Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation

Size: px
Start display at page:

Download "Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation"

Transcription

1 Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation Jeff R. Hill, P.E. Hayward Baker Inc. 111 W. Port Plaza Drive Suite 600 St. Louis, MO Aaron C. Kober, P.E. Modjeski & Masters, Inc. 804 North First Street St. Louis, MO Background & Geotechnical Profile The Merchant Railroad Bridge crosses the Mississippi River in St. Louis, Missouri and has been in continuous service since its construction in the 1890s. In order to extend its life for another century, the Owner has implemented plans for rehabilitation and reconstruction of the structure. This work includes immediate replacement of the East and West Approach deck truss spans with new deck girder spans supported atop concrete piers and founded on deep foundations with rock sockets. Foundation and substructure work was required to be completed without removing the existing spans in order to reduce the amount of track down time. The initial design called for concrete drilled shaft foundations, extending to bedrock. However, since the new foundation work had to be performed beneath the existing structure with available headroom of less than 30 feet, drilled shafts presented an expensive foundation option. The geotechnical profile, typical of soil conditions along the Mississippi River at the North side of St. Louis, consists of: 0 to 40 ft: Silty alluvial-deposited sands/clays (very loose) 40 to 80 ft: Sands (denser with depth) 80 to 85 ft: Weathered Limestone 85: Solid Limestone bedrock Micropile Value Engineering Proposal The micropile contractor, working closely with the Owner and their structural engineer, proposed the use of micropiles as an economic alternative to drilled shaft foundations for the replacement structures. Micropiles offered several advantages over drilled shafts at this site. Micropile drill rigs are specifically designed for working in low headroom and tight access conditions. Consequently, the ability to work with low headroom proved to be very beneficial for this project. Micropiles can economically drill through debris such as urban fill more easily than drilled shafts. Micropiles can also be installed with rock cutting bits, which will drill the rock sockets more efficiently than coring with a 36-inch diameter core barrel. One final advantage offered by the micropiles is that the smaller diameter enables installation in closer proximity to existing utilities.

2 At certain micropile locations on this site, installation of a drilled shaft would have required either the relocation of additional utilities or enlargement of the pile cap. Micropile construction is not affected by high groundwater tables or running soil conditions, which were possible at this location, thus resulting in improved constructability and an accelerated schedule. Drilled shaft installation would have required the use of low-overhead drilling equipment, requiring the use of casing and laborious slurry drilling methods at this site. The micropile casing is the drill string and is often left in place, eliminating concern for final quality of the foundation element related to installation or removal of a temporary casing. Leaving the casing in place also reduces the risk of subsidence of the existing structure or adjacent utilities. Scope of Work The lengths of the structural replacement zones are 462 feet for the East approach, and 507 for the West approach. Six pile caps were constructed on each side of the river. Micropiles were installed under five consecutive of the six bents for each approach, incorporating an overall total of 146 micropiles supporting ten bents. The initial design provided by the Micropile Contractor used approximately one micropile for each drilled shaft. At each pile cap located immediately adjacent to the Mississippi River, low headroom was not an issue and drilled shafts were installed as originally proposed. Figure 1. Extent of rehabilitation work at East and West approach spans.

3 Figure 2. West and East approach locations, Merchant RR Bridge. Pre-Production Probe Drilling beneath West Approach Prior to production work, the micropile contractor performed probe drilling near Bents W3, W4, and W6 of the West Approach. The size and shape of the West Approach pier caps, as well as the exact location of the micropiles at those bents was contingent upon the exact location of several existing site obstructions, which could not be easily relocated. These obstructions included 48- inch and 108-inch diameter sewer lines at an approximate depth of 20 feet, a high-pressure gas line, a fiber optic line, a water line, and an in-service rail line. The Micropile Contractor advanced the probe drill string with water flush in an effort to accurately locate several of the underground obstructions. After locating the obstructions, several of the projected micropile locations were probed in the same manner to double-check their dodging of underground obstructions during production work. Where obstructions were identified as miscellaneous urban fill, the micropile contractor was able to use core bits to core through such obstructions. Micropile Installation Following probe drilling, two drill rigs were mobilized to the East Approach to begin installation. To meet production schedule requirements, up to four drill rigs were used at certain times during the project. With headroom of 18 feet, 10 foot pieces of casing were used to make up the micropiles. Threaded casings eliminated the need for welding in the field. In some locations, the general contractor was able to perform partial excavation in order to increase the available headroom. In other locations, a drill rig requiring only 14 feet of headroom was used to install the micropiles. The micropile contractor drilled the casing (9.625 inch OD x inch wall) to depth using rotary drilling with external water flush. Water from the Mississippi River was used for the

4 drilling operation. The micropiles were advanced through the soils on site, including fill, looseto-dense sands, and weathered rock. They were then socketed a minimum of five feet into solid limestone. Drill water and spoil was returned to the surface through the annular space. Depending on the individual load conditions of the pile cap and the existing site obstructions, the micropiles were either installed vertically or battered at 1.5 on 12. This battering was designed to carry the longitudinal rail loads as provided by the structural engineer. Once each micropile was socketed, a tremie pipe was lowered to the bottom of the casing and the casing was filled with neat cement grout. An on-site colloidal mixer, specifically designed for neat cement grout, was used to provide a uniform and consistent grout. The volume of grout placed in each micropile was recorded to ensure full grouting of the casing. After tremie grouting each micropile, a pressure cap was fitted to the top of the micropile, and additional grout was pumped into the pile to a minimum pressure of 150 psi. Pressure grouting of the rock socket is performed to fill any voids or fissures in the rock and provide structural contact between the micropile drill tooling and the solid dolomitic bedrock. Following installation of the micropiles at each pile cap, the general contractor excavated to the planned bottom elevation of the footing. The micropile contractor then cut the micropiles to a specified elevation. Steel bearing caps were then placed on each micropile, and the micropiles were cast into a reinforced pile cap provided by the General Contractor. Installation procedures for the East and West approaches were identical. Figure 3. Typical micropile and subsurface profile at the Merchant Railroad Bridge site.

5 Figure 4. Micropile locations adjusted due to utilities conflict at Bent 6 (West approach). Figure 5. Typical micropile layout for East and West approaches.

6 Figure 6. Micropile installation at Bents 2 and 3 beneath the East approach. Figure 7. Micropile installation in 17 ft of headroom. Figure 8. Micropile installation at Bent 3 (West approach).

7 Quality Control Documentation Driller s logs recorded all drilling parameters during operations. Grout Strength Testing Independent laboratory tests of 3 x 6 cylinders confirmed that the minimum 28 day unconfined compressive strength of 5,000 psi was achieved. Grout samples were taken daily. Steel Properties Independent laboratory testing of random coupons of the micropile casing material were used to confirm the structural properties of the casing. The casing material is API Grade N80, with a tensile strength of 80 ksi. Load Testing The micropiles were designed to carry 325 kips and were tested to 650 kips using ASTM D 1143 Quick Load test Procedure. One load test was completed on the west side of the river and one load test was completed on the east side of the river. Both load tests were completed on production micropiles. Production micropiles were also used as the reaction anchors for the load test. Earthquake design loads were not considered. Figure 9. Load test setup on production micropile.

8 Figure 10. Detail A from Figure 9. Figure 11. Load test setup.

9 0.00 Total Movement vs Load Deflection (in) Merchants Bridge Micropile Load Test by Hayward Baker Elastic Deflection vs. Load OD x Wall DL = 300 Kips Length of Pile = 90' ASTM D1143 Quick Load Test Test Date 9/22/04 E d B i i R k Load (kip) Average Total Deflection Theoretical Elastic Deflection Tip Movement Linear (Average Total Deflection) Linear (Tip Movement) Figure 12. Total Movement vs. Load. Test preformed on production micropile. Conclusion Micropiles offer an economical alternative to drilled shafts where tight access, low headroom, or urban fill adversely affects the construction schedule of a schedule critical project. The micropile alternative not only shortened the foundation rehabilitation schedule by several weeks, but realized a significant cost savings for the Owner. Acknowledgements The authors extend their appreciation to the following parties for helping make this project a success: Terminal Railroad Association (Owner), St. Louis Bridge Company (GC), Keeley & Sons, Inc. (JV), and Midwest Testing (Engineer).

USE OF MICROPILES IN TEXAS BRIDGES. by John G. Delphia, P.E. TxDOT Bridge Division Geotechnical Branch

USE OF MICROPILES IN TEXAS BRIDGES. by John G. Delphia, P.E. TxDOT Bridge Division Geotechnical Branch USE OF MICROPILES IN TEXAS BRIDGES by John G. Delphia, P.E. TxDOT Bridge Division Geotechnical Branch DEFINITION OF A MICROPILE A micropile is a small diameter (typically less than 12 in.), drilled and

More information

The International Workshop on Micropiles, 2007

The International Workshop on Micropiles, 2007 MICROPILE FOUNDATION REPAIR AND UNDERPINNING, ARTS AND SCIENCE MUSEUM, UNIVERSITY OF PUERTO RICO, MAYAGUEZ Presented at: International Society of Micropiles (ISM) The International Workshop on Micropiles,

More information

PTS HELICAL PIERS INSTALLATION SPECIFICATIONS NOTICE

PTS HELICAL PIERS INSTALLATION SPECIFICATIONS NOTICE FORM A PTS HELICAL PIERS INSTALLATION SPECIFICATIONS NOTICE The following suggested specifications are written as a guide to assist the specifier in writing his own specifications. Specific circumstances

More information

Safe & Sound Bridge Terminology

Safe & Sound Bridge Terminology Safe & Sound Bridge Terminology Abutment A retaining wall supporting the ends of a bridge, and, in general, retaining or supporting the approach embankment. Approach The part of the bridge that carries

More information

STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL.

STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL. STRUCTURES 1. General. Critical structures may impact the integrity of a flood control project in several manners such as the excavation for construction of the structure, the type of foundation, backfill

More information

UNDERPINNING OF NEW STUDENT HOUSING BUILDING USING MICROPILES, NORTH CAROLINA USA

UNDERPINNING OF NEW STUDENT HOUSING BUILDING USING MICROPILES, NORTH CAROLINA USA UNDERPINNING OF NEW STUDENT HOUSING BUILDING USING MICROPILES, NORTH CAROLINA USA John R. Wolosick, P.E.,D.GE 1, Michael W. Terry, P.E. 2, W. David Kirschner 3 and Robert F. Scott Jr. P.E. 4 SYNOPSIS In

More information

SECTION 1 GENERAL REQUIREMENTS

SECTION 1 GENERAL REQUIREMENTS Page 1 of 6 SECTION 1 GENERAL REQUIREMENTS 1. SCOPE OF WORK: The work to be performed under the provisions of these documents and the contract based thereon includes furnishing all labor, equipment, materials,

More information

Design and Construction of Auger Cast Piles

Design and Construction of Auger Cast Piles Design and Construction of Auger Cast Piles 101 th Annual Road School 2015 3/11/2015 Malek Smadi, Ph.D., P.E. Principal Engineer - GEOTILL - Fishers, IN msmadi@geotill.com - www.geotill.com CONTENTS 1.

More information

SAMPLE GUIDE SPECIFICATIONS FOR OSTERBERG CELL LOAD TESTING OF DEEP FOUNDATIONS

SAMPLE GUIDE SPECIFICATIONS FOR OSTERBERG CELL LOAD TESTING OF DEEP FOUNDATIONS Page 1 of 9 SAMPLE GUIDE SPECIFICATIONS FOR OSTERBERG CELL LOAD TESTING OF DEEP FOUNDATIONS 1. GENERAL REQUIREMENTS 1. Description of Work: This work consists of furnishing all materials, equipment and

More information

LEGACY REPORT ER-5110. www.icc-es.org. ICC Evaluation Service, Inc. Reissued November 1, 2003. Legacy report on the 1997 Uniform Building Code

LEGACY REPORT ER-5110. www.icc-es.org. ICC Evaluation Service, Inc. Reissued November 1, 2003. Legacy report on the 1997 Uniform Building Code LEGACY REPORT Reissued November 1, 2003 ICC Evaluation Service, Inc. www.icc-es.org Business/Regional Office # 5360 Workman Mill Road, Whittier, California 90601 # (562) 699-0543 Regional Office # 900

More information

System. Stability. Security. Integrity. 150 Helical Anchor

System. Stability. Security. Integrity. 150 Helical Anchor Model 150 HELICAL ANCHOR System PN #MBHAT Stability. Security. Integrity. 150 Helical Anchor System About Foundation Supportworks is a network of the most experienced and knowledgeable foundation repair

More information

METHOD OF STATEMENT FOR STATIC LOADING TEST

METHOD OF STATEMENT FOR STATIC LOADING TEST Compression Test, METHOD OF STATEMENT FOR STATIC LOADING TEST Tension Test and Lateral Test According to the American Standards ASTM D1143 07, ASTM D3689 07, ASTM D3966 07 and Euro Codes EC7 Table of Contents

More information

New construction Repairing failed or old foundations Retrofit foundations Permanent battered piers Machinery/equipment foundations

New construction Repairing failed or old foundations Retrofit foundations Permanent battered piers Machinery/equipment foundations from New construction foundations don t have to be a headache. The CHANCE Helical Pier Foundation System gives you the performance of concrete without the drawbacks and liabilities of driven piles and

More information

Up-Down Construction Utilizing Steel Sheet Piles and Drilled Shaft Foundations

Up-Down Construction Utilizing Steel Sheet Piles and Drilled Shaft Foundations Up-Down Construction Utilizing Steel Sheet Piles and Drilled Shaft Foundations Nathan A. Ingraffea, P.E., S.E. Associate, KPFF Consulting Engineers, Portland, Oregon, USA Abstract The use of steel sheet

More information

SUPPLEMENTAL TECHNICAL SPECIFICATIONS BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS

SUPPLEMENTAL TECHNICAL SPECIFICATIONS BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS July 14, 2015 1.0 GENERAL BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS This work shall consist of furnishing all materials, equipment, labor, and incidentals necessary for conducting bi-directional

More information

Outline MICROPILES SUBJECT TO LATERAL LOADING. Dr. Jesús Gómez, P.E.

Outline MICROPILES SUBJECT TO LATERAL LOADING. Dr. Jesús Gómez, P.E. MICROPILES SUBJECT TO LATERAL LOADING Dr. Jesús Gómez, P.E. Micropile Design and Construction Seminar Las Vegas, NV April 3-4, 2008 Outline When are micropiles subject to lateral load? How do we analyze

More information

How to Estimate the Cost of Support of Excavation for Foundation Installation. CPE Candidate No. 0113013. May 15, 2013

How to Estimate the Cost of Support of Excavation for Foundation Installation. CPE Candidate No. 0113013. May 15, 2013 How to Estimate the Cost of Support of Excavation for Foundation Installation CPE Candidate No. 0113013 May 15, 2013 1 How to Estimate the Cost of Support of Excavation for Foundation Installation Table

More information

ITEM #0702770 OSTERBERG CELL LOAD TESTING OF DRILLED SHAFT

ITEM #0702770 OSTERBERG CELL LOAD TESTING OF DRILLED SHAFT ITEM #0702770 OSTERBERG CELL LOAD TESTING OF DRILLED SHAFT Description: This work shall consist of furnishing all materials, equipment and labor necessary for conducting an Osterberg Cell (O-Cell) Load

More information

Stability. Security. Integrity.

Stability. Security. Integrity. Stability. Security. Integrity. PN #MBHPT Foundation Supportworks provides quality helical pile systems for both new construction and retrofit applications. 288 Helical Pile System About Foundation Supportworks

More information

Project Location. Project Limits: The Grand River east to Fuller Ave.

Project Location. Project Limits: The Grand River east to Fuller Ave. Outline Project Location Project Description Project History Site Constraints Geotechnical Investigation & Soil Profile Foundation Design Process Photos Project Location Project Limits: The Grand River

More information

Section 2100-Trenching and Tunneling

Section 2100-Trenching and Tunneling SECTION 5200 - STORM SEWER PART 1 - GENERAL 1.01 SCOPE: This Section covers installation of storm sewer mains and culverts. Topics include permits and fees, trench widths, pipe laying, bedding, initial

More information

SECTION 33 31 00.13 ABANDONMENT OF SEWER MAINS

SECTION 33 31 00.13 ABANDONMENT OF SEWER MAINS SECTION 33 31 00.13 ABANDONMENT OF SEWER MAINS PART 1: GENERAL 1.01 SECTION INCLUDES A. Abandonment in place, by cutting and capping, of existing sewers, junction structures, manholes, service lines, and

More information

IH-635 MANAGED LANES PROJECT, SEG. 3.2

IH-635 MANAGED LANES PROJECT, SEG. 3.2 IH-635 MANAGED LANES PROJECT, SEG. 3.2 Location: Dallas, Texas Owner: Texas Department of Transportation Client: Ferrovial Agroman Construction Cost: $1 Billion Construction Completion Date: December,

More information

Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils

Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils Stephen W. Lacz 1, M. ASCE, P.E. and Richard C. Wells 2, F. ASCE, P.E. 1 Senior Professional, Trigon Kleinfelder, Inc., 313 Gallimore

More information

SECTION 411 DRILLED PIERS

SECTION 411 DRILLED PIERS Section Payment will be made under: Pay Item Foundation Excavation Foundation Excavation for Bent No. at Station Foundation Excavation for End Bent No. at Station Pay Unit Cubic Yard Lump Sum Lump Sum

More information

CHAPTER 9 LONG TERM MONITORING AT THE ROUTE 351 BRIDGE

CHAPTER 9 LONG TERM MONITORING AT THE ROUTE 351 BRIDGE CHAPTER 9 LONG TERM MONITORING AT THE ROUTE 351 BRIDGE 9.1 INTRODUCTION An important reason that composite piles have not gained wide acceptance in the civil engineering practice is the lack of a long

More information

SECTION 02150 REMOVAL OR ABANDONMENT OF EXISTING UTILITIES AND UNDERGROUND STRUCTURES. 1. Trench excavation, backfill, and compaction; Section 02250.

SECTION 02150 REMOVAL OR ABANDONMENT OF EXISTING UTILITIES AND UNDERGROUND STRUCTURES. 1. Trench excavation, backfill, and compaction; Section 02250. 02150-1 of 6 SECTION 02150 REMOVAL OR ABANDONMENT OF EXISTING 02150.01 GENERAL A. Description Removal or abandonment of existing utilities and underground structures shall include, but not necessarily

More information

Section 02415. Installation of pipe and casing for sanitary sewer by methods of augering.

Section 02415. Installation of pipe and casing for sanitary sewer by methods of augering. ITY OF PRLN UGRING PIP OR SING FOR SWRS Section 02415 UGRING PIP OR SING FOR SWRS 1.0 G N R L 1.01 STION INLUS Installation of pipe and casing for sanitary sewer by methods of augering. References to Technical

More information

SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701)

SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701) SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701) 55-1 GENERAL The Contractor shall perform all work required by the plans for construction of pipe for storm drains, precast polymer trench drains

More information

Dr. Jesús Gómez, P.E. 36th Annual Conference on Deep Foundations, Boston, MA

Dr. Jesús Gómez, P.E. 36th Annual Conference on Deep Foundations, Boston, MA FHWA Hollow Bar Soil Nail (HBSN) Test Program Dr. Jesús Gómez, P.E. 36th Annual Conference on Deep Foundations, Boston, MA Outline Introduction and motivation Installation methods for testing Testing and

More information

GEORGE J. CAMBOURAKIS, P.E., C. ENG. PRESIDENT & CHIEF STRUCTURAL ENGINEER

GEORGE J. CAMBOURAKIS, P.E., C. ENG. PRESIDENT & CHIEF STRUCTURAL ENGINEER GEORGE J. CAMBOURAKIS, P.E., C. ENG. PRESIDENT & CHIEF STRUCTURAL ENGINEER Professional Experience: Pride and Passion in the Art of Structural Engineering since 1979. Professional Registration: Professional

More information

SECTION 15062 POLYVINYL CHLORIDE GRAVITY SEWER PIPE AND FITTINGS

SECTION 15062 POLYVINYL CHLORIDE GRAVITY SEWER PIPE AND FITTINGS SECTION 15062 POLYVINYL CHLORIDE (PVC) GRAVITY SEWER PIPE AND FITTINGS PART 1 GENERAL 1.01 DESCRIPTION This section designates the requirements for the manufacture and installation of polyvinyl chloride,

More information

BRIDGE RESTORATION AND LANDSLIDE CORRECTION USING STRUCTURAL PIER AND GRADE BEAM

BRIDGE RESTORATION AND LANDSLIDE CORRECTION USING STRUCTURAL PIER AND GRADE BEAM BRIDGE RESTORATION AND LANDSLIDE CORRECTION USING STRUCTURAL PIER AND GRADE BEAM Swaminathan Srinivasan, P.E., M.ASCE H.C. Nutting/Terracon David Tomley, P.E., M.ASCE KZF Design Delivering Success for

More information

Helical Design Theory and Applications. By Darin Willis, P.E.

Helical Design Theory and Applications. By Darin Willis, P.E. Helical Design Theory and Applications By Darin Willis, P.E. Solution Systems Ram Jack utilizes two unique underpinning & anchoring systems Hydraulically driven piles (pressed) Helical piles (torqued)

More information

SUBDRAINS AND FOOTING DRAIN COLLECTORS. A. Construct subdrains, subdrain cleanouts and outlets, and footing drain collectors.

SUBDRAINS AND FOOTING DRAIN COLLECTORS. A. Construct subdrains, subdrain cleanouts and outlets, and footing drain collectors. SUBDRAINS AND FOOTING DRAIN COLLECTORS PART 1 - GENERAL 1.01 SECTION INCLUDES A. Subdrains B. Subdrain Cleanouts and Outlets C. Footing Drain Collectors D. Storm Sewer Service and Connections 1.02 DESCRIPTION

More information

The work of this Section includes furnishing and installing Reinforced Concrete Pressure Pipe as shown on the Drawings and as specified.

The work of this Section includes furnishing and installing Reinforced Concrete Pressure Pipe as shown on the Drawings and as specified. Section 33 0200- Page 1 of 4 PART 1 - GENERAL 1.1 DESCRIPTION OF WORK The work of this Section includes furnishing and installing Reinforced Concrete Pressure Pipe as shown on the Drawings and as specified.

More information

Comprehensive Design Example 2: Foundations for Bulk Storage Facility

Comprehensive Design Example 2: Foundations for Bulk Storage Facility Comprehensive Design Example 2: Foundations for Bulk Storage Facility Problem The project consists of building several dry product storage silos near an existing rail siding in an open field presently

More information

APPENDIX B. Geotechnical Engineering Report

APPENDIX B. Geotechnical Engineering Report APPENDIX B Geotechnical Engineering Report GEOTECHNICAL ENGINEERING REPORT Preliminary Geotechnical Study Upper Southeast Salt Creek Sanitary Trunk Sewer Lincoln Wastewater System Lincoln, Nebraska PREPARED

More information

Load Testing of Drilled Shaft Foundations in Limestone, Nashville, TN Dan Brown, P.E., Ph.D.

Load Testing of Drilled Shaft Foundations in Limestone, Nashville, TN Dan Brown, P.E., Ph.D. Dan A. Brown and Associates Consulting Geotechnical Engineers 300 Woodland Rd. (423)942-8681 Sequatchie, TN 37374 fax:(423)942-8687 Load Testing of Drilled Shaft Foundations in Limestone, Nashville, TN

More information

2006-2008 MHD BRIDGE SECTION WEIGHTED AVERAGE UNIT PRICES GUIDELINES FOR THE USE OF THE WEIGHTED AVERAGE UNIT PRICE TABULATION SHEETS

2006-2008 MHD BRIDGE SECTION WEIGHTED AVERAGE UNIT PRICES GUIDELINES FOR THE USE OF THE WEIGHTED AVERAGE UNIT PRICE TABULATION SHEETS 2006-2008 MHD BRIDGE SECTION WEIGHTED AVERAGE UNIT PRICES GUIDELINES FOR THE USE OF THE WEIGHTED AVERAGE UNIT PRICE TABULATION SHEETS GENERAL 10/16/2008 The listed average unit prices are based on the

More information

Engineered, Time-Tested Foundation Repairs for Settlement in Residential and Light Commercial Structures. The Leading Edge.

Engineered, Time-Tested Foundation Repairs for Settlement in Residential and Light Commercial Structures. The Leading Edge. TM TM Engineered, Time-Tested Foundation Repairs for Settlement in Residential and Light Commercial Structures. SM The Leading Edge. 10 One Major Causes of foundation settlement or more conditions may

More information

6 RETROFITTING POST & PIER HOUSES

6 RETROFITTING POST & PIER HOUSES Retrofitting Post & Pier Houses 71 6 RETROFITTING POST & PIER HOUSES by James E. Russell, P.E. 72 Retrofitting Post & Pier Houses Retrofitting Post & Pier Houses 73 RETROFITTING POST AND PIER HOUSES This

More information

SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT

SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT 1.0 SOIL IMPROVEMENT 1.1 General Soil Investigation Information are provided in Part B1 annex as a guide to the Contractor for his consideration

More information

SECTION 02200 SUPPORT OF EXCAVATION

SECTION 02200 SUPPORT OF EXCAVATION SECTION 02200 PART 1 GENERAL 1.01 DESCRIPTION A. Section including specifications for design and installation of excavation support. B. Section also includes specifications for excavation support systems

More information

AN INTRODUCTION TO BUILDING FOUNDATIONS AND SOIL IMPROVEMENT METHODS

AN INTRODUCTION TO BUILDING FOUNDATIONS AND SOIL IMPROVEMENT METHODS AN INTRODUCTION TO BUILDING FOUNDATIONS AND SOIL IMPROVEMENT METHODS SEAONC 2008 Spring Seminar San Francisco, 16 April 2008 Hadi J. Yap, PhD, PE, GE 1 General Foundation Types Shallow Foundations Spread

More information

SECTION 02401 SHEETING, SHORING AND BRACING

SECTION 02401 SHEETING, SHORING AND BRACING SECTION 02401 SHEETING, SHORING AND BRACING This section should be edited to reflect soil conditions specific to the project site and the recommendations of a Geotechnical Engineer licensed in the State

More information

SHAFT CONSTRUCTION IN TORONTO USING SLURRY WALLS

SHAFT CONSTRUCTION IN TORONTO USING SLURRY WALLS SHAFT CONSTRUCTION IN TORONTO USING SLURRY WALLS Vince Luongo Petrifond Foundation Co., Ltd. PROJECT DESCRIPTION The York Durham Sanitary System (YDSS) Interceptor in the Town of Richmond Hill located

More information

FY11 Sanitary Sewer Main Rehab and Point Repair Bid Tabulation

FY11 Sanitary Sewer Main Rehab and Point Repair Bid Tabulation 644-10-569 Page 1 of 9 1 FOR CLEANING AND TELEVISING EXISTING SEWERS, AS SPECIFIED, ANY REQUIRED CLEANING, ANY LOCATION, ANY LENGTH OF SEWER, COMPLETE IN PLACE, FOR VARIOUS PIPE DIAMETERS. A. EXISTING

More information

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 11/5/13)

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 11/5/13) Page 1 of 7 STONE STRONG SYSTEMS SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised ) PART 1: GENERAL 1.01 Description A. Work includes furnishing and installing precast modular blocks

More information

US 51 Ohio River Bridge Engineering and Environmental Study

US 51 Ohio River Bridge Engineering and Environmental Study US 51 Ohio River Bridge Engineering and Environmental Study ITEM NOS. 1-100.00 & 1-1140.00 Prepared by: Michael Baker Jr., Inc. 9750 Ormsby Station Rd Louisville, KY 40223 August 16, 2013 Table of Contents

More information

BRIDGES ARE relatively expensive but often are

BRIDGES ARE relatively expensive but often are Chapter 10 Bridges Chapter 10 Bridges Bridg Bridges -- usually the best, but most expensive drainage crossing structure. Protect bridges against scour. BRIDGES ARE relatively expensive but often are the

More information

San Antonio Water System Standard Specifications for Construction ITEM NO. 1100 SLIP-LINING SANITARY SEWERS

San Antonio Water System Standard Specifications for Construction ITEM NO. 1100 SLIP-LINING SANITARY SEWERS ITEM NO. 1100 SLIP-LINING SANITARY SEWERS 1100.1 DESCRIPTION: This item shall consist of slip-lining sanitary sewer pipe, which is accomplished by pulling or pushing liner pipe into existing sewers by

More information

Informational Workshop Public Meeting Kanawha Falls Bridge Project

Informational Workshop Public Meeting Kanawha Falls Bridge Project Informational Workshop Public Meeting Kanawha Falls Project WV Department of Transportation Division of Highways in Cooperation with the Federal Highway Administration State Project S310-13-0.02 00 Federal

More information

Page B-1 Hubbell Power Systems, Inc. All Rights Reserved Copyright 2014 LOAD TESTS

Page B-1 Hubbell Power Systems, Inc. All Rights Reserved Copyright 2014 LOAD TESTS Page B-1 Hubbell Power Systems, Inc. All Rights Reserved Copyright 2014 Appendix B CONTENTS STATIC (TIEBACKS)... B-3 STATIC AXIAL (COMPRESSION/TENSION)... B-6 STATIC (LATERAL)... B-9 CAPACITY VERIFICATION

More information

High Strain Dynamic Load Testing of Drilled Shafts

High Strain Dynamic Load Testing of Drilled Shafts Supplemental Technical Specification for High Strain Dynamic Load Testing of Drilled Shafts SCDOT Designation: SC-M-712 (9/15) September 3, 2015 1.0 GENERAL This work shall consist of performing high-strain

More information

California Department of Transportation Doyle Drive Test Program Contract No. 04A3362

California Department of Transportation Doyle Drive Test Program Contract No. 04A3362 California Department of Transportation Doyle Drive Test Program Deep Soil Mixing (DSM) /Cutter Soil Mixing (CSM) Testing Report By Malcolm Drilling Company, Inc. 3524 Breakwater Ave., Suite 108 Hayward,

More information

FY08 SEWER POINT REPAIRS BID TABULATION

FY08 SEWER POINT REPAIRS BID TABULATION 6-07-831 Page 1 of 12 1 FOR CLEANING AND TELEVISING EXISTING SEWERS, AS SPECIFIED, ANY REQUIRED CLEANING, ANY LOCATION, ANY LENGTH OF SEWER, COMPLETE IN PLACE, FOR VARIOUS PIPE DIAMETERS. A. EXISTING "

More information

Pro-Lift Steel Pile Foundation Repair

Pro-Lift Steel Pile Foundation Repair Pro-Lift Steel Pile Foundation Repair Pro-Lift Steel Pile Foundation Repair System Pro-lift steel piles are designed for the stresses of Texas soils. They can have multiple steel walls, depending on the

More information

HIGH TENSION CABLE BARRIER

HIGH TENSION CABLE BARRIER Special Provision September 11, 2006 SECTION 02845 S HIGH TENSION CABLE BARRIER PART 1 GENERAL 1.1 SECTION INCLUDES A. Cable barrier materials and installation procedures. 1.2 RELATED SECTIONS A. Section

More information

Design of Bridges. Introduction. 3 rd to 4 th July 2012. Lecture for SPIN Training at the University of Dar es Salaam

Design of Bridges. Introduction. 3 rd to 4 th July 2012. Lecture for SPIN Training at the University of Dar es Salaam Design of Bridges Introduction 3 rd to 4 th July 2012 1 FUNCTION OF A BRIDGE To connect two communities which are separated by streams, river, valley, or gorge, etc. 2 EVOLUTION OF BRIDGES 1. Log Bridge

More information

GLOSSARY OF TERMINOLOGY

GLOSSARY OF TERMINOLOGY GLOSSARY OF TERMINOLOGY AUTHORIZED PILE LENGTHS - (a.k.a. Authorized Pile Lengths letter) Official letter stating Engineer's recommended length of concrete piles to be cast for construction of foundation.

More information

SECTION 10 WATER WELL SUPPLY 10.01 SCOPE OF WORK

SECTION 10 WATER WELL SUPPLY 10.01 SCOPE OF WORK 10.01 SCOPE OF WORK The work covered by this section of the specifications consists in furnishing all labor, equipment and material necessary to perform the installation of a Type I water supply well per

More information

REHABILITATION PACKAGE 1-a

REHABILITATION PACKAGE 1-a 1-a WINONA BRIDGE (BRIDGE 5900) REHABILITATION PACKAGE 1-a Rehab option 1-a is a rehabilitation package whereby all spans of the existing structure would be rehabilitated to the degree feasible and strengthened

More information

SECTION 31 20 00 EARTH MOVING

SECTION 31 20 00 EARTH MOVING SECTION 31 20 00 PART 1 - GENERAL 1.01 DESCRIPTION A. This Section describes the requirements for excavating, filling, and grading for earthwork at Parking Structure, new exit stair and as required to

More information

ATLAS RESISTANCE Pier Foundation Systems

ATLAS RESISTANCE Pier Foundation Systems ATLAS RESISTANCE Pier Foundation Systems Foundation Repair Systems for Civil Construction Applications: Residential, Commercial, Industrial Atlas Resistance Piers have been used to restore and/or stabilize

More information

San Francisco Oakland Bay Bridge East Span Seismic Safety Project

San Francisco Oakland Bay Bridge East Span Seismic Safety Project San Francisco Oakland Bay Bridge East Span Seismic Safety Project Presented To: Society of American Military Engineers May 16, 2013 Brian Maroney, P.E. Dr. Engr. Karen Wang, P.E. Pier E9 Following the

More information

SECTION 33 11 00.19 ABANDONMENT OF WATER MAINS. A. Conform to requirements of Section 01 33 00 - Submittals.

SECTION 33 11 00.19 ABANDONMENT OF WATER MAINS. A. Conform to requirements of Section 01 33 00 - Submittals. SECTION 33 11 00.19 ABANDONMENT OF WATER MAINS PART 1: GENERAL 1.01 SCOPE A. Abandonment in place, by cutting and capping, of existing water mains, hydrants, service lines, and valves. B. Abandonment in

More information

Sewer Rehabilitation Design Requirements

Sewer Rehabilitation Design Requirements Sanitary Sewer Overflow (SSO) Control and Wastewater Facilities Program Sewer Rehabilitation Design Requirements City of Baton Rouge/Parish of East Baton Rouge Department of Public Works Submitted by Prepared

More information

Rehabilitation of the Red Bank Road Bridge over Hoover Reservoir. Presented By: Doug Stachler, P.E.

Rehabilitation of the Red Bank Road Bridge over Hoover Reservoir. Presented By: Doug Stachler, P.E. Rehabilitation of the Red Bank Road Bridge over Hoover Reservoir Presented By: Doug Stachler, P.E. Project Organization Owner Delaware County Engineers Office Design Consultant CH2M HILL Contractor Double

More information

LS 2540 SEWER LATERALS AND INSPECTION TEES

LS 2540 SEWER LATERALS AND INSPECTION TEES LS 2540 SEWER LATERALS AND INSPECTION TEES A. Summary B. Submittals C. Site Information D. Sewer Pipe and Fittings E. Lateral Locations F. Lateral Installation G. Inspection Tee Installation H. Removal

More information

TECHNICAL SPECIFICATIONS CEMENT-BENTONITE SLURRY TRENCH CUTOFF WALL

TECHNICAL SPECIFICATIONS CEMENT-BENTONITE SLURRY TRENCH CUTOFF WALL TECHNICAL SPECIFICATIONS CEMENT-BENTONITE SLURRY TRENCH CUTOFF WALL SCOPE This section of the specifications includes requirements for the Slurry Trench Cutoff Wall and related work as indicated on the

More information

SECTION 33 41 13 PUBLIC STORM UTILITY DRAINAGE PIPING

SECTION 33 41 13 PUBLIC STORM UTILITY DRAINAGE PIPING SECTION 33 41 13 PUBLIC STORM PART 1 - GENERAL 1.01 SECTION INCLUDES A. Storm drainage piping, fittings, and accessories at proposed station areas and locations other than under and immediately adjacent

More information

SECTION 63 CHAIN-LINK FENCES (FAA F-162) ITEM F-162 CHAIN-LINK FENCES DESCRIPTION MATERIALS

SECTION 63 CHAIN-LINK FENCES (FAA F-162) ITEM F-162 CHAIN-LINK FENCES DESCRIPTION MATERIALS SECTION 63 CHAIN-LINK FENCES (FAA F-162) 63-1 GENERAL This specification covers the furnishing and installation of chain link fencing and gates, both permanent and temporary, at the locations shown on

More information

State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS

State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS While its use is not required, this checklist has been prepared to provide the field inspector a summary

More information

DIVISION 4300 STORM DRAINAGE

DIVISION 4300 STORM DRAINAGE DIVISION 4300 STORM DRAINAGE SECTION 4305 STORM SEWER PART 1 - GENERAL 1.01 SCOPE This section covers the construction of storm sewers for the collection and transport of stormwater runoff. 1.02 REFERENCES

More information

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona for Earthen Material and Straw Bale Structures SECTION 70 - GENERAL "APPENDIX CHAPTER 7 - EARTHEN MATERIAL STRUCTURES 70. Purpose. The purpose of this chapter is to establish minimum standards of safety

More information

ENCE 4610 Foundation Analysis and Design

ENCE 4610 Foundation Analysis and Design This image cannot currently be displayed. ENCE 4610 Foundation Analysis and Design Shallow Foundations Total and Differential Settlement Schmertmann s Method This image cannot currently be displayed. Strength

More information

High Capacity Helical Piles Limited Access Projects

High Capacity Helical Piles Limited Access Projects High Capacity Helical Piles Limited Access Projects Tel 403 228-1767 Canada, USA, Russia Brendan ODonoghue 519 830-6113 Presentation Summary 1. Helical piles Background on large diameter shafts and helices

More information

Wastewater Capital Projects Management Standard Construction Specification

Wastewater Capital Projects Management Standard Construction Specification CITY AND COUNTY OF DENVER ENGINEERING DIVISION Wastewater Capital Projects Management Standard Construction Specification 10.1 Precast Concrete Pipe 10.1.1 General This section covers material requirements,

More information

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14 Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318

More information

Chapter 3 Pre-Installation, Foundations and Piers

Chapter 3 Pre-Installation, Foundations and Piers Chapter 3 Pre-Installation, Foundations and Piers 3-1 Pre-Installation Establishes the minimum requirements for the siting, design, materials, access, and installation of manufactured dwellings, accessory

More information

DESIGNING STRUCTURES IN EXPANSIVE CLAY

DESIGNING STRUCTURES IN EXPANSIVE CLAY DESIGNING STRUCTURES IN EXPANSIVE CLAY A GUIDE FOR A RCHITECTS AND E NGINEERS Table of Contents 1. Introduction Page 1 2. Common Foundation Systems Page 2 3. Drilled Piers Page 3 a. Skin Friction Piers

More information

Moving Small Mountains Vesuvius Dam Rehab

Moving Small Mountains Vesuvius Dam Rehab Moving Small Mountains Vesuvius Dam Rehab Susan L. Peterson, P.E., regional dams engineer, Eastern Region, Bedford, IN Note: The following article, Moving Small Mountains Vesuvius Dam Rehab, by Sue Peterson,

More information

The unit costs are based on the trend line of the 3 low bids for the average quantity.

The unit costs are based on the trend line of the 3 low bids for the average quantity. Page 1 of 8 COST ESTIMATE GENERAL INSTRUCTIONS The unit costs are based on the trend line of the 3 low bids for the average quantity. Apply the Unit Costs to ordinary structures. Unit Costs should generally

More information

San Antonio Water System Standard Specifications for Construction ITEM NO. 1103 POINT REPAIRS AND OBSTRUCTION REMOVALS

San Antonio Water System Standard Specifications for Construction ITEM NO. 1103 POINT REPAIRS AND OBSTRUCTION REMOVALS ITEM NO. 1103 POINT REPAIRS AND OBSTRUCTION REMOVALS 1103.1 DESCRIPTION: 1. Repair of sanitary sewer lines by replacing short lengths of failed pipe with new pipe. 2. Repair of service laterals located

More information

TECHNICAL NOTE Lining of Casings with SaniTite HP Pipe

TECHNICAL NOTE Lining of Casings with SaniTite HP Pipe TECHNICAL NOTE Lining of Casings with SaniTite HP Pipe TN 5.18 October 2015 In sanitary sewer, it is often necessary to use trenchless technology methods to install a casing pipe under high volume roads,

More information

ENGINEERED FOUNDATIONS. Department of Public Works Jeff Hill, PE

ENGINEERED FOUNDATIONS. Department of Public Works Jeff Hill, PE ENGINEERED FOUNDATIONS Department of Public Works Jeff Hill, PE What is an engineered foundation. A Foundation Design Developed by a Trained Professional (Engineer) Types of Foundations (All of which can

More information

Use of a Reinforced Jet Grout Excavation Support System for a Major Sewer Line Repair

Use of a Reinforced Jet Grout Excavation Support System for a Major Sewer Line Repair Use of a Reinforced Jet Grout Excavation Support System for a Major Sewer Line Repair Eric M. Klein, P. E., Rummel, Klepper & Kahl, LLP, Baltimore, Maryland Kenneth B. Andromalos, P. E., Brayman Environmental,

More information

Section 02702 SEWER PIPE INSTALLATION AND TESTING

Section 02702 SEWER PIPE INSTALLATION AND TESTING PART 1 - GENERAL Section 02702 SEWER PIPE INSTALLATION AND TESTING 1-1. SCOPE. This section covers the installation and testing of all sewer pipe furnished under the following specification sections: Concrete

More information

SECTION LS 2530 SANITARY SEWERS. A. General: Submit the following in accordance with The General Conditions.

SECTION LS 2530 SANITARY SEWERS. A. General: Submit the following in accordance with The General Conditions. SECTION LS 2530 SANITARY SEWERS PART 1 GENERAL 1.1 SUBMITTALS A. General: Submit the following in accordance with The General Conditions. 1. Product data for drainage piping specialties. 2. Shop drawings

More information

SEPTIC SYSTEM CONSTRUCTION REQUIREMENTS ST. MARY S COUNTY HEALTH DEPARTMENT

SEPTIC SYSTEM CONSTRUCTION REQUIREMENTS ST. MARY S COUNTY HEALTH DEPARTMENT SEPTIC SYSTEM CONSTRUCTION REQUIREMENTS ST. MARY S COUNTY HEALTH DEPARTMENT The following are minimum requirements for installation of conventional trench sewage disposal systems in St. Mary s County,

More information

SANITARY SEWER MANHOLE CONSTRUCTION 2.2 PORTLAND CEMENT AND PORTLAND CEMENT CONCRETE (PCC):

SANITARY SEWER MANHOLE CONSTRUCTION 2.2 PORTLAND CEMENT AND PORTLAND CEMENT CONCRETE (PCC): PART 1 GENERAL 1.1 SCOPE: A. This item includes the work necessary for the construction and installation of sanitary sewer manholes. B. The Contractor may, at his option, use cast-in-place type manholes,

More information

VERTICAL MICROPILE LATERAL LOADING. Andy Baxter, P.G.

VERTICAL MICROPILE LATERAL LOADING. Andy Baxter, P.G. EFFICIENT DESIGN OF VERTICAL MICROPILE SYSTEMS TO LATERAL LOADING Dr. Jesús Gómez, P.E. PE Andy Baxter, P.G. Outline When are micropiles subject to lateral load? How do we analyze them? Shear Friction

More information

Ecoflex Wall Penetration Systems: An efficient, sustainable solution for penetrating concrete or block walls

Ecoflex Wall Penetration Systems: An efficient, sustainable solution for penetrating concrete or block walls Pre- insulated pipe systems ecoflex Wall Penetration installation guide Ecoflex Wall Penetration Systems: An efficient, sustainable solution for penetrating concrete or block walls Pre-insulated Pipe Systems

More information

Beacon Hill Sewer District Standard Specifications

Beacon Hill Sewer District Standard Specifications Beacon Hill Sewer District Standard Specifications Residential Gravity Side Sewer Including Design Criteria and Standard Construction Drawings Residential Gravity Side Sewer Design Criteria 1. Provisions

More information

Dead load (kentledge) A structure over the test pile. Ground anchorage either by tension piles or ground anchors. Bi-directional (Osterberg-cell)

Dead load (kentledge) A structure over the test pile. Ground anchorage either by tension piles or ground anchors. Bi-directional (Osterberg-cell) Introduction Fugro LOADTEST Overview STATIC LOAD TESTING O-cell Bi-directional testing State of the art Dr Melvin England Fugro LOADTEST Static load tests Previous/existing technology Developments O-cell

More information

SECTION 700 STRUCTURES SECTION 701 DRIVEN PILING MATERIALS. 701.02 Materials Materials shall be in accordance with the following:

SECTION 700 STRUCTURES SECTION 701 DRIVEN PILING MATERIALS. 701.02 Materials Materials shall be in accordance with the following: 701.03 SECTION 700 STRUCTURES SECTION 701 DRIVEN PILING 10 701.01 Description This work shall consist of furnishing and driving foundation piles of the type and dimensions specified including cutting off

More information

High Density Polyethylene Liners for Rehabilitation of Corroded Pipelines

High Density Polyethylene Liners for Rehabilitation of Corroded Pipelines High Density Polyethylene Liners for Rehabilitation of Corroded Pipelines Jeff Schell General Manager United Pipeline Middle East, Inc. Introduction HDPE Liners A cost effective and environmentally beneficial

More information

SECTION 02630 STORM DRAINAGE SYSTEM

SECTION 02630 STORM DRAINAGE SYSTEM SECTION 02630 PART 1 - GENERAL 1.01 DESCRIPTION A. Section includes specifications for storm drainage systems including modifications and connections to existing storm drainage systems. 1.02 REFERENCE

More information

Step 11 Static Load Testing

Step 11 Static Load Testing Step 11 Static Load Testing Test loading is the most definitive method of determining load capacity of a pile. Testing a pile to failure provides valuable information to the design engineer and is recommended

More information