# ODOT LRFD Foundations

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Ohio Department of Transportation John R. Kasich, Governor Jerry Wray, Director ODOT LRFD Foundations Alexander Dettloff, P.E. Foundation Engineer Office of Geotechnical Engineering May 07, 2013

2 AASHTO 6 th Ed. versus 5 th Ed. Check the Plan Sheets: AASHTO 6 th Edition (2012) versus 5 th Edition (2010) 2

3 Important Changes in AASHTO 6 th Ed. Eccentricity Limits Section Soil: Middle 2 / 3 B (was middle ½ B) Rock: Middle 9 / 10 B (was middle ¾ B) New Section Extreme Event Limit State Changes all other following Section 11.5 numbers Seismic design not mandatory for Seismic Zones 1 through 3 (all of Ohio) AASHTO 6 th Edition (2012) versus 5 th Edition (2010) 3

4 Important Changes in AASHTO 6 th Ed. Section Group Reduction Factors for Bearing Resistance of Shafts in Sand AASHTO 6 th Edition (2012) versus 5 th Edition (2010) 4

5 Coulomb vs. Rankine Earth Pressure Short-heeled vs. Long-heeled Walls Incline EH load at δ for Coulomb Incline EH load at β for Rankine Coulomb versus Rankine Earth Pressure 5

6 Coulomb Earth Pressure Coulomb Earth Pressure 6

7 Broken Back Slope Analysis Calculate B instead of β for infinite slope For h, don't use B, use β Please note: In this figure, B is the notional or effective slope angle. However, in other publications (by FHWA), β or β eq are often used. Broken Back Slope Analysis 7

8 Global (Overall) Stability Global (Overall) Stability 8

9 Global (Overall) Stability Resistance Factor 0.75 = Factor of Safety 1.3 Resistance Factor 0.65 = Factor of Safety 1.5 Contains or Supports a Structural Element Includes: Another wall above the lower wall Bridge Abutment or Wing Walls Walls with bridge foundations above or behind (including deep foundations) where a wall failure surface could intersect the bridge foundations Do not cite irrelevant Factor of Safety for the condition being analyzed Global (Overall) Stability 9

10 Global (Overall) Stability Pay attention to stability model limits Global (Overall) Stability 10

11 Pile Foundations Driven to Rock Cite Factored Load per Pile (Q p ) per BDM a Compare Q p to maximum structural resistance of pile, R R max = P r = φ c P n = φ c A s F y, where φ c = 0.50 for severe driving conditions F y = 50 ksi for H-piles Assume pile embedment in bedrock to top of cored bedrock per BDM a Include embedment in pile cap and round up Estimated Pile Length to nearest 5 feet, per BDM Pile Foundations Driven to Rock 11

12 Driven Friction Pile Foundations Cite Factored Load per Pile (Q p ) and UBV (R ndr ) per BDM b Use φ DYN = 0.70 to calculate UBV Do not use Maximum UBV per pile Compare UBV to Ultimate Capacity not to Driving Resistance with driving strength loss Provide justification if using a pile larger than required by the Factored Load per Pile Include embedment in pile cap and round up Estimated Pile Length to nearest 5 feet, per BDM Driven Friction Pile Foundations 12

13 Driven Friction Pile Foundations Determine minimum pipe pile wall thickness per Construction and Material Specifications, Section D, UBV / 900 kip/in Ensure Wave Equation Drivability Analyses correspond to Static Analyses (typically GRLWEAP versus DRIVEN) Soil strata match in depth and strength UBV capacity reached at same depth UBV plot the same shape and magnitude Use an appropriate shaft gain/loss factor per DRIVEN user manual, Chapter 5, and GRLWEAP manual Sections 6.1 and 6.2. Driven Friction Pile Foundations 13

14 Driven Pile Foundations When performing Drivability Analysis, per BDM Section b & AASHTO , compare calculated driving stresses to Maximum Permissible Driving Stress, σ dr For Steel Piles, per AASHTO , σ dr = 0.9 φ da f y Per AASHTO , φ da = 1.00 Per ASTM A252, for pipe piles, Grade 1, f y = 30 ksi (not allowed) Grade 2, f y = 35 ksi (most common, default) Grade 3, f y = 45 ksi (must be specified for use) Driven Pile Foundations 14

15 Drilled Shaft Foundations Self weight of drilled shaft is counteracted by Archimedes principle of buoyancy: γ effective self weight = γ concrete γ soil Friction drilled shaft includes side resistance and end-bearing in soil. Rock-socketed drilled shaft includes side resistance and end-bearing in rock, but neglects side resistance in soil, due to greater amount of displacement required to engage side resistance in soil. Drilled Shaft Foundations 15

16 Drilled Shaft Foundations Axial End-Bearing Resistance in Bedrock AASHTO c-1; q p = 2.5 q u, N cr * = 2.5. Minimum rock socket = 1.5 B, where B = shaft diameter (see also FHWA GEC 10, Equation 13-20, and the associated narrative). FHWA GEC 10, Equation is a refinement of the above equation for rock where spacing (s v ) and aperture (t d ) of discontinuities (horizontal joints) is well known. N cr * = 0.4 to 5.1 Requires s v 1.0 feet and t d 0.25 inch. Do not use otherwise; default to above AASHTO c-1. AASHTO c-1 and GEC 10, Equation are for massive rock. Drilled Shaft Foundations 16

17 Drilled Shaft Foundations Per GEC 10, Massive rock can be defined, for purposes of bearing capacity analysis, as rock mass for which the effects of discontinuities are insignificant. Practically, if joint spacing is more than four to five times the shaft diameter, or if jointing is horizontal but the joints are tight (no compressible or gouge-filled seams) the rock can be treated as massive. Consider AASHTO Equation c-2 or GEC 10 Equation if: Rock is highly fractured and adversely jointed Rock contains solution cavities or voids Open seams contain compressible material (clay) Drilled Shaft Foundations 17

18 Drilled Shaft Foundations Please Note: AASTO Eqn c-2 uses RMR, Rock Mass Rating system. GEC 10 Equation uses GSI, Geologic Strength Index. The next edition of AASHTO will go to GSI Drilled Shaft Foundations 18

19 Drilled Shaft Foundations For Lateral Resistance using LPILE, when foundation is Embedded in Rock, always use LPILE Weak Rock Model, per FHWA GEC Use of q u > 1000 psi results in a non-critical error, which should be ignored. LPILE Strong Rock Model is calibrated to one certain vuggy limestone formation in southern Florida, which crushes under load: resistance drops to zero if deflection equals 0.24% of the shaft diameter. This does not reflect the p-y behavior of Ohio rocks. Drilled Shaft Foundations 19

20 Resistance Factors for Walls Wall RF Calibrated to old Factor of Safety: For example: γ EH =1.50 / φ τ = 1.00 : FoS = 1.5 Wall Resistance Factors: AASHTO Section 10 vs

21 CIP Gravity and Semi-Gravity Walls For Sliding on Granular soils, use AASHTO Equation , R τ = V tan δ. Please note that δ in this equation does not equal δ angle of interface friction in For Sliding on Cohesive soils, use AASHTO Figure Note: bedding on 6.0 in. of compacted granular material is always assumed, and the comparison between S u and 0.5σ v is always performed. This limits sliding resistance in stiffer clays to ½ the contact pressure (which would be less than S u ), and limits sliding resistance in softer clays to S u, which would be less than ½ the contact pressure. Cast-in-Place Gravity and Semi-Gravity Walls 21

22 CIP Gravity and Semi-Gravity Walls Cast-in-Place Gravity and Semi-Gravity Walls 22

23 CIP Gravity and Semi-Gravity Walls For AASHTO Figure , read this as For footings that rest on clay, where footings are supported on at least 6.0 in. of compacted granular material, the sliding resistance may be taken as the lesser of: The cohesion of the clay, or one-half the normal stress on the interface between the footing and soil, as shown in Figure for retaining walls. Cast-in-Place Gravity and Semi-Gravity Walls 23

24 Mechanically Stabilized Earth Walls For Sliding on Granular soils, using AASHTO Equation , compare internal friction angle, ϕ r, to external friction angle, ϕ f. Since an MSE wall is composed of soil, a check of internal sliding along the base should also be made, and compared to external sliding along the base, i.e. δ = ϕ f or ϕ r. Whichever generates the least resistance should be used for foundation sliding resistance, per AASHTO Mechanically Stabilized Earth (MSE) Walls 24

25 Mechanically Stabilized Earth Walls For Sliding on Cohesive soils: Do not use the trapezoidal or triangular pressure distribution shown in AASHTO Figure Per AASHTO C , Due to the flexibility of MSE walls, a triangular pressure distribution at the wall base cannot develop, even if the wall base is founded on rock, as the reinforced soil mass has limited ability to transmit moment. Therefore, an equivalent uniform base pressure distribution is appropriate for MSE walls founded on either soil or rock. One-half the average vertical stress σ v over the entire base width B should be used. Mechanically Stabilized Earth (MSE) Walls 25

26 MSE or Spread Footing Founded Walls For Sliding and Eccentricity of Load, use Limit State Strength I-a per AASHTO Figure C CIP Gravity, Semi-Gravity, and MSE Walls 26

27 MSE or Spread Footing Founded Walls For Bearing Resistance, use Limit State Strength I-b per AASHTO Figure C CIP Gravity, Semi-Gravity, and MSE Walls 27

28 MSE or Spread Footing Founded Walls Apply LS load directly for Bearing, only apply LS load indirectly (as a component of earth pressure) for Sliding and Eccentricity. CIP Gravity, Semi-Gravity, and MSE Walls 28

29 MSE or Spread Footing Founded Walls Because of differing Load Factors and application of loads, Strength I-a bearing pressure is always less than Strength I-b bearing pressure. Bearing is always more critical in the Strength I-b limit state. Sliding and Eccentricity are always more critical in the Strength I-a limit state. Do not perform Strength I-a bearing analyses, and do not perform Strength I-b sliding or limiting eccentricity analyses. CIP Gravity, Semi-Gravity, and MSE Walls 29

30 MSE or Spread Footing Founded Walls For bearing analyses on soil, always use effective base width B = B 2e, and uniform bearing pressure per AASHTO Sections and For this case, calculate eccentricity (e) with Strength I-b limit state loading. For bearing analyses on rock, use a linearly distributed pressure over the entire base width B. For MSE Walls on rock, use the average pressure over the entire base width B. CIP Gravity, Semi-Gravity, and MSE Walls 30

31 Cantilever Non-Gravity Walls For Minimum Embedment, use maximum of: 1. Minimum Embedment depth to resist Factored (Strength I) Axial Loads; however, this is typically neglected for non-anchored walls. 2. Minimum Embedment depth to meet Serviceability deflection limit at head of wall (under Service I limit state loading), typically: 1% of exposed height, if adjacent and above roadway 2 inches, if adjacent and below existing roadway 1% of length above bedrock otherwise 3. Minimum Embedment Depth for moment equilibrium about toe (point F), per AASHTO Figure through Figure Cantilever Non-Gravity Walls 31

32 Cantilever Non-Gravity Walls Cantilever Non-Gravity Walls 32

33 Cantilever Non-Gravity Walls For AASHTO Figure through Figure , b = width of vertical member S = spacing of vertical members Use b where S > 3b Use S where S 3b Use Strength I factored load and factored resistance γ EH = 1.50 per AASHTO Table γ LS = 1.75 per AASHTO Table φ p = 0.75 per AASHTO Table See AASHTO C for an example of how to use the load and resistance factors with Figure Similar principles can be used with Figure and Figure Cantilever Non-Gravity Walls 33

34 Cantilever Non-Gravity Wall For Structural Design, calculate Maximum Moment and Shear in vertical members, both within exposed height (cantilever section) and in vertical member as a whole. Consider exposed height as unbraced member Unbraced Length (L b per AASHTO ) = Exposed Height Consider embedded length as continuously braced member Cantilever Non-Gravity Walls 34

35 Anchored Walls Use Apparent Earth Pressure (AEP) model per AASHTO Section Section Use Load Factor γ EH = 1.35 for AEP per AASHTO Table For Minimum Embedment, use maximum of: 1. Minimum Embedment depth to resist Axial Loads, including anchor loads and self weight 2. Minimum Embedment depth per FHWA GEC 4, Section 5.5 for passive lateral resistance. 3. Minimum Embedment Depth for moment equilibrium about toe Anchored Walls 35

36 Anchored Walls 3. Minimum Embedment Depth for moment equilibrium about toe Anchored Walls 36

37 Anchored Walls 3. Determine Minimum Embedment Depth for moment equilibrium about toe, where: b = width of vertical member S = spacing of vertical members P p = 3 / 2 φ p k p γ b D 2, where S > 3b P p = ½ φ p k p γ S D 2, where S 3b φ p = 0.75 per AASHTO Table ΣM F = M R + D O R + Do / 3 P p = 0 D min = 1.2 D O These are Strength I Factored Loads Soil Nail Walls are not Anchored Walls: design soil nail walls per FHWA GEC 7 Anchored Walls 37

38 Thank You Questions? ODOT LRFD Foundations 38

MICROPILES SUBJECT TO LATERAL LOADING Dr. Jesús Gómez, P.E. Micropile Design and Construction Seminar Las Vegas, NV April 3-4, 2008 Outline When are micropiles subject to lateral load? How do we analyze

### STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL.

STRUCTURES 1. General. Critical structures may impact the integrity of a flood control project in several manners such as the excavation for construction of the structure, the type of foundation, backfill

### High Strain Dynamic Load Testing of Drilled Shafts

Supplemental Technical Specification for High Strain Dynamic Load Testing of Drilled Shafts SCDOT Designation: SC-M-712 (9/15) September 3, 2015 1.0 GENERAL This work shall consist of performing high-strain

### Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation

Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation Jeff R. Hill, P.E. Hayward Baker Inc. 111 W. Port Plaza Drive Suite 600 St. Louis, MO 63146 314-542-3040 JRHill@HaywardBaker.com

### PART TWO GEOSYNTHETIC SOIL REINFORCEMENT. Martin Street Improvements, Fredonia, Wisconsin; Keystone Compac Hewnstone

GEOSYNTHETIC SOIL REINFORCEMENT Martin Street Improvements, Fredonia, Wisconsin; Keystone Compac Hewnstone DESIGN MANUAL & KEYWALL OPERATING GUIDE GEOSYNTHETIC SOIL REINFORCEMENT Keystone retaining walls

### Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites

Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites Worked example to accompany MBIE Guidance on the seismic design of retaining

### COSMOS 2012: Earthquakes in Action COSMOS 2012

COSMOS 2012 What is SFSI and why is it important? Soil issues in Earthquakes Structures where SFSI important Retaining structures (lateral earth pressure) Foundations (spread and pile footings, bearing

### Stability. Security. Integrity.

Stability. Security. Integrity. PN #MBHPT Foundation Supportworks provides quality helical pile systems for both new construction and retrofit applications. 288 Helical Pile System About Foundation Supportworks

### National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination

Structural Effective Beginning with the April 2011 The structural engineering exam is a breadth and exam examination offered in two components on successive days. The 8-hour Vertical Forces (Gravity/Other)

### System. Stability. Security. Integrity. 150 Helical Anchor

Model 150 HELICAL ANCHOR System PN #MBHAT Stability. Security. Integrity. 150 Helical Anchor System About Foundation Supportworks is a network of the most experienced and knowledgeable foundation repair

### How to Design Helical Piles per the 2009 International Building Code

ABSTRACT How to Design Helical Piles per the 2009 International Building Code by Darin Willis, P.E. 1 Helical piles and anchors have been used in construction applications for more than 150 years. The

### BRIDGE RESTORATION AND LANDSLIDE CORRECTION USING STRUCTURAL PIER AND GRADE BEAM

BRIDGE RESTORATION AND LANDSLIDE CORRECTION USING STRUCTURAL PIER AND GRADE BEAM Swaminathan Srinivasan, P.E., M.ASCE H.C. Nutting/Terracon David Tomley, P.E., M.ASCE KZF Design Delivering Success for

### Report on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars

Report on Wind Resistance of Signs supported by Glass Fiber Reinforced Concrete (GFRC) Pillars Prepared for US Sign and Fabrication Corporation January, 2006 SUMMARY This study found the attachment of

### SUPPLEMENTAL TECHNICAL SPECIFICATIONS BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS

July 14, 2015 1.0 GENERAL BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS This work shall consist of furnishing all materials, equipment, labor, and incidentals necessary for conducting bi-directional

### Finite Element Analysis of Elastic Settlement of Spreadfootings Founded in Soil

Finite Element Analysis of Elastic Settlement of Spreadfootings Founded in Soil Jae H. Chung, Ph.D. Bid Bridge Software Institute t University of Florida, Gainesville, FL, USA Content 1. Background 2.

### Step 11 Static Load Testing

Step 11 Static Load Testing Test loading is the most definitive method of determining load capacity of a pile. Testing a pile to failure provides valuable information to the design engineer and is recommended

### Section 2100-Trenching and Tunneling

SECTION 5200 - STORM SEWER PART 1 - GENERAL 1.01 SCOPE: This Section covers installation of storm sewer mains and culverts. Topics include permits and fees, trench widths, pipe laying, bedding, initial

### Safe & Sound Bridge Terminology

Safe & Sound Bridge Terminology Abutment A retaining wall supporting the ends of a bridge, and, in general, retaining or supporting the approach embankment. Approach The part of the bridge that carries

Compression Test, METHOD OF STATEMENT FOR STATIC LOADING TEST Tension Test and Lateral Test According to the American Standards ASTM D1143 07, ASTM D3689 07, ASTM D3966 07 and Euro Codes EC7 Table of Contents

Table of Contents Section Page 16.1 GENERAL... 16.1-1 16.1.1 Overview... 16.1-1 16.1.2 Responsibilities... 16.1-1 16.1.2.1 Geotechnical Section/Bridge Bureau Coordination... 16.1-1 16.1.2.2 Geotechnical

### Geotechnical Building Works (GBW) Submission Requirements

Building Control (Amendment) Act 2012 and Regulations 2012: Geotechnical Building Works (GBW) Submission Requirements Building Engineering Group Building and Construction Authority May 2015 Content : 1.

### TECHNICAL SPECIFICATION SERIES 8000 PRECAST CONCRETE

TECHNICAL SPECIFICATION SERIES 8000 PRECAST CONCRETE TECHNICAL SPECIFICATION PART 8000 - PRECAST CONCRETE TABLE OF CONTENTS Item Number Page 8100 PRECAST CONCRETE CONSTRUCTION - GENERAL 8-3 8101 General

### New construction Repairing failed or old foundations Retrofit foundations Permanent battered piers Machinery/equipment foundations

from New construction foundations don t have to be a headache. The CHANCE Helical Pier Foundation System gives you the performance of concrete without the drawbacks and liabilities of driven piles and

### Recommended Specifications, Commentaries, and Example Problems

Draft Final Report Volume 2 to the NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM (NCHRP) on Project 12-70 Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes, and Embankments Recommended

### Emergency repair of Bridge B421

Emergency repair of Bridge B421 over the Olifants River after fl ood damage INTRODUCTION AND BACKGROUND Bridge B421 is located on the R555 at km 5.03 on Section 01E between Witbank (now known as emalahleni)

### 6 RETROFITTING POST & PIER HOUSES

Retrofitting Post & Pier Houses 71 6 RETROFITTING POST & PIER HOUSES by James E. Russell, P.E. 72 Retrofitting Post & Pier Houses Retrofitting Post & Pier Houses 73 RETROFITTING POST AND PIER HOUSES This

### GLOSSARY OF TERMINOLOGY

GLOSSARY OF TERMINOLOGY AUTHORIZED PILE LENGTHS - (a.k.a. Authorized Pile Lengths letter) Official letter stating Engineer's recommended length of concrete piles to be cast for construction of foundation.

### The demand for new roadway

Designing strong walls on weak soils Civil engineers have options to remedy foundation soil problems and meet project cost and schedule requirements. By Fadi Faraj, P.E.; Michael H. Garrison, P.E.; and

### Up-Down Construction Utilizing Steel Sheet Piles and Drilled Shaft Foundations

Up-Down Construction Utilizing Steel Sheet Piles and Drilled Shaft Foundations Nathan A. Ingraffea, P.E., S.E. Associate, KPFF Consulting Engineers, Portland, Oregon, USA Abstract The use of steel sheet

### Design and Construction of Auger Cast Piles

Design and Construction of Auger Cast Piles 101 th Annual Road School 2015 3/11/2015 Malek Smadi, Ph.D., P.E. Principal Engineer - GEOTILL - Fishers, IN msmadi@geotill.com - www.geotill.com CONTENTS 1.

### Load and Resistance Factor Geotechnical Design Code Development in Canada. by Gordon A. Fenton Dalhousie University, Halifax, Canada

Load and Resistance Factor Geotechnical Design Code Development in Canada by Gordon A. Fenton Dalhousie University, Halifax, Canada 1 Overview 1. Past: Where we ve been allowable stress design partial

### USE OF MICROPILES IN TEXAS BRIDGES. by John G. Delphia, P.E. TxDOT Bridge Division Geotechnical Branch

USE OF MICROPILES IN TEXAS BRIDGES by John G. Delphia, P.E. TxDOT Bridge Division Geotechnical Branch DEFINITION OF A MICROPILE A micropile is a small diameter (typically less than 12 in.), drilled and

### METHOD STATEMENT HIGH STRIAN DYNAMIC TESTING OF PILE. Prepared by

METHOD STATEMENT HIGH STRIAN DYNAMIC TESTING OF PILE Prepared by Infratech ASTM CO., LTD. Contents Chapter Description Page Contents...... 1 List of Appendix. 1 1. Introduction.. 2 2. Test Method..2 3.

### Project Location. Project Limits: The Grand River east to Fuller Ave.

Outline Project Location Project Description Project History Site Constraints Geotechnical Investigation & Soil Profile Foundation Design Process Photos Project Location Project Limits: The Grand River

### Chapter 7 Substructure Design... 7.1-1 7.1 General Substructure Considerations...7.1-1 7.1.1 Foundation Design Process...7.1-1 7.1.

Chapter 7 Contents Chapter 7 Substructure Design... 7.1-1 7.1 General Substructure Considerations...7.1-1 7.1.1 Foundation Design Process...7.1-1 7.1.2 Foundation Design Limit States...7.1-3 7.1.3 Seismic

### EN 1997-1 Eurocode 7. Section 10 Hydraulic Failure Section 11 Overall Stability Section 12 Embankments. Trevor L.L. Orr Trinity College Dublin Ireland

EN 1997 1: Sections 10, 11 and 12 Your logo Brussels, 18-20 February 2008 Dissemination of information workshop 1 EN 1997-1 Eurocode 7 Section 10 Hydraulic Failure Section 11 Overall Stability Section

### State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS

State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS While its use is not required, this checklist has been prepared to provide the field inspector a summary

### Helical Piles. A Practical Guide to Design and Installation

Brochure More information from http://www.researchandmarkets.com/reports/2216946/ Helical Piles. A Practical Guide to Design and Installation Description: An unbiased, comprehensive review of helical pile

### Underpinning Systems 14.1 FOUNDATION REPAIR. Helical Piles

Helical Piles Howard A. Perko Copyright 0 2009 by John Wiley & Sons, Inc. All rights reserved. C h a p t e r 14 Underpinning Systems There has been tremendous growth in the use of helical piles for underpinning

### Wisconsin Building Products Evaluation

Safety & Buildings Division 201 West Washington Avenue P.O. Box 2658 Madison, WI 53701-2658 Evaluation # 200813-O Wisconsin Building Products Evaluation Material Best Management Standards for Foundation

### The Installation and Load Testing of Drilled Shafts

Presentation to the North American Chinese Geotechnical Engineers Association The Installation and Load Testing of Drilled Shafts at Clarksville, Virginia by James M. Sheahan, P.E. HDR Engineering, Inc.

### Long-term serviceability of the structure Minimal maintenance requirements Economical construction Improved aesthetics and safety considerations

Design Step 7.1 INTEGRAL ABUTMENT DESIGN General considerations and common practices Integral abutments are used to eliminate expansion joints at the end of a bridge. They often result in Jointless Bridges

### 5/1/2013. Topics. The challenge is to better maintain native characteristics of soils during and after construction

PIN Foundations Topics Applications Design and Construction Flow Control Credits www.pinfoundations.com Copyright 2008, Pin Foundations, Inc. Curtis Hinman WSU Extension Faculty, Watershed Ecologist chinman@wsu.edu

### LEGACY REPORT ER-5110. www.icc-es.org. ICC Evaluation Service, Inc. Reissued November 1, 2003. Legacy report on the 1997 Uniform Building Code

LEGACY REPORT Reissued November 1, 2003 ICC Evaluation Service, Inc. www.icc-es.org Business/Regional Office # 5360 Workman Mill Road, Whittier, California 90601 # (562) 699-0543 Regional Office # 900

### Comparison of Seismic Retrofitting Methods for Existing Foundations in Seismological Active Regions

Comparison of Seismic Retrofitting Methods for Existing Foundations in Seismological Active Regions Peyman Amini Motlagh, Ali Pak Abstract Seismic retrofitting of important structures is essential in seismological

### High Capacity Helical Piles Limited Access Projects

High Capacity Helical Piles Limited Access Projects Tel 403 228-1767 Canada, USA, Russia Brendan ODonoghue 519 830-6113 Presentation Summary 1. Helical piles Background on large diameter shafts and helices

### product manual HS-4210 HS-4210_MAN_09.08 Digital Static Cone Penetrometer

HS-4210_MAN_09.08 product manual HS-4210 Digital Static Cone Penetrometer Introduction This Manual covers the measurement of bearing capacity using the Humboldt Digital Static Cone Penetrometer (DSCP).

### SAMPLE GUIDE SPECIFICATIONS FOR OSTERBERG CELL LOAD TESTING OF DEEP FOUNDATIONS

Page 1 of 9 SAMPLE GUIDE SPECIFICATIONS FOR OSTERBERG CELL LOAD TESTING OF DEEP FOUNDATIONS 1. GENERAL REQUIREMENTS 1. Description of Work: This work consists of furnishing all materials, equipment and

### Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges

7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience

### SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED NOTE: MOMENT DIAGRAM CONVENTION In PT design, it is preferable to draw moment diagrams

### Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

### SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701)

SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701) 55-1 GENERAL The Contractor shall perform all work required by the plans for construction of pipe for storm drains, precast polymer trench drains

### ANNEX D1 BASIC CONSIDERATIONS FOR REVIEWING STUDIES IN THE DETAILED RISK ASSESSMENT FOR SAFETY

ANNEX D1 BASIC CONSIDERATIONS FOR REVIEWING STUDIES IN THE DETAILED RISK ASSESSMENT FOR SAFETY ANNEX D1: BASIC CONSIDERATIONS FOR REVIEWING STUDIES IN DRA FOR SAFETY D1-1 ANNEX D1 BASIC CONSIDERATIONS

### SECTION 1 GENERAL REQUIREMENTS

Page 1 of 6 SECTION 1 GENERAL REQUIREMENTS 1. SCOPE OF WORK: The work to be performed under the provisions of these documents and the contract based thereon includes furnishing all labor, equipment, materials,

### PTS HELICAL PIERS INSTALLATION SPECIFICATIONS NOTICE

FORM A PTS HELICAL PIERS INSTALLATION SPECIFICATIONS NOTICE The following suggested specifications are written as a guide to assist the specifier in writing his own specifications. Specific circumstances

### Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. The design of any foundation consists of following two parts.

8.7. Design procedure for foundation The design of any foundation consists of following two parts. 8.7.1 Stability analysis Stability analysis aims at removing the possibility of failure of foundation

### Detailing of Reinforcment in Concrete Structures

Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For

### DIVISION: 31 00 00 EARTHWORK SECTION: 31 63 00 BORED PILES REPORT HOLDER: HUBBELL POWER SYSTEMS, INC.

0 ICC ES Report ICC ES (800) 4 6587 (56) 699 054 www.icc es.org 000 Most Widely Accepted and Trusted ESR 794 Reissued 05/05 This report is subject to renewal 05/06. DIVISION: 00 00 EARTHWORK SECTION: 6

### Lighthouse Engineering, L.L.C.

Registered Engineering Firm (F: 9334) Phone: 214-577-1077 Fax: 214-224-0549 Website: www.lighthouseeng.com Email: Office@LighthouseEng.com Thursday, September 04, 2014 TO: Our Client RE: Initial Engineering

### Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils

Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils Stephen W. Lacz 1, M. ASCE, P.E. and Richard C. Wells 2, F. ASCE, P.E. 1 Senior Professional, Trigon Kleinfelder, Inc., 313 Gallimore

### Foundations 65 5 FOUNDATIONS. by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. Seismic Retrofit Training

Foundations 65 5 FOUNDATIONS by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. 66 Foundations Foundations 67 FOUNDATIONS Let's assume that the retrofit has been done correctly from the roofline

### Use and Application of Piezocone Penetration Testing in Presumpscot Formation

Use and Application of Piezocone Penetration Testing in Presumpscot Formation Craig W. Coolidge, P.E. Summit Geoengineering Services, Rockland, Maine ABSTRACT: This paper examines the advantages and limitations

### Pro-Lift Steel Pile Foundation Repair

Pro-Lift Steel Pile Foundation Repair Pro-Lift Steel Pile Foundation Repair System Pro-lift steel piles are designed for the stresses of Texas soils. They can have multiple steel walls, depending on the

### Residential Deck Safety, Construction, and Repair

Juneau Permit Center, 4 th Floor Marine View Center, (907)586-0770 This handout is designed to help you build your deck to comply with the 2006 International Residential Building code as modified by the

### Chapter 3 DESIGN AND CONSTRUCTION FEATURES IMPORTANT TO SEISMIC PERFORMANCE

Chapter 3 DESIGN AND CONSTRUCTION FEATURES IMPORTANT TO SEISMIC PERFORMANCE To satisfy the performance goals of the NEHRP Recommended Seismic Provisions, a number of characteristics are important to the

### Important Points: Timing: Timing Evaluation Methodology Example Immediate First announcement of building damage

3.3. Evaluation of Building Foundation Damage Basic Terminology: Damage: Destruction, deformation, inclination and settlement of a building foundation caused by an earthquake. Damage grade: Degree of danger

### 3. Contractor shall ensure that all permits are obtained prior to any construction. Contractor shall be responsible for all utility fees.

The following shall serve as the minimum requirements for contractors performing work in relation to the Authority s potable water and sanitary sewer system(s), appurtenances and service connections. General:

### DIRT DWELLING. and your. www.pinfoundations.com. Pin Foundations Inc., 2008

DIRT and your DWELLING 2008 Pin Foundations Inc., 2008 If we accept that preserving soil in its native condition is necessary, then how do we build? Utilities? Roads? Foundations? Typical Strip, Transfer,

### RESIDENTIAL FOUNDATION GUIDELINE Johnson County, KS

RESIDENTIAL FOUNDATION GUIDELINE Johnson County, KS Johnson County Building Officials Association January 2008 Residential Foundation Guideline Foundation designs for one-and two-family dwellings may use

### METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

### Figure 2.31. CPT Equipment

Soil tests (1) In-situ test In order to sound the strength of the soils in Las Colinas Mountain, portable cone penetration tests (Japan Geotechnical Society, 1995) were performed at three points C1-C3

### Engineered, Time-Tested Foundation Repairs for Settlement in Residential and Light Commercial Structures. The Leading Edge.

TM TM Engineered, Time-Tested Foundation Repairs for Settlement in Residential and Light Commercial Structures. SM The Leading Edge. 10 One Major Causes of foundation settlement or more conditions may

### c. Borehole Shear Test (BST): BST is performed according to the instructions published by Handy Geotechnical Instruments, Inc.

Design Manual Chapter 6 - Geotechnical 6B - Subsurface Exploration Program 6B-2 Testing A. General Information Several testing methods can be used to measure soil engineering properties. The advantages,

### Moving Small Mountains Vesuvius Dam Rehab

Moving Small Mountains Vesuvius Dam Rehab Susan L. Peterson, P.E., regional dams engineer, Eastern Region, Bedford, IN Note: The following article, Moving Small Mountains Vesuvius Dam Rehab, by Sue Peterson,

### US 51 Ohio River Bridge Engineering and Environmental Study

US 51 Ohio River Bridge Engineering and Environmental Study ITEM NOS. 1-100.00 & 1-1140.00 Prepared by: Michael Baker Jr., Inc. 9750 Ormsby Station Rd Louisville, KY 40223 August 16, 2013 Table of Contents

Laterally Loaded Piles 1 Soil Response Modelled by p-y Curves In order to properly analyze a laterally loaded pile foundation in soil/rock, a nonlinear relationship needs to be applied that provides soil

### ITEM #0702770 OSTERBERG CELL LOAD TESTING OF DRILLED SHAFT

ITEM #0702770 OSTERBERG CELL LOAD TESTING OF DRILLED SHAFT Description: This work shall consist of furnishing all materials, equipment and labor necessary for conducting an Osterberg Cell (O-Cell) Load

### EUROCODE 7 & POLISH PRACTICE

EUROCODE 7 & POLISH PRACTICE Implementation of Eurocode 7 in Poland Beata Gajewska Road and Bridge Research Institute In Poland the designing with limit states and partial factors was introduced in 1974.

### Kentucky Lake Bridge Pile Load Testing Overview Ohio Transportation Engineering Conference Columbus, Ohio 10/28/2015

Kentucky Lake Bridge Pile Load Testing Overview Ohio Transportation Engineering Conference Columbus, Ohio 10/28/2015 Presented by: Jeff Dunlap, P.E. Terracon Consultants 1 Project Site Kentucky Official

### OPTIMAL DIAGRID ANGLE TO MINIMIZE DRIFT IN HIGH-RISE STEEL BUILDINGS SUBJECTED TO WIND LOADS

International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 215, pp. 1-1, Article ID: IJCIET_6_11_1 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11

### ADVANCEMENTS IN STATNAMIC DATA REGRESSION TECHNIQUES

ADVANCEMENTS IN STATNAMIC DATA REGRESSION TECHNIQUES Gray Mullins 1, Christopher L. Lewis 2, Michael D. Justason 3 ABSTRACT Until recently, the analysis of Statnamic test data has typically incorporated

### SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

### Page & Turnbull imagining change in historic environments through design, research, and technology

DCI+SDE STRUCTURAL EVALUATIONS OFFICE BUILDING, TOOL SHED & WATER TANK, AND BLACKSMITH & MACHINE SHOP BUILDINGS SAN FRANCISCO, CALIFORNIA [14290] PRIMARY PROJECT CONTACT: H. Ruth Todd, FAIA, AICP, LEED

### STANDARD SPECIFICATIONS FOR PRIVATE BUILDING SEWER LINES IN PUBLIC RIGHT-OF-WAY

STANDARD SPECIFICATIONS FOR PRIVATE BUILDING SEWER LINES IN PUBLIC RIGHT-OF-WAY Approved and adopted as Official Document Number 800576 this 10th day of December, 1980 Donald R. Boyd, P.E., Director Water

### PROVA DINAMICA SU PALI IN ALTERNATIVA ALLA PROVA STATICA. Pile Dynamic Load test as alternative to Static Load test

PROVA DINAMICA SU PALI IN ALTERNATIVA ALLA PROVA STATICA Pile Dynamic Load test as alternative to Static Load test Gorazd Strnisa, B.Sc.Civ.Eng. SLP d.o.o. Ljubljana ABSTRACT Pile Dynamic test is test

### Designed and Engineered to Perform

History EARTH CONTACT PRODUCTS, L.L.C., is a family owned company, based in Olathe, Kansas. This company was built upon Don May s U.S. Patented fourth-generation Steel Piering System that has led to the

### ABSTRACT 1. INTRODUCTION 2. DESCRIPTION OF THE SEGMENTAL BEAM

Ninth LACCEI Latin American and Caribbean Conference (LACCEI 11), Engineering for a Smart Planet, Innovation, Information Technology and Computational Tools for Sustainable Development, August 3-, 11,

### Residential Foundations and Basements

Residential Foundations and Basements Disclaimer All of the following information is based on the 2006 International Residential Code with Kentucky Amendments. As some information is paraphrased, article

### 10.1 Powder mechanics

Fluid and Particulate systems 424514 /2014 POWDER MECHANICS & POWDER FLOW TESTING 10 Ron Zevenhoven ÅA Thermal and Flow Engineering ron.zevenhoven@abo.fi 10.1 Powder mechanics RoNz 2/38 Types of flow of

### MDWASD 8/1999 SECTION 02315 TRENCHING AND BACKFILLING FOR PIPING SYSTEMS

PART 1 - GENERAL 1.01 WORK INCLUDED SECTION 02315 TRENCHING AND BACKFILLING FOR PIPING SYSTEMS A. The work included under this Section consists of excavating, backfilling and compaction as required for

### Emergency Spillways (Sediment basins)

Emergency Spillways (Sediment basins) DRAINAGE CONTROL TECHNIQUE Low Gradient Velocity Control Short-Term Steep Gradient Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent [1] [1]

Table of Contents 12.1 General... 3 12.2 Abutment Types... 5 12.2.1 Full-Retaining... 5 12.2.2 Semi-Retaining... 6 12.2.3 Sill... 7 12.2.4 Spill-Through or Open... 7 12.2.5 Pile-Encased... 8 12.2.6 Special

### CLEANING, INSPECTION, AND TESTING OF SEWERS

CLEANING, INSPECTION, AND TESTING OF SEWERS PART 1 - GENERAL 1.01 SECTION INCLUDES A. Cleaning, Inspecting, and Testing Sanitary Sewers B. Cleaning, Inspecting, and Testing Storm Sewers C. Cleaning and

### SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT

SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT 1.0 SOIL IMPROVEMENT 1.1 General Soil Investigation Information are provided in Part B1 annex as a guide to the Contractor for his consideration

### Chapter 6 ROOF-CEILING SYSTEMS

Chapter 6 ROOF-CEILING SYSTEMS Woodframe roof-ceiling systems are the focus of this chapter. Cold-formed steel framing for a roof-ceiling system also is permitted by the IRC but will not be discussed;

### ATLAS RESISTANCE Pier Foundation Systems

ATLAS RESISTANCE Pier Foundation Systems Foundation Repair Systems for Civil Construction Applications: Residential, Commercial, Industrial Atlas Resistance Piers have been used to restore and/or stabilize

### Chapter 3 Pre-Installation, Foundations and Piers

Chapter 3 Pre-Installation, Foundations and Piers 3-1 Pre-Installation Establishes the minimum requirements for the siting, design, materials, access, and installation of manufactured dwellings, accessory

### 2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT Open channel flow is defined as flow in any channel where the liquid flows with a free surface. Open channel flow is not under pressure; gravity is the