS Researcher Preparing Report: Stanley Czyzyk Type of Project (Partners
Forecaster comments to the ORTECH Report
Forecaster comments to the ORTECH Report The Alberta Forecasting Pilot Project was truly a pioneering and landmark effort in the assessment of wind power production forecast performance in North America.
Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A.
376 THE SIMULATION OF TROPICAL CONVECTIVE SYSTEMS William M. Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A. ABSTRACT IN NUMERICAL
Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF
3 Working Group on Verification and Case Studies 56 Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF Bogdan Alexandru MACO, Mihaela BOGDAN, Amalia IRIZA, Cosmin Dănuţ
Near Real Time Blended Surface Winds
Near Real Time Blended Surface Winds I. Summary To enhance the spatial and temporal resolutions of surface wind, the remotely sensed retrievals are blended to the operational ECMWF wind analyses over the
Simulations of Clouds and Sensitivity Study by Wearther Research and Forecast Model for Atmospheric Radiation Measurement Case 4
Simulations of Clouds and Sensitivity Study by Wearther Research and Forecast Model for Atmospheric Radiation Measurement Case 4 Jingbo Wu and Minghua Zhang Institute for Terrestrial and Planetary Atmospheres
Fog and low cloud ceilings in the northeastern US: climatology and dedicated field study
Fog and low cloud ceilings in the northeastern US: climatology and dedicated field study Robert Tardif National Center for Atmospheric Research Research Applications Laboratory 1 Overview of project Objectives:
A model to observation approach to evaluating cloud microphysical parameterisations using polarimetric radar
A model to observation approach to evaluating cloud microphysical parameterisations using polarimetric radar Monika Pfeifer G. Craig, M. Hagen, C. Keil Polarisation Doppler Radar POLDIRAD Rain Graupel
Forecasting of Solar Radiation
Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo Oldenburg University, Institute of Physics, Energy and Semiconductor Research Laboratory, Energy Meteorology Group 26111 Oldenburg,
Improved diagnosis of low-level cloud from MSG SEVIRI data for assimilation into Met Office limited area models
Improved diagnosis of low-level cloud from MSG SEVIRI data for assimilation into Met Office limited area models Peter N. Francis, James A. Hocking & Roger W. Saunders Met Office, Exeter, U.K. Abstract
Nowcasting: analysis and up to 6 hours forecast
Nowcasting: analysis and up to 6 hours forecast Very high resoultion in time and space Better than NWP Rapid update Application oriented NWP problems for 0 6 forecast: Incomplete physics Resolution space
Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model simulations of TWP ICE
Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 734 754, April 2012 A Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM Hugh Morrison and Wojciech Grabowski NCAR* (MMM Division, NESL) Marat Khairoutdinov Stony Brook University
Catastrophe Bond Risk Modelling
Catastrophe Bond Risk Modelling Dr. Paul Rockett Manager, Risk Markets 6 th December 2007 Bringing Science to the Art of Underwriting Agenda Natural Catastrophe Modelling Index Linked Securities Parametric
NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada
NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada 1. INTRODUCTION Short-term methods of precipitation nowcasting range from the simple use of regional numerical forecasts
Data Integration and long-term planning of the Observing Systems as a cross-cutting process in a NMS
Data Integration and long-term planning of the Observing Systems as a cross-cutting process in a NMS ECAC Zurich, Setpember 15 2020 Ch. Häberli Deputy Head Climate Division/Head Meteorological Data Coordination
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France
Development of a. Solar Generation Forecast System
ALBANY BARCELONA BANGALORE 16 December 2011 Development of a Multiple Look ahead Time Scale Solar Generation Forecast System John Zack Glenn Van Knowe Marie Schnitzer Jeff Freedman AWS Truepower, LLC Albany,
Meteorological Forecasting of DNI, clouds and aerosols
Meteorological Forecasting of DNI, clouds and aerosols DNICast 1st End-User Workshop, Madrid, 2014-05-07 Heiner Körnich (SMHI), Jan Remund (Meteotest), Marion Schroedter-Homscheidt (DLR) Overview What
Mesoscale re-analysis of historical meteorological data over Europe Anna Jansson and Christer Persson, SMHI ERAMESAN A first attempt at SMHI for re-analyses of temperature, precipitation and wind over
Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition
Thirteenth ARM Science Team Meeting Proceedings, Broomfield, Colorado, March 31-April 4, 23 Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective
