# Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Size: px
Start display at page:

Download "Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given."

Transcription

1 Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method is a sweet alternative to the lagrange interpolation and uses the formula f(x) = A + B(x 1) + C(x 1)(x 2) + D(x 1)(x 2)(x 3) and so on to find a function that fits an input output table. The end behavior of a graph and its zeroes can be determined based on its equation. A graph s zeros and end behavior tell what its equation is. Factoring polynomials is the inverse process of multiplying polynomials. Two ways to divide polynomials are fractional division and long division. List Theorems: Factor Theorem: Suppose f(x) is a polynomial. Then the number a is a root of the equation f(x)=0 if and only if x a is a factor of f(x). Remainder Theorem: If you divide a polynomial f(x) by x a, where a is a number, the remainder is f(a). Corollaries: A polynomial of degree n can have at most n distinct real number zeros. If 2 polynomials of degree n agree at n+1 inputs, they are identical. Properties: Euclidean Property for polynomials: Given polynomials f(x) and g(x), there are unique polynomials q(x) (the quotient) and r(x) (remainder) such that 1. f(x) = g(x) * q(x) + r(x) 2. deg(r(x)) < deg (g(x)) Difference of cubes: x^3 y^3 = (x y) (x^2 + xy + y^2) Sum of cubes: x^3 +y^3 = (x+y)(x^2 xy + y^2) Vocabulary Polynomial: monomial or sum of two or more monomials Degree of a polynomial: greatest degree among all the monomials in the polynomial (linear, quadratic, cubic, quartic, quintic) End behavior: if the graph goes up or down on its end parts and if its ends go the same way or not Zero/Root: a solution to a function, or where the graph touches the x axis

2 Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. If given a set of points 3,7 5,3 10,11 then the first step is to set up the equation f(x)=a(x 5)(x 10)+b(x 3)(x 10)+c(x 3)(x 5). At x=3, only the a(x 5)(x 10) portion of the equation will not be equal to zero. a is then set so that when x=3, a(x 5)(x 10)=7. In this case, a=.5. This process is repeated for all other multiplication groups. In this case b=.3 and c= The Lagrange interpolation equation of points 3,7 5,3 and 10,11 would, therefore, be f(x)=.5(x 5)(x 10).3(x 3)(x 10) (x 3)(x 5). As one could probably tell, this approach is best suited to smaller data sets, as more points causes the length and complexity of the equations to increase rapidly. The method is best used when data sets are small enough and seemingly random enough that it would be incredibly difficult, if not impossible, to accurately fit another line equation to them.

3 Sasha s method is a sweet alternative to the lagrange interpolation and uses the formula f(x) = A + B(x 1) + C(x 1)(x 2) + D(x 1)(x 2)(x 3) and so on to find a function that fits an input output table. To find the value of A, B, C, D, and so on, all you have to do is find the starting value (first input output in table) as the A value and make it so that A + B(x 1) = the second value to find B. Repeat the process until all the values have been identified and then simplify to a polynomial function. Sometimes you see a function that works perfectly well with the table until the final troll term messes everything up, such as the table below. The function 2x+2 fits perfectly with the table until input value 5, which messes everything up by having output value 13. This may seem horrifying, but the solution is simple, use lagrange interpolation! By using the function 2x+2 and adding on 2x+2 + A(x 1)(x 2)(x 3)(x 4) where A gives 13 when the x is five, we get the function for the table! Which is 2. Input Output

4 The end behavior of a graph and its zeroes can be determined based on its equation. In general, both ends of the graph will end the same way if the degree of the equation is even. If the degree of the equation is odd, then the ends of the graph will end in opposite directions. For equations with an even degree, the result of the end (up or down) depends on the leading coefficient. If the leading coefficient is positive, both ends will go up, and if it is negative, both ends will face down. Next, the degree of the equation is odd, and if the leading coefficient is positive, the left end of the graph will decrease as x gets more negative and the right side will increase as x gets larger. However, if the leading coefficient is negative, the left side of the graph will increase as the x coordinate gets more negative and the right end will decrease as x gets larger. Summary: a is the leading coefficient, n is the degree a>0 a<0 n is odd down on left, up on right up on left, down on right n is even both up both down In addition, by looking at a graph s equation, one can determine its zeroes. There are 3 ways to find the zeroes of a function: 1) Factor the function and set the factors equal to zero. Solve. The zeroes are 2 and 3. Example: x^2+5x+6 = (x+2)(x+3) Set x+2 = 0 and x+3 = 0 x = 2 and x = 3 2) For quadratic functions, use the quadratic formula. For ax 2 + bx + c = 0, the value of x is given by: 3) Graphing. The zeroes are located at the intersections of the graph and the x axis.

5 A graph s zeros and end behavior tell what its equation is. Zeros tell one where the graph touches the x axis. For example, if the graph touches the x axis at x=3, then in the equation this is shown by (x 3). If the graph touches the x axis at x= 5, then in the equation this is shown by (x+5). If the graph touches the x axis at x=a, that is shown by (x a) in the equation. Also, the type of contact a graph makes with the x axis influences the degree of the zeros. If the graph passes through the x axis at x=a, then the multiplicity is even. So the zero (x a) becomes (x a)^n where n is an even number. If the graph touches the x axis at x=a, then the multiplicity is odd, so the zero (x a) becomes (x a)^n where n is an odd number. Graph passes through x axis at x=4 Graph touches x axis at x= 7 Example: (x 4)^2 Example: (x+7)^5 In addition, the end behavior of the graph will help tell what the degree and leading coefficient of the equation are. See the previous section for an in depth description of end behavior. Below is a summary: Graph s right end goes up and left end goes down Graph s left end goes up and right end goes down Graph ends both go upward Odd degree Positive coefficient Odd degree Negative coefficient Even degree Positive coefficient Graph ends both go downward Even degree Negative coefficient Important things to remember: Find all zeros Make sure to find the numerical value of the leading coefficient, not just if it s positive or negative

6 Factoring polynomials is the inverse process of multiplying polynomials. We can factor a polynomial into the product of a number of simpler expressions of the form (ax+b), where a and b are constants. If we divide a polynomial by the factors after factoring the polynomial, the remainder will be zero. Whenever we factor a polynomial always look for the greatest common factor (GCF) then we determine if the resulting polynomial factor can be factored again. Here are the most common factoring techniques used with polynomials: If we have any number of terms then we use GCF: If we have two terms then we could use either the difference of two squares, the sum of two cubes or the difference of two cubes: If we have three terms then we use either perfect square trinomials or general trinomials: Lastly, if we have four or more terms we use grouping: To factor over R, use the quadratic formula. You may get a set of solutions like ( b + m)/2a and ( b m)/2a where m=b^2 4ac. The solutions are those plugged into the zero form; as in, (x ( b+ m)/2a) and (x ( b m)/2a). Other factoring methods: using the quadratic equation best method when factoring over R Z substitution

7 Two ways to divide polynomials are fractional division and long division. The first method, fractional division, is done by factoring both sides of the equation to simplify the problem. This is done by dividing by 1, but substituting something like (x 3)/(x 3) as 1. For example, if there is an equation like (x^2 9)/(x^2 5x+6), you can divide it by (x 3)/(x 3) to simplify it to (x 3)/(x 2). This would get you to a simpler equation until there are no more factors to divide both sides by. After this, you can move on to the second method, long division. Long division is done the same way as dividing numbers. As seen in the photo below, you go from left to right of the dividend and multiply the divisor by a certain number or x to cancel out the first terms. At the end, there will either be a remainder or the polynomials will divide completely.

8 Review Problems 1. Find a polynomial function formula that approximately fits this graph. 2. Factor x^4 7x^2 + 9 over R. 3. Use Lagrange interpolation to find a function involving the points (3,3), (4,7), (7, 11), (10,25). 4. Determine the end behavior and the zeroes of 5x^3+5x^2+30x 5. Simplify 2x^5 7x^4 4x^3+18x^2+19x 30 / x^2 5x+6 using first fractional division then long division. 6. Find a function that fits the input output table below: Input Output

9 Solutions 1. Both of the graph s ends go up, so the leading coefficient must be positive and the degree must be even. There are four zeros: 3, 1, 1, and 2, therefore: a(x+3)(x+1)(x 1)(x 2). Now solve for the leading coefficient a using the point (0,6). 6=a(3)(1)( 1)( 2) 6=6(a) a=1 Final equation: (x+3)(x+1)(x 1)(x 2) 2. x^4 7x^2 + 9 Let z= x^2, and substitue z in to get z^2 7z + 9 x^4 7x^2 + 9 = x^4 6x^ = (x^2 x^3)^2 x^2 Now this is a difference of squares. x^4 7x^2 + 9 = (x^2 3)^2 x^2 = (x^2 3 x) (x^2 3 + x) So, x^4 7x^2 + 9 = (x^2 x 3) (x^2 + x 3) 3.f(x)=a(x 4)(x 7)(x 10)+b(x 3)(x 7)(x 10)+c(x 3)(x 4)(x 10)+d(x 3)(x 4)(x 7) f(x)= (x 4)(x 7)(x 10) (x 3)(x 7)(x 10) (x 3)(x 4)(x 10) (x 3 )(x 4)(x 7) 4. End behavior: leading coefficient is 5 and the degree is 3. Since the degree is odd and the leading coefficient is negative, the graph goes up on the left and down on the right. Zeroes: first factor out 5x, which is a common factor. Then, factor the remaining quadratic. 5x^3+5x^2+30x = 5x(x^2 x 6) = 5x(x 3)(x+2) Thus, the zeroes are 0, 3 and Starting with fractional division, divide the equation by (x 3)/(x 3) This simplifies the polynomial out to be 2x^4 x^3 7x^2 3x+10 / x 2

10 Finally, we use long division and the outcome should be 2x^3+3x^2 x = 5 2 +A(5 1)(5 2)(5 3)(5 4) A(5 1)(5 2)(5 3)(5 4)=3 A=⅛ Function: F(x) = x 2 +⅛(x 1)(x 2)(x 3)(x 4)

### expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

### NSM100 Introduction to Algebra Chapter 5 Notes Factoring

Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

### 6.1 Add & Subtract Polynomial Expression & Functions

6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

### SOLVING POLYNOMIAL EQUATIONS

C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

### 1 Lecture: Integration of rational functions by decomposition

Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Factoring Polynomials and Solving Quadratic Equations

Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3

### Factoring Polynomials

Factoring a Polynomial Expression Factoring a polynomial is expressing the polynomial as a product of two or more factors. Simply stated, it is somewhat the reverse process of multiplying. To factor polynomials,

### MATH 90 CHAPTER 6 Name:.

MATH 90 CHAPTER 6 Name:. 6.1 GCF and Factoring by Groups Need To Know Definitions How to factor by GCF How to factor by groups The Greatest Common Factor Factoring means to write a number as product. a

### A Systematic Approach to Factoring

A Systematic Approach to Factoring Step 1 Count the number of terms. (Remember****Knowing the number of terms will allow you to eliminate unnecessary tools.) Step 2 Is there a greatest common factor? Tool

### 9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.

9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role

### Determinants can be used to solve a linear system of equations using Cramer s Rule.

2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution

### FACTORING POLYNOMIALS

296 (5-40) Chapter 5 Exponents and Polynomials where a 2 is the area of the square base, b 2 is the area of the square top, and H is the distance from the base to the top. Find the volume of a truncated

### Name Intro to Algebra 2. Unit 1: Polynomials and Factoring

Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).

Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32

### 1.3 Polynomials and Factoring

1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

### Veterans Upward Bound Algebra I Concepts - Honors

Veterans Upward Bound Algebra I Concepts - Honors Brenda Meery Kaitlyn Spong Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org Chapter 6. Factoring CHAPTER

### ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

### Factoring Polynomials

UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

### Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF

Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials

### Section 6.1 Factoring Expressions

Section 6.1 Factoring Expressions The first method we will discuss, in solving polynomial equations, is the method of FACTORING. Before we jump into this process, you need to have some concept of what

### Unit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials

Date Period Unit 6: Polynomials DAY TOPIC 1 Polynomial Functions and End Behavior Polynomials and Linear Factors 3 Dividing Polynomials 4 Synthetic Division and the Remainder Theorem 5 Solving Polynomial

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### Chapter R.4 Factoring Polynomials

Chapter R.4 Factoring Polynomials Introduction to Factoring To factor an expression means to write the expression as a product of two or more factors. Sample Problem: Factor each expression. a. 15 b. x

### Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

### Factoring Guidelines. Greatest Common Factor Two Terms Three Terms Four Terms. 2008 Shirley Radai

Factoring Guidelines Greatest Common Factor Two Terms Three Terms Four Terms 008 Shirley Radai Greatest Common Factor 008 Shirley Radai Factoring by Finding the Greatest Common Factor Always check for

### Polynomial Expressions and Equations

Polynomial Expressions and Equations This is a really close-up picture of rain. Really. The picture represents falling water broken down into molecules, each with two hydrogen atoms connected to one oxygen

### Factoring Polynomials

Factoring Polynomials Hoste, Miller, Murieka September 12, 2011 1 Factoring In the previous section, we discussed how to determine the product of two or more terms. Consider, for instance, the equations

### Tool 1. Greatest Common Factor (GCF)

Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

### Greatest Common Factor (GCF) Factoring

Section 4 4: Greatest Common Factor (GCF) Factoring The last chapter introduced the distributive process. The distributive process takes a product of a monomial and a polynomial and changes the multiplication

### Factoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1)

Factoring Methods When you are trying to factor a polynomial, there are three general steps you want to follow: 1. See if there is a Greatest Common Factor 2. See if you can Factor by Grouping 3. See if

### 6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

### Factoring and Applications

Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

### Factoring a Difference of Two Squares. Factoring a Difference of Two Squares

284 (6 8) Chapter 6 Factoring 87. Tomato soup. The amount of metal S (in square inches) that it takes to make a can for tomato soup is a function of the radius r and height h: S 2 r 2 2 rh a) Rewrite this

### 1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).

.7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational

### Answers to Basic Algebra Review

Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract

### POLYNOMIALS and FACTORING

POLYNOMIALS and FACTORING Exponents ( days); 1. Evaluate exponential expressions. Use the product rule for exponents, 1. How do you remember the rules for exponents?. How do you decide which rule to use

### Solving Cubic Polynomials

Solving Cubic Polynomials 1.1 The general solution to the quadratic equation There are four steps to finding the zeroes of a quadratic polynomial. 1. First divide by the leading term, making the polynomial

### Zeros of Polynomial Functions

Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

### Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date

Leaving Certificate Honours Maths - Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many

### 3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

### 3.6. The factor theorem

3.6. The factor theorem Example 1. At the right we have drawn the graph of the polynomial y = x 4 9x 3 + 8x 36x + 16. Your problem is to write the polynomial in factored form. Does the geometry of the

### Zeros of Polynomial Functions

Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of

### The Method of Partial Fractions Math 121 Calculus II Spring 2015

Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

### Factoring Trinomials: The ac Method

6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For

### The Division Algorithm for Polynomials Handout Monday March 5, 2012

The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,

### SPECIAL PRODUCTS AND FACTORS

CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the

### Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

### In algebra, factor by rewriting a polynomial as a product of lower-degree polynomials

Algebra 2 Notes SOL AII.1 Factoring Polynomials Mrs. Grieser Name: Date: Block: Factoring Review Factor: rewrite a number or expression as a product of primes; e.g. 6 = 2 3 In algebra, factor by rewriting

### ( ) FACTORING. x In this polynomial the only variable in common to all is x.

FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated

### Mathematics Placement

Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

### Factoring. Factoring Polynomial Equations. Special Factoring Patterns. Factoring. Special Factoring Patterns. Special Factoring Patterns

Factoring Factoring Polynomial Equations Ms. Laster Earlier, you learned to factor several types of quadratic expressions: General trinomial - 2x 2-5x-12 = (2x + 3)(x - 4) Perfect Square Trinomial - x

### Integrals of Rational Functions

Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

### 3.6 The Real Zeros of a Polynomial Function

SECTION 3.6 The Real Zeros of a Polynomial Function 219 3.6 The Real Zeros of a Polynomial Function PREPARING FOR THIS SECTION Before getting started, review the following: Classification of Numbers (Appendix,

### 3-17 15-25 5 15-10 25 3-2 5 0. 1b) since the remainder is 0 I need to factor the numerator. Synthetic division tells me this is true

Section 5.2 solutions #1-10: a) Perform the division using synthetic division. b) if the remainder is 0 use the result to completely factor the dividend (this is the numerator or the polynomial to the

9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

### 1.1 Practice Worksheet

Math 1 MPS Instructor: Cheryl Jaeger Balm 1 1.1 Practice Worksheet 1. Write each English phrase as a mathematical expression. (a) Three less than twice a number (b) Four more than half of a number (c)

### FOIL FACTORING. Factoring is merely undoing the FOIL method. Let s look at an example: Take the polynomial x²+4x+4.

FOIL FACTORING Factoring is merely undoing the FOIL method. Let s look at an example: Take the polynomial x²+4x+4. First we take the 3 rd term (in this case 4) and find the factors of it. 4=1x4 4=2x2 Now

### Unit 3: Day 2: Factoring Polynomial Expressions

Unit 3: Day : Factoring Polynomial Expressions Minds On: 0 Action: 45 Consolidate:10 Total =75 min Learning Goals: Extend knowledge of factoring to factor cubic and quartic expressions that can be factored

### Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

### MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

### Algebra II A Final Exam

Algebra II A Final Exam Multiple Choice Identify the choice that best completes the statement or answers the question. Evaluate the expression for the given value of the variable(s). 1. ; x = 4 a. 34 b.

### PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

### Factoring Polynomials

Factoring Polynomials Factoring Factoring is the process of writing a polynomial as the product of two or more polynomials. The factors of 6x 2 x 2 are 2x + 1 and 3x 2. In this section, we will be factoring

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

### minimal polyonomial Example

Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

### The Greatest Common Factor; Factoring by Grouping

296 CHAPTER 5 Factoring and Applications 5.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

### MATH 21. College Algebra 1 Lecture Notes

MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

### Algebra 2 PreAP. Name Period

Algebra 2 PreAP Name Period IMPORTANT INSTRUCTIONS FOR STUDENTS!!! We understand that students come to Algebra II with different strengths and needs. For this reason, students have options for completing

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### 3.2 The Factor Theorem and The Remainder Theorem

3. The Factor Theorem and The Remainder Theorem 57 3. The Factor Theorem and The Remainder Theorem Suppose we wish to find the zeros of f(x) = x 3 + 4x 5x 4. Setting f(x) = 0 results in the polynomial

### FACTORING OUT COMMON FACTORS

278 (6 2) Chapter 6 Factoring 6.1 FACTORING OUT COMMON FACTORS In this section Prime Factorization of Integers Greatest Common Factor Finding the Greatest Common Factor for Monomials Factoring Out the

### Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

### 2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

### Sect 6.7 - Solving Equations Using the Zero Product Rule

Sect 6.7 - Solving Equations Using the Zero Product Rule 116 Concept #1: Definition of a Quadratic Equation A quadratic equation is an equation that can be written in the form ax 2 + bx + c = 0 (referred

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### AIP Factoring Practice/Help

The following pages include many problems to practice factoring skills. There are also several activities with examples to help you with factoring if you feel like you are not proficient with it. There

### Cubic Functions: Global Analysis

Chapter 14 Cubic Functions: Global Analysis The Essential Question, 231 Concavity-sign, 232 Slope-sign, 234 Extremum, 235 Height-sign, 236 0-Concavity Location, 237 0-Slope Location, 239 Extremum Location,

### PROBLEM SET 6: POLYNOMIALS

PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other

### EAP/GWL Rev. 1/2011 Page 1 of 5. Factoring a polynomial is the process of writing it as the product of two or more polynomial factors.

EAP/GWL Rev. 1/2011 Page 1 of 5 Factoring a polynomial is the process of writing it as the product of two or more polynomial factors. Example: Set the factors of a polynomial equation (as opposed to an

### Algebra Cheat Sheets

Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

### Pre-Calculus II Factoring and Operations on Polynomials

Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...

### College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran

College Algebra - MAT 6 Page: Copyright 2009 Killoran Zeros and Roots of Polynomial Functions Finding a Root (zero or x-intercept) of a polynomial is identical to the process of factoring a polynomial.

### When factoring, we look for greatest common factor of each term and reverse the distributive property and take out the GCF.

Factoring: reversing the distributive property. The distributive property allows us to do the following: When factoring, we look for greatest common factor of each term and reverse the distributive property

### CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

### Partial Fractions. (x 1)(x 2 + 1)

Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +

### UNCORRECTED PAGE PROOFS

number and and algebra TopIC 17 Polynomials 17.1 Overview Why learn this? Just as number is learned in stages, so too are graphs. You have been building your knowledge of graphs and functions over time.

### MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,