1.7. Partial Fractions Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).


 Jack Lane
 1 years ago
 Views:
Transcription
1 .7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational functions. The idea consists of rewriting the rational function as a sum of simpler fractions called partial fractions. This can be done in the following way: () Use long division of polynomials to get a quotient p(x) and a remainder r(x). Then write: R(x) = P (x) Q(x) = p(x) + r(x) Q(x), where the degree of r(x) is less than that of Q(x). () Factor the denominator Q(x) = q (x)q (x)... q n (x), where each factor q i (x) is either linear ax+b, or irreducible quadratic ax +bx+c, or a power of the form (ax+b) n or (ax +bx+c) n. (3) Decompose r(x)/q(x) into partial fractions of the form: r(x) Q(x) = F (x) + F (x) + F 3 (x) + where each fraction is of the form F i (x) = (ax + b) k or x + B F i (x) = (ax + bx + c), k where k n (n is the exponent of ax + b or ax + bx + c in the factorization of Q(x).) Example: Decompose the following rational function into partial fractions: R(x) = x3 + x + x nswer:
2 () x3 + x + x.7. PRTIL FRCTIONS 33 = x + + x + 3 x () x = (x + )(x ). x + 3 (3) (x + )(x ) = x + + B x. Multiplying by (x + )(x ) we get: x + 3 = (x ) + B(x + ). Now there are two ways of finding and B: Method. Expand the right hand side of (*), collect terms with the same power of x, and identify coefficients of the polynomials obtained on both sides: x + 3 = ( + B) x + (B ), Hence: { = + B (coefficient of x) 3 = + B (constant term) Method. In (*) give x two different values (as many as the number of coefficients to determine), say x = and x =. We get: { 4 = B (x = ) = (x = ) The solution to the system of equations obtained in either case is =, B =, so: x + 3 (x + )(x ) = x + + x. ( ) Finally: R(x) = x3 + x + x = x + x + + x..7.. Factoring a Polynomial. In order to factor a polynomial Q(x) (with real coefficients) into linear of irreducible quadratic factors, first solve the algebraic equation: Q(x) = 0. Then for each real root r write a factor of the form (x r) k where k is the multiplicity of the root. For each pair of conjugate complex roots r, r write a factor (x sx + p) k, where s = r + r, p = r r, and k is the
3 .7. PRTIL FRCTIONS 34 multiplicity of those roots. Finally multiply by the leading coefficient of Q(x). Note that the equation Q(x) = 0 is sometimes hard to solve, or only the real roots can be easily found (when they are integral or rational they can be found by Ruffini s rule, or just by trial and error). In that case we get as many roots as we can, and divide Q(x) by the factors found. The quotient is another polynomial q(x) which we must now try to factor. So pose the algebraic equation q(x) = 0 and try to solve it for this new (and simpler) polynomial. Example: Factor the polynomial Q(x) = x 6 x 5 5x 4 + 5x x + x 7. nswer: The roots of Q(x) are (simple), (triple) and 3 (double), hence: Q(x) = (x )(x + ) 3 (x 3). Example: Factor Q(x) = x 3 + x + x +. nswer: Q(x) has a simple real root x =. fter dividing Q(x) by x + we get the polynomial x + x +, which is irreducible (it has only complex roots), so we factor Q(x) like this: Q(x) = (x + )(x + x + ) Decomposing Into Partial Fractions. ssume that Q(x) has already been factored and degree of r(x) is less than degree of Q(x). Then r(x)/q(x) is decomposed into partial fractions in the following way: () For each factor of the form (x r) k write x r + (x r) + 3 (x r) k (x r) k, where... k are coefficients to be determined. () For each factor of the form (ax + bx + c) k write B x + C ax + bx + c + B x + C (ax + bx + c) + + B kx + C k (ax + bx + c) k where B... B k and C... C k are coefficients to be determined.
4 .7. PRTIL FRCTIONS 35 (3) Multiply by Q(x) and simplify. This leads to an expression of the form r(x) = some polynomial containing the indeterminate coefficients i, B i, C i. Finally determine the coefficients i, B i, C i. One way of doing this is by identifying coefficients of the polynomials on both sides of the last expression. nother way is to write a system of equations with unknowns i, B i, C i by giving x various values. Example: Decompose the following rational function into partial fractions: R(x) = 4x5 x 4 + x 3 8x x 3 (x ) (x + x + ). nswer: The denominator is already factored, so we proceed with the next step: 4x 5 x 4 + x 3 8x x 3 (x ) (x + x + ) = x + B (x ) + Cx + D x + x + + Next we multiply by the denominator: 4x 5 x 4 + x 3 8x x 3 = (x )(x + x + ) + B(x + x + ) Ex + F (x + x + ). + (Cx + D)(x ) (x + x + ) + (Ex + F )(x ) = ( + C)x 5 + ( C + D + B)x 4 + ( + B + E D)x 3 + ( + 3B C E + F )x + ( + B + C D + E F )x + ( + B + D + F ). Identifying coefficients on both sides we get: + C = 4 + B C + D = + B D + E = + 3B C E + F = 8 + B + C D + E F = + B + D + F = 3
5 .7. PRTIL FRCTIONS 36 The solution to this system of equations is =, B =, C =, D =, E =, F =, hence: 4x 5 x 4 + x 3 8x x 3 (x ) (x + x + ) = x (x ) + x x + x + + x + (x + x + ).7.4. Integration of Rational Functions. fter decomposing the rational function into partial fractions all we need to do is to integrate expressions of the form /(x r) k and (Bx + C)/(ax + bx + c) k. For the former we get: (x r) dx = + C if k k (k )(x r) k dx = ln x r + C if k = x r The latter are more involved, but the following are particularly simple special cases: x + a dx = a arctan x a + C x x + a dx = ln (x + a ) + C x (x + a ) dx = + C (k ) k (k )(x + a ) k Example: Find the following integral: x 3 x 7x + 8 x 4x + 4 dx. nswer: First we decompose the integrand into partial fractions: () x3 x 7x + 8 x 4x + 4 = x () x 4x + 4 = (x ). (3) x 4 (x ) = x + B (x ) x 4 = (x ) + B x = = B x = 3 = + B x 4 x 4x + 4
6 So =, B =, and.7. PRTIL FRCTIONS 37 x 4 x 4x + 4 = x (x ) Hence: x 3 x 7x + 8 x 4x + 4 = x x (x ). Finally we integrate: x 3 x 7x + 8 dx = (x ) = x (x + 3) dx + x dx + 3x + ln x + x + C. (x ) dx.7.5. Completing the Square. Many integrals containing an irreducible (no real roots) quadratic polynomial ax + bx + c can be simplified by completing the square, i.e., writing the polynomial as u + r where u = px + q, e.g.: In general: ax + bx + c = x + x + = (x + ) +. If a = the formula can be simplified: x + bx + c = ( x a + b ) b 4ac. a 4a ( x + b ) + ) (c b. 4 This result is of the form u ±, where u = x + b/. Example: x + 6x + 0 dx = (x + 3) + dx = du (u = x + 3) u + = tan u + C = tan (x + 3) + C.
7 Example: x (x 4x + 5 dx = ) + dx.7. PRTIL FRCTIONS 38 = u + du (u = x ) = tan t + sec t dt (u = tan t) = sec 3 t dt sec t tan t = + ln sec t + tan t + C = u u + + ln u + u + + C = (x ) x 4x (x ln ) + x 4x C.
The Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
More informationIntegrals of Rational Functions
Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t
More informationPartial Fractions. p(x) q(x)
Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break
More information1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
More informationPartial Fractions Examples
Partial Fractions Examples Partial fractions is the name given to a technique of integration that may be used to integrate any ratio of polynomials. A ratio of polynomials is called a rational function.
More informationis identically equal to x 2 +3x +2
Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3
More informationSample Problems. Practice Problems
Lecture Notes Partial Fractions page Sample Problems Compute each of the following integrals.. x dx. x + x (x + ) (x ) (x ) dx 8. x x dx... x (x + ) (x + ) dx x + x x dx x + x x + 6x x dx + x 6. 7. x (x
More informationPartial Fractions. (x 1)(x 2 + 1)
Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +
More informationPolynomials can be added or subtracted simply by adding or subtracting the corresponding terms, e.g., if
1. Polynomials 1.1. Definitions A polynomial in x is an expression obtained by taking powers of x, multiplying them by constants, and adding them. It can be written in the form c 0 x n + c 1 x n 1 + c
More informationZeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
More informationZero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
More information3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes
Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same
More information1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
More informationIntroduction to polynomials
Worksheet 4.5 Polynomials Section 1 Introduction to polynomials A polynomial is an expression of the form p(x) = p 0 + p 1 x + p 2 x 2 + + p n x n, (n N) where p 0, p 1,..., p n are constants and x os
More information5 Indefinite integral
5 Indefinite integral The most of the mathematical operations have inverse operations: the inverse operation of addition is subtraction, the inverse operation of multiplication is division, the inverse
More informationCopy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2  Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers  {1,2,3,4,...}
More informationPartial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
More informationSOLVING POLYNOMIAL EQUATIONS
C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra
More informationa 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x
More informationRational Polynomial Functions
Rational Polynomial Functions Rational Polynomial Functions and Their Domains Today we discuss rational polynomial functions. A function f(x) is a rational polynomial function if it is the quotient of
More informationJUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
More informationis identically equal to x 2 +3x +2
Partial fractions.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as + for any
More informationQuadratic Equations and Inequalities
MA 134 Lecture Notes August 20, 2012 Introduction The purpose of this lecture is to... Introduction The purpose of this lecture is to... Learn about different types of equations Introduction The purpose
More informationWorksheet 4.7. Polynomials. Section 1. Introduction to Polynomials. A polynomial is an expression of the form
Worksheet 4.7 Polynomials Section 1 Introduction to Polynomials A polynomial is an expression of the form p(x) = p 0 + p 1 x + p 2 x 2 + + p n x n (n N) where p 0, p 1,..., p n are constants and x is a
More informationFunctions and Equations
Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c
More informationTechniques of Integration
CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an artform than a collection of algorithms. Many problems in applied mathematics involve the integration
More information1.3 Polynomials and Factoring
1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.
More informationIntegrating algebraic fractions
Integrating algebraic fractions Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fraction as the sum of its partial fractions. In this unit we will illustrate
More informationPartial Fractions Decomposition
Partial Fractions Decomposition Dr. Philippe B. Laval Kennesaw State University August 6, 008 Abstract This handout describes partial fractions decomposition and how it can be used when integrating rational
More information3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.
More informationSTUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS
STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an
More informationCLASS NOTES. We bring down (copy) the leading coefficient below the line in the same column.
SYNTHETIC DIVISION CLASS NOTES When factoring or evaluating polynomials we often find that it is convenient to divide a polynomial by a linear (first degree) binomial of the form x k where k is a real
More informationDefinition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left.
Vertical and Horizontal Asymptotes Definition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left. This graph has a vertical asymptote
More informationTo add fractions we rewrite the fractions with a common denominator then add the numerators. = +
Partial Fractions Adding fractions To add fractions we rewrite the fractions with a common denominator then add the numerators. Example Find the sum of 3 x 5 The common denominator of 3 and x 5 is 3 x
More informationIntegration of Rational Expressions by Partial Fractions
Integration of Rational Epressions by Partial Fractions INTRODUTION: We start with a few definitions rational epression is formed when a polynomial is divided by another polynomial In a proper rational
More informationZeros of Polynomial Functions
Review: Synthetic Division Find (x 25x  5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 35x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 35x 2 + x + 2. Zeros of Polynomial Functions Introduction
More informationx n = 1 x n In other words, taking a negative expoenent is the same is taking the reciprocal of the positive expoenent.
Rules of Exponents: If n > 0, m > 0 are positive integers and x, y are any real numbers, then: x m x n = x m+n x m x n = xm n, if m n (x m ) n = x mn (xy) n = x n y n ( x y ) n = xn y n 1 Can we make sense
More informationLagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.
Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method
More informationMath 1111 Journal Entries Unit I (Sections , )
Math 1111 Journal Entries Unit I (Sections 1.11.2, 1.41.6) Name Respond to each item, giving sufficient detail. You may handwrite your responses with neat penmanship. Your portfolio should be a collection
More information5.4 The Quadratic Formula
Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function
More informationSummer Mathematics Packet Say Hello to Algebra 2. For Students Entering Algebra 2
Summer Math Packet Student Name: Say Hello to Algebra 2 For Students Entering Algebra 2 This summer math booklet was developed to provide students in middle school an opportunity to review grade level
More informationDecomposing Rational Functions into Partial Fractions:
Prof. Keely's Math Online Lessons University of Phoenix Online & Clark College, Vancouver WA Copyright 2003 Sally J. Keely. All Rights Reserved. COLLEGE ALGEBRA Hi! Today's topic is highly structured and
More information18 Verifying Trigonometric Identities
Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan 18 Verifying Trigonometric Identities In this section, you will learn how to use trigonometric identities to simplify trigonometric
More informationEquations and Inequalities
Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.
More information4.1. COMPLEX NUMBERS
4.1. COMPLEX NUMBERS What You Should Learn Use the imaginary unit i to write complex numbers. Add, subtract, and multiply complex numbers. Use complex conjugates to write the quotient of two complex numbers
More informationFlorida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies  Upper
Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies  Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic
More informationIntegration ALGEBRAIC FRACTIONS. Graham S McDonald and Silvia C Dalla
Integration ALGEBRAIC FRACTIONS Graham S McDonald and Silvia C Dalla A selfcontained Tutorial Module for practising the integration of algebraic fractions Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk
More informationStep 1: Set the equation equal to zero if the function lacks. Step 2: Subtract the constant term from both sides:
In most situations the quadratic equations such as: x 2 + 8x + 5, can be solved (factored) through the quadratic formula if factoring it out seems too hard. However, some of these problems may be solved
More informationThis is a square root. The number under the radical is 9. (An asterisk * means multiply.)
Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize
More information1.1 Solving a Linear Equation ax + b = 0
1.1 Solving a Linear Equation ax + b = 0 To solve an equation ax + b = 0 : (i) move b to the other side (subtract b from both sides) (ii) divide both sides by a Example: Solve x = 0 (i) x = 0 x = (ii)
More information39 Verifying Trigonometric Identities
39 Verifying Trigonometric Identities In this section, you will learn how to use trigonometric identities to simplify trigonometric expressions. Equations such as (x 2)(x + 2) x 2 4 or x2 x x + are referred
More informationUNIT 1: ANALYTICAL METHODS FOR ENGINEERS
UNIT : NLYTICL METHODS FOR ENGINEERS Unit code: /0/0 QCF Level: Credit value: OUTCOME TUTORIL LGEBRIC METHODS Unit content Be able to analyse and model engineering situations and solve problems using algebraic
More informationAlum Rock Elementary Union School District Algebra I Study Guide for Benchmark III
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial
More informationActually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is
QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.
More informationSolutions to SelfTest for Chapter 4 c4sts  p1
Solutions to SelfTest for Chapter 4 c4sts  p1 1. Graph a polynomial function. Label all intercepts and describe the end behavior. a. P(x) = x 4 2x 3 15x 2. (1) Domain = R, of course (since this is a
More informationUNIT 3: POLYNOMIALS AND ALGEBRAIC FRACTIONS. A polynomial is an algebraic expression that consists of a sum of several monomials. x n 1...
UNIT 3: POLYNOMIALS AND ALGEBRAIC FRACTIONS. Polynomials: A polynomial is an algebraic expression that consists of a sum of several monomials. Remember that a monomial is an algebraic expression as ax
More informationFactoring Polynomials and Solving Quadratic Equations
Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3
More information56 The Remainder and Factor Theorems
Use synthetic substitution to find f (4) and f ( 2) for each function. 1. f (x) = 2x 3 5x 2 x + 14 Divide the function by x 4. The remainder is 58. Therefore, f (4) = 58. Divide the function by x + 2.
More information3.2 The Factor Theorem and The Remainder Theorem
3. The Factor Theorem and The Remainder Theorem 57 3. The Factor Theorem and The Remainder Theorem Suppose we wish to find the zeros of f(x) = x 3 + 4x 5x 4. Setting f(x) = 0 results in the polynomial
More information2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
More informationNotes and questions to aid Alevel Mathematics revision
Notes and questions to aid Alevel Mathematics revision Robert Bowles University College London October 4, 5 Introduction Introduction There are some students who find the first year s study at UCL and
More informationCollege Algebra  MAT 161 Page: 1 Copyright 2009 Killoran
College Algebra  MAT 6 Page: Copyright 2009 Killoran Zeros and Roots of Polynomial Functions Finding a Root (zero or xintercept) of a polynomial is identical to the process of factoring a polynomial.
More informationSection 6.1 Factoring Expressions
Section 6.1 Factoring Expressions The first method we will discuss, in solving polynomial equations, is the method of FACTORING. Before we jump into this process, you need to have some concept of what
More information3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
More informationAlgebra Practice Problems for Precalculus and Calculus
Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials
More informationHFCC Math Lab Intermediate Algebra  17 DIVIDING RADICALS AND RATIONALIZING THE DENOMINATOR
HFCC Math Lab Intermediate Algebra  17 DIVIDING RADICALS AND RATIONALIZING THE DENOMINATOR Dividing Radicals: To divide radical expression we use Step 1: Simplify each radical Step 2: Apply the Quotient
More informationFactoring Quadratic Expressions
Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the
More informationChapter 9: Quadratic Functions 9.3 SIMPLIFYING RADICAL EXPRESSIONS
Chapter 9: Quadratic Functions 9.3 SIMPLIFYING RADICAL EXPRESSIONS Vertex formula f(x)=ax 2 +Bx+C standard d form X coordinate of vertex is Use this value in equation to find y coordinate of vertex form
More informationFinding y p in ConstantCoefficient Nonhomogenous Linear DEs
Finding y p in ConstantCoefficient Nonhomogenous Linear DEs Introduction and procedure When solving DEs of the form the solution looks like ay + by + cy =, y = y c + y p where y c is the complementary
More informationMA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
More information3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
More informationAlgebra Unit 6 Syllabus revised 2/27/13 Exponents and Polynomials
Algebra Unit 6 Syllabus revised /7/13 1 Objective: Multiply monomials. Simplify expressions involving powers of monomials. Preassessment: Exponents, Fractions, and Polynomial Expressions Lesson: Pages
More informationArithmetic Operations. The real numbers have the following properties: In particular, putting a 1 in the Distributive Law, we get
Review of Algebra REVIEW OF ALGEBRA Review of Algebra Here we review the basic rules and procedures of algebra that you need to know in order to be successful in calculus. Arithmetic Operations The real
More informationModuMath Algebra Lessons
ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations
More informationPartial Fraction Decomposition for Inverse Laplace Transform
Partial Fraction Decomposition for Inverse Laplace Transform Usually partial fractions method starts with polynomial long division in order to represent a fraction as a sum of a polynomial and an another
More informationPOLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
More informationZeros of Polynomial Functions
Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate
More informationAlgebra Tiles Activity 1: Adding Integers
Algebra Tiles Activity 1: Adding Integers NY Standards: 7/8.PS.6,7; 7/8.CN.1; 7/8.R.1; 7.N.13 We are going to use positive (yellow) and negative (red) tiles to discover the rules for adding and subtracting
More informationEXAM. Practice Questions for Exam #2. Math 3350, Spring April 3, 2004 ANSWERS
EXAM Practice Questions for Exam #2 Math 3350, Spring 2004 April 3, 2004 ANSWERS i Problem 1. Find the general solution. A. D 3 (D 2)(D 3) 2 y = 0. The characteristic polynomial is λ 3 (λ 2)(λ 3) 2. Thus,
More informationEquations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
More informationChapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
More informationChapter 3. Algebra. 3.1 Rational expressions BAa1: Reduce to lowest terms
Contents 3 Algebra 3 3.1 Rational expressions................................ 3 3.1.1 BAa1: Reduce to lowest terms...................... 3 3.1. BAa: Add, subtract, multiply, and divide............... 5
More informationName: where Nx ( ) and Dx ( ) are the numerator and
Oblique and Nonlinear Asymptote Activity Name: Prior Learning Reminder: Rational Functions In the past we discussed vertical and horizontal asymptotes of the graph of a rational function of the form m
More informationFACTORING QUADRATIC EQUATIONS
FACTORING QUADRATIC EQUATIONS Summary 1. Difference of squares... 1 2. Mise en évidence simple... 2 3. compounded factorization... 3 4. Exercises... 7 The goal of this section is to summarize the methods
More informationChapter 15 Radical Expressions and Equations Notes
Chapter 15 Radical Expressions and Equations Notes 15.1 Introduction to Radical Expressions The symbol is called the square root and is defined as follows: a = c only if c = a Sample Problem: Simplify
More information{ f (x)e sx if s = r. f(x)e sx if s r. (D r) n y = e rx f(x),
1 Recipes for Solving ConstantCoefficient Linear Nonhomogeneous Ordinary Differential Equations Whose Right Hand Sides are Sums of Products of Polynomials times Exponentials Let D = d dx. We begin by
More informationFACTORING QUADRATICS 8.1.1 and 8.1.2
FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.
More informationcalculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,
Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials
More informationAlgebra 1 Chapter 3 Vocabulary. equivalent  Equations with the same solutions as the original equation are called.
Chapter 3 Vocabulary equivalent  Equations with the same solutions as the original equation are called. formula  An algebraic equation that relates two or more reallife quantities. unit rate  A rate
More informationALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola
More informationPolynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF
Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials
More information6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives
6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise
More informationMINI LESSON. Lesson 5b Solving Quadratic Equations
MINI LESSON Lesson 5b Solving Quadratic Equations Lesson Objectives By the end of this lesson, you should be able to: 1. Determine the number and type of solutions to a QUADRATIC EQUATION by graphing 2.
More informationFlorida Math Correlation of the ALEKS course Florida Math 0022 to the Florida Mathematics Competencies  Lower and Upper
Florida Math 0022 Correlation of the ALEKS course Florida Math 0022 to the Florida Mathematics Competencies  Lower and Upper Whole Numbers MDECL1: Perform operations on whole numbers (with applications,
More informationBasics of Polynomial Theory
3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where
More informationPURE MATHEMATICS AM 27
AM SYLLABUS (013) PURE MATHEMATICS AM 7 SYLLABUS 1 Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs) 1. AIMS To prepare students for further studies in Mathematics and
More informationPURE MATHEMATICS AM 27
AM Syllabus (015): Pure Mathematics AM SYLLABUS (015) PURE MATHEMATICS AM 7 SYLLABUS 1 AM Syllabus (015): Pure Mathematics Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs)
More informationMth 95 Module 2 Spring 2014
Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression
More informationSolving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
More informationUNIT 5 VOCABULARY: POLYNOMIALS
2º ESO Bilingüe Page 1 UNIT 5 VOCABULARY: POLYNOMIALS 1.1. Algebraic Language Algebra is a part of mathematics in which symbols, usually letters of the alphabet, represent numbers. Letters are used to
More information