Anyone know these guys?


 Gary McDowell
 1 years ago
 Views:
Transcription
1 Anyone know these guys? Gavin Brown and Miles Reid We observe that some of our diptych varieties have a beautiful description in terms of key 5folds V (k) A k+5 that are almost homogeneous spaces. By poetic licence, we could call them quantum rational normal curves. We write them out here, in the hope that someone can inform us that they occur elsewhere in math or scifi. From the point of view of equations, V (k) are serial unprojections or nongeneral crazypfaffians. In geometry, they are almost homogeneous spaces for a central extension group G of GL() in other words, closed orbits for a highest weight vector (in a slightly nonfamiliar representation of a nonsimple group). The variety V (k) in equations We define 5folds V (k) A k+5 x 0...k, a, b, c, z for each k 3. First set up k and k (k ) matrixes a b a M = x 0... x i 1... x c b a k 1 and N = x 1... x i... x k.. c b a c b c Our variety V (k) is defined by two sets of equations (see below) (I) MN = 0 and (II) k M = z N. (1) 1
2 (I) is a recurrence relation ax i 1 + bx i + cx i+1 = 0 for i = 1,..., k 1. (II) is a (k ) k adaptation of Cramer s rule giving the Plücker coordinates of the space of solutions of (I) up to a scalar factor z. The ordering of minors in (II) is best understood in terms of the guiding cases x i 1 x i+1 x i = a i 1 c k i 1 z and x i 1 x i+ x i x i+1 = a i 1 bc k i z. () Note that the maximal (k ) (k ) minors of N include a k (delete the last two row) and c k (delete the first two). More generally, deleting two adjacent rows i 1, i gives a i 1 c k i 1 as a minor (only the diagonal contributes), whereas deleting two rows i 1, i+1 gives the minor a i 1 bc k i. Thus our second set of equations is x i 1 x j+1 x i x j = zn(i 1, j). Relations for x i x j x k x l for all i + j = k + l can be obtained as combinations of these; for example x i 1 x j+ x i+1 x j = x i 1 x j+ x i x j+1 + x i x j+1 x i+1 x j = zn(i 1, j + 1) + zn(i, j). Theorem 1 For k 3, (I) and (II) define a reduced irreducible Gorenstein 5fold V (k) A k+5 x 0...k, a, b, c, z. Also for k =, with (II) involving the 0 0 minors interpreted as the single equation 1 z = x 0 x x 1. Lemma (i) z is a regular element for V (k). (ii) The section z = 0 of V (k) is the quotient of the hypersurface W : (g := au + buv + cv = 0) A 5 a, b, c, u, v by the µ k action 1 (0, 0, 0, 1, 1). It is Gorenstein because k is µ k invariant. da db dc du dv g ω A 5( W ).
3 (iii) Also z, a, c is a regular sequence, and the section z = a = c = 0 of V (k) is the tent consisting of 1 k (1, 1) with coordinates x 0,..., x k and two copies of A with coordinates x 0, b and x k, b. Proof First, if c 0 then a, b, c, x 0, x 1 are free parameters, and the recurrence relation (I) gives x,..., x k as rational function of these. One checks that the first equation in (II) gives z = ax 0 +bx 0x 1 +cx 1 and the remainder c k 1 follow. Similarly if a 0. If a = c = 0 and b 0 then one checks that x 0, x k, b are free parameters, x i = 0 for i = 1,..., k 1 and z = x 0x k. Finally, if a = b = c = 0 then b k x 0,..., x k and z obviously parametrise 1(1, 1) k A1. Therefore, no component of V (k) is contained in z = 0, which proves (i). After we set z = 0, the equations (II) become M = 0, and define the cyclic quotient singularity 1 (1, 1) (the cone over the rational normal k curve). Introducing u, v as the roots of x 0,..., x k, with x i = u k i v i, boils the equations MN = 0 down to the single equation g := au + buv + cv = 0. This proves (ii). (iii) is easy. The equations as Pfaffians The equations of V (k) fit together as 4 4 crazy Pfaffians of a skew matrix. For this, edit M and N to get two new matrixes, x 0... x i 1 x i... x k M = x 1... x i x i+1... x k 1 x... x i+1 x i+... x k which is 3 (k 1) and N, the (k 1) (k 3) matrix with the same display as N (that is, delete the first (or last) row and column of N). Equations (I) can be rewritten (a, b, c)m = 0. Now the equations (1) can be written as the Pfaffians of the (k+) (k+) skew matrix cz bz az M k 3 N or c b a M z k 3 N 3
4 the factor z in the first 3 3 block floats over to the final 3 3 block, allowing us to cancel z in Pf 1.3(i 4) for the recurrence relation ax i 1 +bx i +cx i+1 = 0. The remaining Pfaffians give (II). Remark 3 This is a mild form of crazy Pfaffian (by analogy with Riemenschneider s quasideterminantal): there is a multiplier z between the (3, 3) and (4, 4) entries, and when evaluating crazy Pfaffians you include z as a factor whenever you cross it. Written out in more detail, the big matrix is cz bz x 0... x i 1 x i... x k az x 1... x i x i+1... x k 1 x... x i+1 x i+... x k c k c k i 1 a i bc k i a i c k i a i a k 3 with bottom right (k 1) (k 1) block equal the (k 3)rd wedge of N. Sanity check Our family starts with k 3; the case k = would give the hypersurface ax 0 + bx 1 + cx = 0, with z := x 0 x x 1. The first regular case is k = 3, which gives the 5 5 skew determinantal c b x 0 x 1 a x 1 x x x 3 z 4
5 a regular section of the affine Grassmannian agr(, 5). The case k = 4 is c b x 0 x 1 x a x 1 x x 3 x x 3 x 4, zc zb za the standard extra symmetric 6 6 determinantal of [Dicks] and [Reid1]. The first really new case is k = 5, with equations c b x 0 x 1 x x 3 zc zb x 0 x 1 x x 3 a x 1 x x 3 x 4 za x 1 x x 3 x 4 x x 3 x 4 x 5 x zc zbc z(b and x 3 x 4 x 5 ac) c bc b ac zac zab ac ab za We first arrived at this matrix by guesswork, determining the superdiagonal entries c, ac, a and those immediately above bc, ac by eliminating variables to smaller cases; the entry b ac is then fixed so that the bottom 4 4 Pfaffian vanishes identically. Alternative Proof of Theorem 1 A bynow standard application of serial unprojection [PR] and [Reid]. We can start with any of the codimension complete intersections ( ) xi 1 x i+1 = x i + a i 1 c k i 1 z A 7 x ax i 1 + bx i + cx i+1 = 0 i 1, x i, x i+1, a, b, c, z and add the remaining variables one at a time by unprojection. The variety V (k) by apolarity We can treat V (k) as an almost homogeneous space under GL() G. For this, view x 0,..., x k as coefficients of a binary form and a, b, c as coefficients 5 a
6 of a binary quadratic form in dual variables, so that the equations MN = 0 or (a, b, c)m = 0 are the apolarity relations. More formally, write U for the given representation of GL() and write and q = au + bu v + cv S U f = x 0 u k + kx 1 u k 1 v + + x k v k S k U. One includes a binomial coefficient ( k i) as multiplier in the coefficient of u i v k i, a standard move in this game. The second polar of f is the polynomial Φ(u, v, u, v ) = 1 k(k 1) ( f u u + f u v u v + f v v k ( ) k = x i u k i v i u i i=0 k 1 ( ) k k + x i u k i 1 v i 1 u v + i 1 i=1 i= k ( ) k = x i u k i v i u i i=0 k ( ) k k ( k + x i+1 u k i v i u v + i i i=0 i=0 ) ( ) k x i u k i v i v i ) x i+ u k i v i v Substituting u a, u v 1 b, and v c in this and equating to zero gives our recurrence relation (a, b, c)m = 0. Moreover, the second set of equation follow from the first by substitution, provided (say) that c 0 and we fix the value of x 0 x x 1; for example, in x i x i+ x i+1 substituting x i+ = ax c i bx c i+1 gives x i ( a c x i b c x i+1) x i = a c x i ( b c x i + x i+1 )x i+1, 6
7 and we can substitute a c x i 1 for the bracketed expression, to deduce that x i x i+ x i+1 = a c (x i 1x i+1 x i ). etc. A normal form for a quadric under GL() is uv, so that a typical solution to the equations is (a, b, c) = (0, 1, 0), (x 0...k ) = (1, 0,..., 1). This is a highest weight vector, and V (k) is its closed orbit. Application to diptych varieties The diptych varieties for d, e with de = 4 are unprojections of pullbacks of V (k). Case [, ] The diptych variety has variables the x 0...k, y 0... of Figure 1, together with A 1 B. k (0) ( 1) Figure 1: Case [, ] A, B, L, M. The two bottom equations are x 1 y 0 = A k 1 B k + x 0L and x 0 y 1 = ABx 1 + y 0 M 7
8 The pentagram y 1, y 0, x 0, x 1, x adjoins x, then the long rally of flat pentagrams y 1, x i 1, x i, x i+1, x i+ adjoin x 3,..., x k, with matrixes y 1 x 1 M x y 1 x i+1 LM x i+ y 0 AB x 0 L x 0 A k B k 1 and x i 1 AB x i x i (AB) k i (LM) i 1 BM x 1 x i+1 and Pfaffian equations y 1 x i = ABx i+1 + LMx i 1, x i 1 x i+1 = x i + (AB) k i 1 (LM) i 1 BM and x i 1 x i+ = x i x i+1 + (AB) k i (LM) i 1 BMy 1. These are the equations of V (k) after the substitution (a, b, c, z) (LM, y 1, AB, BM). Thus to make our diptych variety, pull back V (k) A k+5 by that substitution, then adjoin y 0, y as unprojection variables. 1 Case [4, 1] with even l = k Omit the odd numbered x i, giving Figure. The diptych variety has variables A 3 1 B. ( 1) k (0) Figure : Case [4, 1] with even l = k x 0...k, y 0...4, A, B, L, M with the two bottom equations x 1 y 0 = A k 1 B k 1 y 1 + x 3 0L and x 0 y 1 = A k B k+1 + y 0 M 1 We still have to deal with the unprojection, here and below. 8
9 We adjoin y, then x,..., x k by a game of pentagrams centred on a long rally of flat pentagrams, with y against x i 1, x i, x i+1, x i+ and Pfaffian equations y x i = AB x i+1 + LM x i 1, x i 1 x i+1 = x i + (AB ) k i 1 (LM ) i 1 BM and x i 1 x i+ = x i x i+1 + (AB ) k i (LM ) i 1 BMy These are the equations of V (k) after the substitution Case [1, 4] with even l = k (a, b, c, z) (LM, y, AB, BM). Omit the even numbered x i, giving Figure 3. The diptych variety has vari A (0) k ( ) Figure 3: Case [4, 1] with even l = k ables x 0...k, y 0..., A, B, L, M with the two bottom equations x 1 y 0 = A k 1 B k + x 0 L and x 0 y 1 = x 1A B + y 0M As before, adjoining x,..., x k features a long rally of flat pentagrams, with y 1 against x i 1, x i, x i+1, x i+ and Pfaffian equations y 1 x i = A Bx i+1 + L Mx i 1, x i 1 x i+1 = x i + (A B) k i 1 (L M) i 1 AL and x i 1 x i+ = x i x i+1 + (A B) k i (L M) i 1 BMy These are the equations of V (k) after the substitution (a, b, c, z) (L M, y 1, A B, BM). 9
10 Case [1, 4] with odd l = k + 1 This is [1, 4] read from the top, but [4, 1] read from the bottom, so is a mix of the two preceding cases. Omit the odd numbered x i, giving Figure 4. The A 1 3. ( 1) B k (0) (0) 3. L 3 Figure 4: Case [1, 4] with odd l = k + 1 ( ) k 1 M diptych variety has variables x 0...k, y 0...3, A, B, L, M with the two bottom equations x 1 y 0 = y 1 A k 3 B k 1 + x 3 0L and x 0 y 1 = A k 1 B k + y 0 M Adjoin y then x by y 1 A B M y y 0 A k 3 B k 1 x 0L x 0 y 1 x 1 then y x 1 M x y 1 A B x 0 LM x 0 y A k 5 B k x 1 After this, adjoining x 3,..., x k 1 is the usual long rally of flat pentagrams, with y against x i 1, x i, x i+1, x i+ and y x i+1 LM x i+ x i 1 A B x i x i (A B) k i 3 (LM ) i 1 ABMy x i+1 10
11 and the Pfaffian equations y x i = A Bx i+1 + LM x i 1, x i 1 x i+1 = x i + (A B) k i (LM ) i 1 ABMy and x i 1 x i+ = x i x i+1 + (A B) k i 3 (LM ) i 1 ABMy These are the equations of V (k 1) after the substitution (a, b, c, z) (LM, y, A B, BM). 11
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
More informationIntroduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
More informationFunctions and Equations
Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c
More informationSOLVING POLYNOMIAL EQUATIONS
C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra
More informationPUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
More informationa 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x
More informationMultiplicity. Chapter 6
Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are
More informationDETERMINANTS. b 2. x 2
DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in
More informationCONICS ON THE PROJECTIVE PLANE
CONICS ON THE PROJECTIVE PLANE CHRIS CHAN Abstract. In this paper, we discuss a special property of conics on the projective plane and answer questions in enumerative algebraic geometry such as How many
More information1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain
Notes on realclosed fields These notes develop the algebraic background needed to understand the model theory of realclosed fields. To understand these notes, a standard graduate course in algebra is
More informationa 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More information1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationRESULTANT AND DISCRIMINANT OF POLYNOMIALS
RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results
More informationUnit 1: Polynomials. Expressions:  mathematical sentences with no equal sign. Example: 3x + 2
Pure Math 0 Notes Unit : Polynomials Unit : Polynomials : Reviewing Polynomials Epressions:  mathematical sentences with no equal sign. Eample: Equations:  mathematical sentences that are equated with
More informationSystems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
More informationZero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
More information6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives
6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise
More information0.4 FACTORING POLYNOMIALS
36_.qxd /3/5 :9 AM Page 9 SECTION. Factoring Polynomials 9. FACTORING POLYNOMIALS Use special products and factorization techniques to factor polynomials. Find the domains of radical expressions. Use
More informationTHE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
More informationCM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra  Factorisation
CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra  Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of
More informationAlgebra 2 Chapter 1 Vocabulary. identity  A statement that equates two equivalent expressions.
Chapter 1 Vocabulary identity  A statement that equates two equivalent expressions. verbal model A word equation that represents a reallife problem. algebraic expression  An expression with variables.
More informationPYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
More informationFactoring Polynomials and Solving Quadratic Equations
Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3
More informationUNCORRECTED PAGE PROOFS
number and and algebra TopIC 17 Polynomials 17.1 Overview Why learn this? Just as number is learned in stages, so too are graphs. You have been building your knowledge of graphs and functions over time.
More informationEigenvalues and Eigenvectors
Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution
More informationSome Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.
Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,
More information26. Determinants I. 1. Prehistory
26. Determinants I 26.1 Prehistory 26.2 Definitions 26.3 Uniqueness and other properties 26.4 Existence Both as a careful review of a more pedestrian viewpoint, and as a transition to a coordinateindependent
More informationMATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
More informationProof. The map. G n i. where d is the degree of D.
7. Divisors Definition 7.1. We say that a scheme X is regular in codimension one if every local ring of dimension one is regular, that is, the quotient m/m 2 is one dimensional, where m is the unique maximal
More informationNotes on Determinant
ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 918/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without
More information3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
More informationCopy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2  Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers  {1,2,3,4,...}
More informationMATH1231 Algebra, 2015 Chapter 7: Linear maps
MATH1231 Algebra, 2015 Chapter 7: Linear maps A/Prof. Daniel Chan School of Mathematics and Statistics University of New South Wales danielc@unsw.edu.au Daniel Chan (UNSW) MATH1231 Algebra 1 / 43 Chapter
More informationZeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
More informationPROBLEM SET 6: POLYNOMIALS
PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other
More information4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns
L. Vandenberghe EE133A (Spring 2016) 4. Matrix inverses left and right inverse linear independence nonsingular matrices matrices with linearly independent columns matrices with linearly independent rows
More informationMath 1050 Khan Academy Extra Credit Algebra Assignment
Math 1050 Khan Academy Extra Credit Algebra Assignment KhanAcademy.org offers over 2,700 instructional videos, including hundreds of videos teaching algebra concepts, and corresponding problem sets. In
More informationNotes from February 11
Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The
More informationON GALOIS REALIZATIONS OF THE 2COVERABLE SYMMETRIC AND ALTERNATING GROUPS
ON GALOIS REALIZATIONS OF THE 2COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for
More informationDEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x
Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of
More informationby the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the yaxis We observe that
More information4. MATRICES Matrices
4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:
More information10.3 POWER METHOD FOR APPROXIMATING EIGENVALUES
58 CHAPTER NUMERICAL METHODS. POWER METHOD FOR APPROXIMATING EIGENVALUES In Chapter 7 you saw that the eigenvalues of an n n matrix A are obtained by solving its characteristic equation n c nn c nn...
More informationZeros of Polynomial Functions
Review: Synthetic Division Find (x 25x  5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 35x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 35x 2 + x + 2. Zeros of Polynomial Functions Introduction
More informationBEGINNING ALGEBRA ACKNOWLEDMENTS
BEGINNING ALGEBRA The Nursing Department of Labouré College requested the Department of Academic Planning and Support Services to help with mathematics preparatory materials for its Bachelor of Science
More informationA note on companion matrices
Linear Algebra and its Applications 372 (2003) 325 33 www.elsevier.com/locate/laa A note on companion matrices Miroslav Fiedler Academy of Sciences of the Czech Republic Institute of Computer Science Pod
More information8 Square matrices continued: Determinants
8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You
More informationP.E.R.T. Math Study Guide
A guide to help you prepare for the Math subtest of Florida s Postsecondary Education Readiness Test or P.E.R.T. P.E.R.T. Math Study Guide www.perttest.com PERT  A Math Study Guide 1. Linear Equations
More informationLecture Notes on Polynomials
Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex
More informationFactoring Cubic Polynomials
Factoring Cubic Polynomials Robert G. Underwood 1. Introduction There are at least two ways in which using the famous Cardano formulas (1545) to factor cubic polynomials present more difficulties than
More informationThe Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
More informationCollege Algebra  MAT 161 Page: 1 Copyright 2009 Killoran
College Algebra  MAT 6 Page: Copyright 2009 Killoran Zeros and Roots of Polynomial Functions Finding a Root (zero or xintercept) of a polynomial is identical to the process of factoring a polynomial.
More informationTHREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
More informationJUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
More information1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
More informationSome facts about polynomials modulo m (Full proof of the Fingerprinting Theorem)
Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem) In order to understand the details of the Fingerprinting Theorem on fingerprints of different texts from Chapter 19 of the
More informationThese axioms must hold for all vectors ū, v, and w in V and all scalars c and d.
DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms
More informationLagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.
Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method
More informationUnderstanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
More informationLinearly Independent Sets and Linearly Dependent Sets
These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for inclass presentation
More informationThe Australian Journal of Mathematical Analysis and Applications
The Australian Journal of Mathematical Analysis and Applications Volume 7, Issue, Article 11, pp. 114, 011 SOME HOMOGENEOUS CYCLIC INEQUALITIES OF THREE VARIABLES OF DEGREE THREE AND FOUR TETSUYA ANDO
More informationPutnam Notes Polynomials and palindromes
Putnam Notes Polynomials and palindromes Polynomials show up one way or another in just about every area of math. You will hardly ever see any math competition without at least one problem explicitly concerning
More information9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.
9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n1 x n1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role
More informationSECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS
(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic
More informationNumerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number
More informationDecomposing Rational Functions into Partial Fractions:
Prof. Keely's Math Online Lessons University of Phoenix Online & Clark College, Vancouver WA Copyright 2003 Sally J. Keely. All Rights Reserved. COLLEGE ALGEBRA Hi! Today's topic is highly structured and
More informationMATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
More informationRow Echelon Form and Reduced Row Echelon Form
These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for inclass presentation
More informationFactoring Guidelines. Greatest Common Factor Two Terms Three Terms Four Terms. 2008 Shirley Radai
Factoring Guidelines Greatest Common Factor Two Terms Three Terms Four Terms 008 Shirley Radai Greatest Common Factor 008 Shirley Radai Factoring by Finding the Greatest Common Factor Always check for
More informationPartial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
More informationISOMETRIES OF R n KEITH CONRAD
ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x
More informationAu = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
More informationChapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6
Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a
More information2.1: MATRIX OPERATIONS
.: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and
More informationAlgebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test
Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action
More information1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).
.7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational
More informationInner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
More informationFactoring Trinomials: The ac Method
6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For
More information1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]
1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not
More informationMath 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
More informationMatrix Algebra and Applications
Matrix Algebra and Applications Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Matrix Algebra and Applications 1 / 49 EC2040 Topic 2  Matrices and Matrix Algebra Reading 1 Chapters
More informationSimilarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
More informationFACTORING QUADRATICS 8.1.1 and 8.1.2
FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.
More informationChapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
More informationDecember 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in twodimensional space (1) 2x y = 3 describes a line in twodimensional space The coefficients of x and y in the equation
More informationSome Lecture Notes and InClass Examples for PreCalculus:
Some Lecture Notes and InClass Examples for PreCalculus: Section.7 Definition of a Quadratic Inequality A quadratic inequality is any inequality that can be put in one of the forms ax + bx + c < 0 ax
More informationMATH10212 Linear Algebra. Systems of Linear Equations. Definition. An ndimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0534405967. Systems of Linear Equations Definition. An ndimensional vector is a row or a column
More informationSolving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
More informationAnswer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
More informationDefinitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).
Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32
More information( ) which must be a vector
MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are
More informationTim Kerins. Leaving Certificate Honours Maths  Algebra. Tim Kerins. the date
Leaving Certificate Honours Maths  Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many
More informationAlgebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
More informationFactoring, Solving. Equations, and Problem Solving REVISED PAGES
05W4801AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring
More information3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.
Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R
More informationFactoring Quadratic Expressions
Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the
More informationLINEAR ALGEBRA. September 23, 2010
LINEAR ALGEBRA September 3, 00 Contents 0. LUdecomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................
More information